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Abstract

Today’s event ordering research is heav-
ily dependent on annotated corpora. Cur-
rent corpora influence shared evaluations
and drive algorithm development. Partly
due to this dependence, most research fo-
cuses on partial orderings of a document’s
events. For instance, the TempEval com-
petitions and the TimeBank only annotate
small portions of the event graph, focusing
on the most salient events or on specific
types of event pairs (e.g., only events in the
same sentence). Deeper temporal reason-
ers struggle with this sparsity because the
entire temporal picture is not represented.
This paper proposes a new annotation pro-
cess with a mechanism to force annotators
to label connected graphs. It generates 10
times more relations per document than the
TimeBank, and our TimeBank-Dense cor-
pus is larger than all current corpora. We
hope this process and its dense corpus en-
courages research on new global models
with deeper reasoning.

1 Introduction

The TimeBank Corpus (Pustejovsky et al., 2003)
ushered in a wave of data-driven event ordering
research. It provided for a common dataset of re-
lations between events and time expressions that
allowed the community to compare approaches.
Later corpora and competitions have based their
tasks on the TimeBank setup. This paper ad-
dresses one of its shortcomings: sparse annotation.
We describe a new annotation framework (and a
TimeBank-Dense corpus) that we believe is needed
to fulfill the data needs of deeper reasoners.

The TimeBank includes a small subset of all
possible relations in its documents. The annota-
tors were instructed to label relations critical to the
document’s understanding. The result is a sparse la-
beling that leaves much of the document unlabeled.
The TempEval contests have largely followed suit
and focused on specific types of event pairs. For
instance, TempEval (Verhagen et al., 2007) only
labeled relations between events that syntactically
dominated each other. This paper is the first attempt
to annotate a document’s entire temporal graph.

A consequence of focusing on all relations is a
shift from the traditional classification task, where
the system is given a pair of events and asked only
to label the type of relation, to an identification task,
where the system must determine for itself which
events in the document to pair up. For example, in
TempEval-1 and 2 (Verhagen et al., 2007; Verha-
gen et al., 2010), systems were given event pairs
in specific syntactic positions: events and times in
the same noun phrase, main events in consecutive
sentences, etc. We now aim for a shift in the com-
munity wherein all pairs are considered candidates
for temporal ordering, allowing researchers to ask
questions such as: how must algorithms adapt to
label the complete graph of pairs, and if the more
difficult and ambiguous event pairs are included,
how must feature-based learners change?

We are not the first to propose these questions,
but this paper is the first to directly propose the
means by which they can be addressed. The stated
goal of TempEval-3 (UzZaman et al., 2013) was to
focus on relation identification instead of classifica-
tion, but the training and evaluation data followed
the TimeBank approach where only a subset of
event pairs were labeled. As a result, many systems
focused on classification, with the top system clas-
sifying pairs in only three syntactic constructions
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There were four or five people inside, 
and they just started firing 
 
Ms. Sanders was hit several times and 
was  pronounced dead at the scene. 
 
The other customers fled, and the 
police said it did not appear that anyone 
else was injured. 

There were four or five people inside, 
and they just started firing 
 
Ms. Sanders was hit several times and 
was pronounced dead at the scene. 
 
The other customers fled, and the 
police said it did not appear that anyone 
else was injured. 

Current Systems & Evaluations This Proposal 

Figure 1: A TimeBank annotated document is on the left, and this paper’s TimeBank-Dense annotation is
on the right. Solid arrows indicate BEFORE relations and dotted arrows indicate INCLUDED IN relations.

(Bethard, 2013). We describe the first annotation
framework that forces annotators to annotate all
pairs1. With this new process, we created a dense
ordering of document events that can properly eval-
uate both relation identification and relation anno-
tation. Figure 1 illustrates one document before
and after our new annotations.

2 Previous Annotation Work

The majority of corpora and competitions for event
ordering contain sparse annotations. Annotators for
the original TimeBank (Pustejovsky et al., 2003)
only annotated relations judged to be salient by
the annotator. Subsequent TempEval competitions
(Verhagen et al., 2007; Verhagen et al., 2010; Uz-
Zaman et al., 2013) mostly relied on the TimeBank,
but also aimed to improve coverage by annotating
relations between all events and times in the same
sentence. However, event tokens that were men-
tioned fewer than 20 times were excluded and only
one TempEval task considered relations between
events in different sentences. In practical terms, the
resulting evaluations remained sparse.

