
Proceedings of NAACL-HLT 2016 (Demonstrations), pages 1–5,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

rstWeb – A Browser-based Annotation Interface

for Rhetorical Structure Theory and Discourse Relations

Amir Zeldes

Department of Linguistics, Georgetown University
amir.zeldes@georgetown.edu

Abstract

This paper presents rstWeb, a new browser-

based interface for Rhetorical Structure Theo-

ry and other discourse relation annotations.

Expanding on previous tools for RST, rstWeb

allows annotators to work online using only a

browser. Project administrators can easily col-

lect multiple annotations of the same docu-

ments on a central server, keep track of anno-

tation processes and assign tasks and annota-

tion schemes to users. A local version using an

embedded web framework is also available,

running offline on a desktop browser under

the localhost.

1 Introduction

Since its introduction by Mann & Thompson

(1988) Rhetorical Structure Theory has enjoyed

continuing interest as a framework for the analysis

of discourse relations, including the development

of large scale corpora (especially the RST Dis-

course Treebank; RSTDT, Carlson et al. 2003) and

automatic parsers (Joty et al. 2013, Surdeanu et al.

2015). However while the development of RST

corpora and parsing has continued, there has been

less progress in creating more up-to-date, collabo-

rative and online interfaces for annotation, which

would facilitate the development of new manually

annotated data sets. Most work to date has used ei-

ther the original RSTTool (O’Donnell 2000), a lo-

cal desktop application written in Tcl/Tk, or its ex-

tension, the ISI RST Annotation Tool by Daniel

Marcu (see: http://www.isi.edu/~marcu/

discourse/AnnotationSoftware.html).

Both tools are not being actively developed at pre-

sent, and installing and running them across plat-

forms can be challenging.

Meanwhile for other annotation tasks, online

web interfaces have been developed which allow

annotators to be trained and to work using only a

browser, substantially facilitating the recruitment,

curation and validation of data (e.g. Arborator,

Gerdes 2013 for dependency syntax, or WebAnno,

Yimam et al. 2013, for a variety of tasks). These

server-based tools let project managers collect data

centrally, without exchanging files with annotators,

and track progress or log annotation processes au-

tomatically, while substantially reducing admin-

istration effort. The software presented here is

meant to do the same for RST. Specifically it al-

lows:

 Annotation using only a browser

 Import and export of RSTTool’s .rs3 format

 Import of plain text (discourse unit per line)

 Support for multiple annotated versions of

documents across users

 Enforcement of uniform annotation schemes

across users

 Undo/redo functionality

 Logging of annotation steps

 Administration for user assignments, projects

and guideline links

 Single mode for adding/deleting spans, multi-

nuclear relations and satellite linking (no

mode switching, see below)

The following section describes the technical infra-

structure of rstWeb and the main requirements and

workflows of the software. Section 3 briefly re-

ports on a project employing rstWeb as an annota-

1

tion interface and estimates the reduction of user

actions compared to previous tools based on anno-

tation logs from RSTDT. Section 4 discusses some

applications to discourse annotation outside RST.

Section 5 ends with discussion for further work.

2 Software architecture

rstWeb
1
 is written in Python with a SQLite back-

end, and these are required for the server running

the software. In order to stay light-weight and re-

sponsive, JavaScript is used for the browser-based

client, making the server-side demand almost no

resources. jQuery and jsPlumb are used to render

edges and animations. Following a static form-

submit architecture (cf. Arborator, Gerdes 2013),

no running services are used: Python scripts are

exposed via a Web server (e.g. Apache), and call-

ing them from a browser accesses the DB to serial-

ize HTML for the client. For local machine use, a

service script using the CherryPy framework can

be used, requiring local users to install Python and

CherryPy (http://www.cherrypy.org/). The

software is platform independent, running on Mac,

Linux and Windows platforms. Figure 1 gives a

schematic overview of the system’s architecture.

Figure 1: rstWeb schematic architecture.

Four scripts are exposed to the user, used to

open and administrate projects (‘open’ and ‘admin’

scripts), and to annotate in two modes described

below: ‘segmentation’ and ‘structuring’.

1
 http://corpling.uis.georgetown.edu/rstweb/info

To annotate documents, users log in to the inter-

face, where they can open any documents that have

been assigned to them. Each user has their own

copy of each assigned document, meaning that

multiple users can annotate the same document in

parallel for inter-annotator agreement experiments,

though the tool does not support automatic calcula-

tion of agreement measures at present. Once a

document has been opened, the user can move

freely between two modes: segmentation of Ele-

mentary Discourse Units (EDUs), and structuring

the units into an RST tree (see Figure 3 below).

In designing the annotation workflow, a central

objective was to avoid constant switching between

modes: in RSTTool, segmenting units, linking, un-

linking, grouping them in spans or adding multinu-

clear relations, all required changing the ‘mode’ to

do just that task; single clicks could then be used to

carry out the action. This meant it was more con-

venient to complete multiple tasks of the same kind

(e.g. spanning or unlinking) consecutively, which

required some planning and reduced flexibility, or

alternatively that frequent switching needed to be

done. For rstWeb, the attempt was made to allow

all operations on any node to be available simulta-

neously. This attempt has been successful for all

tasks except for segmentation. An initial attempt to

allow users to segment units within the RST dia-

gram proved cumbersome, since reading EDUs in

small boxes left-to-right is more difficult than

reading the running text in one big box.

