
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 822–827,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

How much do word embeddings encode about syntax?

Jacob Andreas and Dan Klein
Computer Science Division

University of California, Berkeley
{jda,klein}@cs.berkeley.edu

Abstract

Do continuous word embeddings encode
any useful information for constituency
parsing? We isolate three ways in which
word embeddings might augment a state-
of-the-art statistical parser: by connecting
out-of-vocabulary words to known ones,
by encouraging common behavior among
related in-vocabulary words, and by di-
rectly providing features for the lexicon.
We test each of these hypotheses with a
targeted change to a state-of-the-art base-
line. Despite small gains on extremely
small supervised training sets, we find
that extra information from embeddings
appears to make little or no difference
to a parser with adequate training data.
Our results support an overall hypothe-
sis that word embeddings import syntac-
tic information that is ultimately redun-
dant with distinctions learned from tree-
banks in other ways.

1 Introduction

This paper investigates a variety of ways in
which word embeddings might augment a con-
stituency parser with a discrete state space. Word
embeddings—representations of lexical items as
points in a real vector space—have a long history
in natural language processing, going back at least
as far as work on latent semantic analysis (LSA)
for information retrieval (Deerwester et al., 1990).
While word embeddings can be constructed di-
rectly from surface distributional statistics, as in
LSA, more sophisticated tools for unsupervised
extraction of word representations have recently
gained popularity (Collobert et al., 2011; Mikolov
et al., 2013a). Semi-supervised and unsupervised
models for a variety of core NLP tasks, includ-
ing named-entity recognition (Freitag, 2004), part-
of-speech tagging (Schütze, 1995), and chunking

(Turian et al., 2010) have been shown to benefit
from the inclusion of word embeddings as fea-
tures. In the other direction, access to a syntac-
tic parse has been shown to be useful for con-
structing word embeddings for phrases composi-
tionally (Hermann and Blunsom, 2013; Andreas
and Ghahramani, 2013). Dependency parsers have
seen gains from distributional statistics in the form
of discrete word clusters (Koo et al., 2008), and re-
cent work (Bansal et al., 2014) suggests that simi-
lar gains can be derived from embeddings like the
ones used in this paper.

It has been less clear how (and indeed whether)
word embeddings in and of themselves are use-
ful for constituency parsing. There certainly exist
competitive parsers that internally represent lexi-
cal items as real-valued vectors, such as the neural
network-based parser of Henderson (2004), and
even parsers which use pre-trained word embed-
dings to represent the lexicon, such as Socher et
al. (2013). In these parsers, however, use of word
vectors is a structural choice, rather than an added
feature, and it is difficult to disentangle whether
vector-space lexicons are actually more powerful
than their discrete analogs—perhaps the perfor-
mance of neural network parsers comes entirely
from the model’s extra-lexical syntactic structure.
In order to isolate the contribution from word em-
beddings, it is useful to demonstrate improvement
over a parser that already achieves state-of-the-art
performance without vector representations.

The fundamental question we want to explore
is whether embeddings provide any information
beyond what a conventional parser is able to in-
duce from labeled parse trees. It could be that
the distinctions between lexical items that embed-
dings capture are already modeled by parsers in
other ways and therefore provide no further bene-
fit. In this paper, we investigate this question em-
pirically, by isolating three potential mechanisms
for improvement from pre-trained word embed-

822

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

a

the

this

that

most
few

each
every

Figure 1: Word representations of English de-
terminers, projected onto their first two principal
components. Embeddings from Collobert et al.
(2011).

dings. Our result is mostly negative. With ex-
tremely limited training data, parser extensions us-
ing word embeddings give modest improvements
in accuracy (relative error reduction on the order
of 1.5%). However, with reasonably-sized training
corpora, performance does not improve even when
a wide variety of embedding methods, parser mod-
ifications, and parameter settings are considered.

The fact that word embedding features result
in nontrivial gains for discriminative dependency
parsing (Bansal et al., 2014), but do not appear to
be effective for constituency parsing, points to an
interesting structural difference between the two
tasks. We hypothesize that dependency parsers
benefit from the introduction of features (like clus-
ters and embeddings) that provide syntactic ab-
stractions; but that constituency parsers already
have access to such abstractions in the form of su-
pervised preterminal tags.