A major dilemma underlying these sparse tasks
is that the unlabeled event/time pairs are ambigu-
ous. Each unlabeled pair holds 3 possibilities:

1. The annotator looked at the pair of events and
decided that no temporal relation exists.

2. The annotator did not look at the pair of
events, so a relation may or may not exist.

3. The annotator failed to look at the pair of
events, so a single relation may exist.

Training and evaluation of temporal reasoners is
hampered by this ambiguity. To combat this, our

1As discussed below, all pairs in a given window size.

Events Times Rels R
TimeBank 7935 1414 6418 0.7
Bramsen 2006 627 – 615 1.0
TempEval-07 6832 1249 5790 0.7
TempEval-10 5688 2117 4907 0.6
TempEval-13 11145 2078 11098 0.8
Kolomiyets-12 1233 – 1139 0.9
Do 20122 324 232 3132 5.6
This work 1729 289 12715 6.3

Table 1: Events, times, relations and the ratio of
relations to events + times (R) in various corpora.

annotation adopts the VAGUE relation introduced
by TempEval 2007, and our approach forces anno-
tators to use it. This is the only work that includes
such a mechanism.

This paper is not the first to look into more dense
annotations. Bramsen et al. (2006) annotated multi-
sentence segments of text to build directed acyclic
graphs. Kolomiyets et al. (2012) annotated “tem-
poral dependency structures”, though they only
focused on relations between pairs of events. Do
et al. (2012) produced the densest annotation, but
“the annotator was not required to annotate all pairs
of event mentions, but as many as possible”. The
current paper takes a different tack to annotation
by requiring annotators to label every possible pair
of events/times in a given window. Thus this work
is the first annotation effort that can guarantee its
event/time graph to be strongly connected.

Table 1 compares the size and density of our
corpus to others. Ours is the densest and it contains
the largest number of temporal relations.

2Do et al. (2012) reports 6264 relations, but this includes
both the relations and their inverses. We thus halve the count
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3 A Framework for Dense Annotation

Frameworks for annotating text typically have two
independent facets: (1) the practical means of how
to label the text, and (2) the higher-level rules about
when something should be labeled. The first is
often accomplished through a markup language,
and we follow prior work in adopting TimeML here.
The second facet is the focus of this paper: when
should an annotator label an ordering relation?

Our proposal starts with documents that have al-
ready been annotated with events, time expressions,
and document creation times (DCT). The following
sentence serves as our motivating example:

Police confirmed Friday that the body
found along a highway in San Juan be-
longed to Jorge Hernandez.

This sentence is represented by a 4 node graph (3
events and 1 time). In a completely annotated graph
it would have 6 edges (relations) connecting the
nodes. In the TimeBank, from which this sentence
is drawn, only 3 of the 6 edges are labeled.

The impact of these annotation decisions (i.e.,
when to annotate a relation) can be significant. In
this example, a learner must somehow deal with
the 3 unlabeled edges. One option is to assume that
they are vague or ambiguous. However, all 6 edges
have clear well-defined ordering relations:

belonged BEFORE confirmed
belonged BEFORE found
found BEFORE confirmed
belonged BEFORE Friday
confirmed IS INCLUDED IN Friday
found IS INCLUDED IN Friday3

Learning algorithms handle these unlabeled
edges by making incorrect assumptions, or by ig-
noring large parts of the temporal graph. Sev-
eral models with rich temporal reasoners have
been published, but since they require more con-
nected graphs, improvement over pairwise classi-
fiers have been minimal (Chambers and Jurafsky,
2008; Yoshikawa et al., 2009). This paper thus
proposes an annotation process that builds denser
graphs with formal properties that learners can rely
on, such as locally complete subgraphs.

3.1 Ensuring Dense Graphs

While the ideal goal is to create a complete graph,
the time it would take to hand-label n(n − 1)/2

for accurate comparison to other corpora.
3Revealed by the previous sentence (not shown here).

edges is prohibitive. We approximate completeness
by creating locally complete graphs over neigh-
boring sentences. The resulting event graph for a
document is strongly connected, but not complete.
Specifically, the following edge types are included:

1. Event-Event, Event-Time, and Time-Time
pairs in the same sentence

2. Event-Event, Event-Time, and Time-Time
pairs between the current and next sentence

3. Event-DCT pairs for every event in the text
4. Time-DCT pairs for every time expression in

the text

Our process requires annotators to annotate the
above edge types, enforced via an annotation tool.
We describe the relation set and this tool next.