As a result, a dedicated segmentation mode was

developed, the interface for which is shown in Fig-

ure 2. This interface closely resembles RSTTool’s

segmentation mode.

Figure 2: Discourse segmentation editor.

Users can move between modes and choose to re-

segment while structuring: if a unit in a tree is

segmented, the first portion of the divided segment

retains the original function, and the second is cre-

ated without attachment. Merging two units causes

2

them to retain the attachment and label of the first

unit. The tool has client-side undo/redo function-

ality, without submitting to the server, though un-

do/redo steps are logged as in the ISI tool.
2

The other mode, structuring, is where the bulk

of annotation work is done (see Figure 3). rstWeb

supports the same tree structures as other tools, in-

cluding crossing edges. However unlike earlier

tools, there is no need to switch between annota-

tion modes to connect or unlink nodes, add spans,

or add multinuclear relations. These actions are

handled by small buttons surrounding each node

junction: X for unlinking, T for adding a span and Λ

for multinuclear nodes (see Figure 3). User reports

suggest that this facilitates annotation substantially.

Finally, administrators can manage user as-

signments and import documents from plain text

files (one EDU per line) or .rs3 files (RSTTool

format), or export annotations in .rs3 format.
3

Documents can be grouped into projects, which

can be given a guidelines URL for users to consult.

3 Annotating in rstWeb

rstWeb has been employed in the annotation of the

GUM corpus (Zeldes 2016)
4
, an open-access multi-

layer corpus including RST analyses, constructed

2 Step logging has been used in the evaluation of annotation

methodology, for example in Marcu et al. (1999).
3 This format can also be imported into corpus search tools

supporting RST, such as ANNIS (Krause & Zeldes 2016).
4 http://corpling.uis.georgetown.edu/gum

via classroom annotation and extended yearly. The

corpus contains texts from 4 genres: travel guides,

how-to guides, online news and interviews. In the

most recent round of data collection, encompassing

29 documents, RST annotation was done with rst-

Web, instead of the previously used RSTTool.

Documents were comparable in length (Ø 58.31

EDUs) with those in the RST Discourse Treebank

with Ø 56.59 EDUs (Carlson et al. 2003). This

suggests that the system can be used successfully

for text sizes on par with the benchmark resource

for RST. The amount of errors based on instructor

corrections using rstWeb compared to RSTTool

was very similar (see Zeldes 2016).

To give an idea of the mode changes required

by a multi-mode workflow, switching between

linking/unlinking/grouping and creating multinu-

clear clusters as in older tools, we can examine an-

notation step files from the RST Discourse Tree-

banks. Table 1 gives the necessary mode change

rates per node (including non-terminals), and the

proportion of changes per annotation step in 10

random Wall Street Journal documents from

RSTDT (including undo actions, but excluding

segmentation operations).

Although the tools are different and therefore

hard to compare directly, rstWeb logs from the

GUM data suggest a similar rate of Ø 0.43 action

type changes per step, indicating that annotators

generally use mode changes as needed in either

environment, meaning the multimode interface

should save a substantial amount of clicking.

Figure 3: Structurer interface with an RST tree. The three buttons around each node allow users to unlink edg-

es, create grouping spans or add multinuclear clusters above nodes, without switching annotation modes.

3

doc cha steps nodes cha/stp cha/node

wsj_0602 74 143 128 0.5174 0.5781

wsj_0654 16 30 37 0.5333 0.4324

wsj_0667 18 25 33 0.72 0.5454

wsj_1146 207 546 636 0.3791 0.3254

wsj_1169 15 30 34 0.5 0.4411

wsj_1306 32 72 93 0.4444 0.3440

wsj_1387 113 209 271 0.5406 0.4169

wsj_2336 25 45 61 0.5555 0.4098

wsj_2373 12 39 58 0.3076 0.2068

wsj_2386 55 177 255 0.3107 0.2156

Ø 56.7 131.6 160.6 0.4809 0.3916

Table 1: Mode change proportions per step and node in 10

WSJ documents from the RST Discourse Treebank.

During a previous round of data collection for

GUM, RST annotations for the same corpus with

the same text types were created using RSTTool.

Feedback from students who switched from work-

ing with RSTTool to rstWeb, as well as from in-

structors (including a trained teaching assistant),

has been very positive.

4 Using rstWeb for other resources

Data has successfully been imported into rstWeb

from several existing RST-annotated sources, in-

cluding the RST Discourse Treebank (converted to

.rs3) and the German Potsdam Commentary Cor-

pus (Stede & Neumann 2014). Although the soft-

ware has been designed specifically for RST anno-

tation, it may be possible to use it for other types of

annotation, especially those representing binary re-

lations between clauses. In particular, it is possible

to disable the buttons generating spans and/or mul-

tinuclear nodes: this could be useful for other

(shallow) discourse parsing frameworks or subsets

of these, in which annotators would not be allowed

to create multinuclear nodes or possibly any form

of hierarchy.