2 Three possible benefits of word
embeddings

We are interested in the question of whether
a state-of-the-art discrete-variable constituency
parser can be improved with word embeddings,
and, more precisely, what aspect (or aspects) of
the parser can be altered to make effective use of
embeddings.

It seems clear that word embeddings exhibit
some syntactic structure. Consider Figure 1,

which shows embeddings for a variety of English
determiners, projected onto their first two princi-
pal components. We can see that the quantifiers
each and every cluster together, as do few and
most. These are precisely the kinds of distinc-
tions between determiners that state-splitting in
the Berkeley parser has shown to be useful (Petrov
and Klein, 2007), and existing work (Mikolov et
al., 2013b) has observed that such regular em-
bedding structure extends to many other parts of
speech. But we don’t know how prevalent or
important such “syntactic axes” are in practice.
Thus we have two questions: Are such groupings
(learned on large data sets but from less syntacti-
cally rich models) better than the ones the parser
finds on its own? How much data is needed to
learn them without word embeddings?

We consider three general hypotheses about
how embeddings might interact with a parser:

1. Vocabulary expansion hypothesis: Word
embeddings are useful for handling out-of-
vocabulary words, because they automati-
cally ensure that unknown words are treated
the same way as known words with similar
representations. Example: the infrequently-
occurring treebank tag UH dominates greet-
ings (among other interjections). Upon en-
countering the unknown word hey, the parser
assigns a low posterior probability of hav-
ing been generated from UH. But its distri-
butional representation is very close to the
known word hello, and a model capable of
mapping hey to its neighbor should be able to
assign the right tag.

2. Statistic sharing hypothesis: Word embed-
dings are useful for handling in-vocabulary
words, by making it possible to pool statistics
for related words. Example: individual first
names are also rare in the treebank, but tend
to cluster together in distributional represen-
tations. A parser which exploited this effect
could use this to acquire a robust model of
name behavior by sharing statistics from all
first names together, preventing low counts
from producing noisy models of names.

3. Embedding structure hypothesis: The
structure of the space used for the embed-
dings directly encodes syntactic information
in its coordinate axes. Example: with the
exception of a, the vertical axis in Figure 1

823

seems to group words by definiteness. We
would expect a feature corresponding to a
word’s position along this axis to be a useful
feature in a feature-based lexicon.

Note that these hypotheses are not all mutually
exclusive, and two or all of them might provide in-
dependent gains. Our first task is thus to design a
set of orthogonal experiments which make it pos-
sible to test each of the three hypotheses in isola-
tion. It is also possible that other mechanisms are
at play that are not covered by these three hypothe-
ses, but we consider these three to be likely central
effects.

3 Parser extensions

For the experiments in this paper, we will use
the Berkeley parser (Petrov and Klein, 2007) and
the related Maryland parser (Huang and Harper,
2011). The Berkeley parser induces a latent, state-
split PCFG in which each symbol V of the (ob-
served) X-bar grammar is refined into a set of
more specific symbols {V1, V2, . . .} which cap-
ture more detailed grammatical behavior. This
allows the parser to distinguish between words
which share the same tag but exhibit very differ-
ent syntactic behavior—for example, between ar-
ticles and demonstrative pronouns. The Maryland
parser builds on the state-splitting parser, replac-
ing its basic word emission model with a feature-
rich, log-linear representation of the lexicon.

The choice of this parser family has two moti-
vations. First, these parsers are among the best in
the literature, with a test performance of 90.7 F1

for the baseline Berkeley parser on the Wall Street
Journal corpus (compared to 90.4 for Socher et al.
(2013) and 90.1 for Henderson (2004)). Second,
and more importantly, the fact that they use no
continuous state representations internally makes
it easy to design experiments that isolate the con-
tributions of word vectors, without worrying about
effects from real-valued operators higher up in the
model. We consider the following extensions:

Vocabulary expansion → OOV model
To evaluate the vocabulary expansion hypothe-
sis, we introduce a simple but targeted out-of-
vocabulary (OOV) model in which every unknown
word is simply replaced by its nearest neighbor in
the training set. For OOV words which are not in
the dictionary of embeddings, we back off to the
unknown word model for the underlying parser.