3.1.1 Temporal Relations
The TimeBank corpus uses 14 relations based on
the Allen interval relations. The TempEval contests
have used a small set of relations (TempEval-1) and
the larger set of 14 relations (TempEval-3). Pub-
lished work has mirrored this trend, and different
groups focus on different aspects of the semantics.

We chose a middle ground between coarse and
fine-grained distinctions for annotation, settling on
6 relations: before, after, includes, is included, si-
multaneous, and vague. We do not adopt a more
fine-grained set because we annotate pairs that are
far more ambiguous than those considered in previ-
ous efforts. Decisions between relations like before
and immediately before can complicate an already
difficult task. The added benefit of a corpus (or
working system) that makes fine-grained distinc-
tions is also not clear. We lean toward higher an-
notator agreement with relations that have greater
separation between their semantics4.

3.1.2 Enforcing Annotation
Imposing the above rules on annotators requires
automated assistance. We built a new tool that
reads TimeML formatted text, and computes the
set of required edges. Annotators are prompted to
assign a label for each edge, and skipping edges is
prohibited.5 The tool is unique in that it includes
a transitive reasoner that infers relations based on
the annotator’s latest annotations. For example,

4For instance, a relation like starts is a special case of in-
cludes if events are viewed as open intervals, and immediately
before is a special case of before. We avoid this overlap and
only use includes and before

5Note that annotators are presented with pairs in order from
document start to finish, starting with the first two events.
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if event e1 IS INCLUDED in t1, and t1 BEFORE

e2, the tool automatically labels e1 BEFORE e2.
The transitivity inference is run after each input
label, and the human annotator cannot override
the inferences. This prohibits the annotator from
entering edges that break transitivity. As a result,
several properties are ensured through this process:
the graph (1) is a strongly connected graph, (2) is
consistent with no contradictions, and (3) has all
required edges labeled. These 3 properties are new
to all current ordering corpora.

3.2 Annotation Guidelines
Since the annotation tool frees the annotators from
the decision of when to label an edge, the focus is
now what to label each edge. This section describes
the guidelines for dense annotation.

The 80% confidence rule: The decision to label
an edge as VAGUE instead of a defined temporal
relation is critical. We adopted an 80% rule that in-
structed annotators to choose a specific non-vague
relation if they are 80% confident that it was the
writer’s intent that a reader infer that relation. By
not requiring 100% confidence, we allow for alter-
native interpretations that conflict with the chosen
edge label as long as that alternative is sufficiently
unlikely. In practice, annotators had different inter-
pretations of what constitutes 80% certainty, and
this generated much discussion. We mitigated these
disagreements with the following rule.

Majority annotator agreement: An edge’s la-
bel is the relation that received a majority of an-
notator votes, otherwise it is marked VAGUE. If a
document has 2 annotators, both have to agree on
the relation or it is labeled VAGUE. A document
with 3 annotators requires 2 to agree. This agree-
ment rule acts as a check to our 80% confidence
rule, backing off to VAGUE when decisions are un-
certain (arguably, this is the definition of VAGUE).

We also encouraged consistent labelings with
guidelines inspired by Bethard and Martin (2008).

Modal and conditional events: interpreted with
a possible worlds analysis. The core event was
treated as having occurred, whether or not the text
implied that it had occurred. For example,

They [EVENT expect] him to [EVENT
cut] costs throughout the organization.

This event pair is ordered (expect before cut) since
the expectation occurs before the cutting (in the

possible world where the cutting occurs). Negated
events and hypotheticals are treated similarly. One
assumes the event does occur, and all other events
are ordered accordingly. Negated states like “is not
anticipating” are interpreted as though the antici-
pation occurs, and surrounding events are ordered
with regard to its presumed temporal span.

Aspectual Events: annotated as IS INCLUDED

in their event arguments. For instance, events that
describe the manner in which another event is per-
formed are considered encompassed by the broader
event. Consider the following example:

The move may [EVENT help] [EVENT
prevent] Martin Ackerman from making
a run at the computer-services concern.

This event pair is assigned the relation (help IS IN-
CLUDED in prevent) because the help event is not
meaningful on its own. It describes the proportion
of the preventing accounted for by the move. In
TimeBank, the intentional action class is used in-
stead of the aspectual class in this case, but we still
consider it covered by this guideline.

Events that attribute a property: to a person
or event are interpreted to end when the entity ends.
For instance, ‘the talk is nonsense’ evokes a non-
sense event with an end point that coincides with
the end of the talk.