For some forms of annotation, and particularly

for explicit connectives (e.g. marking up a word

such as ‘because’) and gaps inside clauses (clause

parts with no relations), as used e.g. in the Penn

Discourse Treebank (Prasad et al. 2008), the inter-

face is not suitable, since each unit of annotation

must be broken off as a segment. For connectives,

this could be a single word, which would be im-

practical to view in the RST style diagram. How-

ever for simple binary relation classification be-

tween clauses with similar schemas, the ad-

vantages of the online, browser-based interface

may make it a useful option (cf. Figure 4, using the

Expansion.Conjunction and Expan-

sion.Restatement relations from PDTB; multinu-

clear buttons have been disabled, but hierarchies

are still enabled).

Figure 4: PDTB style hierarchical binary relations without

connective annotation. Multinuclear buttons are disabled.

5 Conclusion

rstWeb offers a new, actively maintained tool for

online, browser-based annotation of Rhetorical

Structure Theory. The static script strategy of the

backend means that server load when running rst-

Web is negligible: it is not running at all unless a

user has just submitted or requested data. Using

CherryPy as a localhost container means that serv-

er code can be used offline or by single users who

do not have access to a server – all code updates to

the server version carry over to the local version.

Using the browser as an interface means that users

can work in a familiar environment, without in-

stalling software (at least for server based pro-

jects), that administrators do not need to exchange

files with annotators, and that the system is cross-

platform compatible without resorting to heavier

Java based frameworks.

In future work, some additional features could

be added to the software. In particular, it is current-

ly not possible to edit the inventory of RST rela-

tions after the import of a document. Also, support

for ‘schemas’, i.e. added span annotations to mark

a unit as a ‘title’ etc., which was supported in pre-

vious tools, is not currently implemented, but is

planned for an upcoming version. Finally, built in

facilities for measuring inter-annotator agreement

are interesting possible addition to the software.

4

References

Lynn Carlson, Daniel Marcu and Mary Ellen Oku-

rowski. 2003. Building a Discourse-Tagged Corpus

in the Framework of Rhetorical Structure Theory. In

Current and New Directions in Discourse and Dia-

logue. (Text, Speech and Language Technology 22.)

Kluwer, Dordrecht, 85–112.

Kim Gerdes. 2013. Collaborative Dependency Annota-

tion. In Proceedings of the Second International Con-

ference on Dependency Linguistics (DepLing 2013).

Prague, 88–97.

Shafiq Joty, Giuseppe Carenini, Raymond Ng, and

Yashar Mehdad. 2013. Combining Intra- and Multi-

Sentential Rhetorical Parsing for Document-Level

Discourse Analysis. In Proceedings of the 51st Annu-

al Meeting of the Association for Computational Lin-

guistics. Sofia, Bulgaria, 486–496.

Thomas Krause and Amir Zeldes. 2016. ANNIS3: A

New Architecture for Generic Corpus Query and

Visualization. Digital Scholarship in the Humanities

31(1):118–139.

William C. Mann and Sandra A. Thompson. 1988. Rhe-

torical Structure Theory: Toward a Functional Theory

of Text Organization. Text 8(3):243–281.

Daniel Marcu, Estibaliz Amorrortu, and Magdalena

Romera. 1999. Experiments in Constructing a Corpus

of Discourse Trees. In Proceedings of the ACL Work-

shop Towards Standards and Tools for Discourse

Tagging. College Park, MD, 48–57.

Michael O’Donnell. 2000. RSTTool 2.4 - A Markup

Tool for Rhetorical Structure Theory. In Proceedings

of the International Natural Language Generation

Conference (INLG 2000). Mitzpe Ramon, Israel,

253–256.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsa-

kaki, Livio Robaldo, Aravind Joshi, and Bonnie

Webber. 2008. The Penn Discourse Treebank 2.0. In

Proceedings of the 6th International Conference on

Language Resources and Evaluation (LREC 2008).

Marrakech, Morocco.

Manfred Stede and Arne Neumann. 2014. Potsdam

Commentary Corpus 2.0: Annotation for Discourse

Research. In Proceedings of the Language Resources

and Evaluation Conference (LREC 2014). Reykjavik,

Iceland, 925–929.

Mihai Surdeanu, Thomas Hicks, and Marco A. Valen-

zuela-Escarcega. 2015. Two Practical Rhetorical

Structure Theory Parsers. In Proceedings of NAACL-

HLT 2015. Denver, CO, 1–5.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart de

Castilho, and Chris Biemann. 2013. WebAnno: A

Flexible, Web-based and Visually Supported System

for Distributed Annotations. In Proceedings of the

51st Annual Meeting of the Association for Computa-

tional Linguistics. Sofia, Bulgaria, 1–6.

Amir Zeldes. 2016. The GUM Corpus: Creating Multi-

layer Resources in the Classroom. Language Re-

sources and Evaluation. Available online at

http://dx.doi.org/10.1007/s10579-016-9343-x.

5