Statistic sharing → Lexicon pooling model
To evaluate the statistic sharing hypothesis, we
propose a novel smoothing technique. The Berke-
ley lexicon stores, for each latent (tag, word) pair,
the probability p(w|t) directly in a lookup ta-
ble. If we want to encourage similarly-embedded
words to exhibit similar behavior in the generative
model, we need to ensure that the are preferen-
tially mapped onto the same latent preterminal tag.
In order to do this, we replace this direct lookup
with a smoothed, kernelized lexicon, where:

p(w|t) =
1
Z

∑
w′

αt,w′e−β||ϕ(w)−ϕ(w′)||2 (1)

with Z a normalizing constant to ensure that p(·|t)
sums to one over the entire vocabulary. ϕ(w) is the
vector representation of the word w, αt,w are per-
basis weights, and β is an inverse radius parame-
ter which determines the strength of the smooth-
ing. Each αt,w is learned in the same way as
its corresponding probability in the original parser
model—during each M step of the training proce-
dure, αw,t is set to the expected number of times
the word w appears under the refined tag t. Intu-
itively, as β grows small groups of related words
will be assigned increasingly similar probabilities
of being generated from the same tag (in the limit
where β = 0, Equation 1 is a uniform distribu-
tion over the entire vocabulary). As β grows large
words become more independent (and in the limit
where β = ∞, each summand in Equation 1 is
zero except where w′ = w, and we recover the
original direct-lookup model).

There are computational concerns associated
with this approach: the original scoring procedure
for a (word, tag) pair was a single (constant-time)
lookup; here it might take time linear in the size
of the vocabulary. This causes parsing to become
unacceptably slow, so an approximation is neces-
sary. Luckily, the exponential decay of the kernel
ensures that each word shares most of its weight
with a small number of close neighbors, and al-
most none with words farther away. To exploit
this, we pre-compute the k-nearest-neighbor graph
of points in the embedding space, and take the sum
in Equation 1 only over this set of nearest neigh-
bors. Empirically, taking k = 20 gives adequate
performance, and increasing it does not seem to
alter the behavior of the parser.

As in the OOV model, we also need to worry
about how to handle words for which we have no

824

vector representation. In these cases, we simply
treat the words as if their vectors were so far away
from everything else they had no influence, and
report their weights as p(w|t) = αw. This ensures
that our model continues to include the original
Berkeley parser model as a limiting case.

Embedding structure → embedding features
To evaluate the embedding structure hypothesis,
we take the Maryland featured parser, and replace
the set of lexical template features used by that
parser with a set of indicator features on a dis-
cretized version of the embedding. For each di-
mension i, we create an indicator feature corre-
sponding to the linearly-bucketed value of the fea-
ture at that index. In order to focus specifically
on the effect of word embeddings, we remove the
morphological features from the parser, but retain
indicators on the identity of each lexical item.

The extensions we propose are certainly not
the only way to target the hypotheses described
above, but they have the advantage of being min-
imal and straightforwardly interpretable, and each
can be reasonably expected to improve parser per-
formance if its corresponding hypothesis is true.

4 Experimental setup

We use the Maryland implementation of the
Berkeley parser as our baseline for the kernel-
smoothed lexicon, and the Maryland featured
parser as our baseline for the embedding-featured
lexicon.1 For all experiments, we use 50-
dimensional word embeddings. Embeddings la-
beled C&W are from Collobert et al. (2011); em-
beddings labeled CBOW are from Mikolov et al.
(2013a), trained with a context window of size 2.

Experiments are conducted on the Wall Street
Journal portion of the English Penn Treebank. We
prepare three training sets: the complete training
set of 39,832 sentences from the treebank (sec-
tions 2 through 21), a smaller training set, consist-
ing of the first 3000 sentences, and an even smaller
set of the first 300.