Time Expressions: the words now and today
were given “long now” interpretations if the words
could be replaced with nowadays and not change
the meaning of their sentences. The time’s dura-
tion starts sometime in the past and INCLUDES the
DCT. If nowadays is not suitable, then the now was
INCLUDED IN the DCT.

Generic Events: can be ordered with respect to
each other, but must be VAGUE with respect to
nearby non-generic events.

4 TimeBank-Dense: corpus statistics

We chose a subset of TimeBank documents for our
new corpus: TimeBank-Dense. This provided an
initial labeling of events and time expressions. Us-
ing the tool described above, we annotated 36 ran-
dom documents with at least two annotators each.
These 36 were annotated with 4 times as many
relations as the entire 183 document TimeBank.

The four authors of this paper were the four an-
notators. All four annotated the same initial docu-
ment, conflicts and disagreements were discussed,
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Annotated Relation Count

BEFORE 2590 INCLUDES 836
AFTER 2104 INCLUDED IN 1060
SIMULTAN. 215 VAGUE 5910
Total Relations: 12715

Table 2: Relation counts in TimeBank-Dense.

and guidelines were updated accordingly. The rest
of the documents were then annotated indepen-
dently. Document annotation was not random, but
we mixed pairs of authors where time constraints al-
lowed. Table 2 shows the relation counts in the final
corpus, and Table 3 gives the annotator agreement.
We show precision (holding one annotation as gold)
and kappa computed on the 4 types of pairs from
section 3.1. Micro-averaged precision was 65.1%,
compared to TimeBank’s 77%. Kappa ranged from
.56-.64, a slight drop from TimeBank’s .71.

The vague relation makes up 46% of the rela-
tions. This is the first empirical count of how many
temporal relations in news articles are truly vague.

Our lower agreement is likely due to the more
difficult task. Table 5 breaks down the individual
disagreements. The most frequent pertained to the
VAGUE relation. Practically speaking, VAGUE was
applied to the final graph if either annotator chose
it. This seems appropriate since a disagreement be-
tween annotators implies that the relation is vague.

The following example illustrates the difficulty
of labeling edges with a VAGUE relation:

No one was hurt, but firefighters or-
dered the evacuation of nearby homes
and said they’ll monitor the ground.

Both annotators chose VAGUE to label ordered and
said because the order is unclear. However, they
disagreed on evacuation with monitor. One chose
VAGUE, but the other chose IS INCLUDED. There is
a valid interpretation where a monitoring process
has already begun, and continues after the evacua-
tion. This interpretation reached 80% confidence
for one annotator, but not the other. In the face of
such a disagreement, the pair is labeled VAGUE.

How often do these disagreements occur? Ta-
ble 4 shows the 3 sources: (1) mutual vague: anno-
tators agree it is vague, (2) partial vague: one anno-
tator chooses vague, but the other does not, and (3)
no vague: annotators choose conflicting non-vague
relations. Only 17% of these disagreements are due
to hard conflicts (no vague). The released corpus
includes these 3 fine-grained VAGUE relations.

Annotators # Links Prec Kappa
A and B 9282 .65 .56
A and D 1605 .72 .63
B and D 279 .70 .64
C and D 1549 .65 .57

Table 3: Agreement between different annotators.

# Vague
Mutual VAGUE 1657 (28%)
Partial VAGUE 3234 (55%)
No VAGUE 1019 (17%)

Table 4: VAGUE relation origins. Partial vague:
one annotator does not choose vague. No vague:
neither annotator chooses vague.

b a i ii s v
b 1776 22 88 37 21 192
a 17 1444 32 102 9 155
i 71 34 642 45 23 191
ii 81 76 40 826 31 230
s 12 8 25 28 147 29
v 500 441 289 356 64 1197

Table 5: Relation agreement between the two main
annotators. Most disagreements involved VAGUE.

5 Conclusion

We described our annotation framework that pro-
duces corpora with formal guarantees about the an-
notated graph’s structure. Both the annotation tool
and the new TimeBank-Dense corpus are publicly
available.6 This is the first corpus with guarantees
of connectedness, consistency, and a semantics for
unlabeled edges. We hope to encourage a shift in
the temporal ordering community to consider the
entire document when making local decisions. Fur-
ther work is needed to handle difficult pairs with
the VAGUE relation. We look forward to evaluating
new algorithms on this dense corpus.
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