Per-corpus-size settings of the parameter β are
set by searching over several possible settings on
the development set. For each training corpus size
we also choose a different setting of the number of
splitting iterations over which the Berkeley parser
is run; for 300 sentences this is two splits, and for

1Both downloaded from https://code.google.
com/p/umd-featured-parser/

Model 300 3000 Full

Baseline 71.88 84.70 91.13

OOV (C&W) 72.20 84.77 91.22
OOV (CBOW) 72.20 84.78 91.22

Pooling (C&W) 72.21 84.55 91.11
Pooling (CBOW) 71.61 84.73 91.15

Features (ident) 67.27 82.77 90.65
Features (C&W) 70.32 83.78 91.08
Features (CBOW) 69.87 84.46 90.86

Table 1: Contributions from OOV, lexical pooling
and featured models, for two kinds of embeddings
(C&W and CBOW). For both choices of embed-
ding, the pooling and OOV models provide small
gains with very little training data, but no gains
on the full training set. The featured model never
achieves scores higher than the generative base-
line.

Model 300 3000 Full

Baseline 72.02 84.09 90.70
Pool + OOV (C&W) 72.43∗ 84.36∗ 90.11

Table 2: Test set experiments with the best com-
bination of models (based on development exper-
iments). Again, we observe small gains with re-
stricted training sets but no gains on the full train-
ing set. Entries marked ∗ are statistically signifi-
cant (p < 0.05) under a paired bootstrap resam-
pling test.

3000 four splits. This is necessary to avoid over-
fitting on smaller training sets. Consistent with the
existing literature, we stop at six splits when using
the full training corpus.

5 Results

Various model-specific experiments are shown in
Table 1. We begin by investigating the OOV
model. As can be seen, this model alone achieves
small gains over the baseline for a 300-word train-
ing corpus, but these gains become statistically in-
significant with more training data. This behavior
is almost completely insensitive to the choice of
embedding.

Next we consider the lexicon pooling model.
We began by searching over exponentially-spaced
values of β to determine an optimal setting for

825

Experiment WSJ → Brown French

Baseline 86.36 74.84
Pool + OOV 86.42 75.18

Table 3: Experiments for other corpora, using the
same combined model (lexicon pooling and OOV)
as in Table 2. Again, we observe no significant
gains over the baseline.

each training set size; as expected, for small set-
tings of β (corresponding to aggressive smooth-
ing) performance decreased; as we increased the
parameter, performance increased slightly before
tapering off to baseline parser performance. The
first block in Table 1 shows the best settings of β
for each corpus size; as can be seen, this also gives
a small improvement on the 300-sentence training
corpus, but no discernible once the system has ac-
cess to a few thousand labeled sentences.

Last we consider a model with a featured lex-
icon, as described in Huang and Harper (2011).
A baseline featured model (“ident”) contains only
indicator features on word identity (and performs
considerably worse than its generative counter-
part on small data sets). As described above, the
full featured model adds indicator features on the
bucketed value of each dimension of the word em-
bedding. Here, the trend observed in the other two
models is even more prominent—embedding fea-
tures lead to improvements over the featured base-
line, but in no case outperform the standard base-
line with a generative lexicon.

We take the best-performing combination of all
of these models (based on development experi-
ments, a combination of the lexical pooling model
with β = 0.3, and OOV, both using C&W word
embeddings), and evaluate this on the WSJ test
set (Table 2). We observe very small (but statis-
tically significant) gains with 300 and 3000 train
sentences, but a decrease in performance on the
full corpus.

To investigate the possibility that improvements
from embeddings are exceptionally difficult to
achieve on the Wall Street Journal corpus, or on
English generally, we perform (1) a domain adap-
tation experiment, in which we use the OOV and
lexicon pooling models to train on WSJ and test
on the first 4000 sentences of the Brown corpus
(the “WSJ → Brown” column in Table 3), and (2)
a multilingual experiment, in which we train and

test on the French treebank (the “French” column).
Apparent gains from the OOV and lexicon pooling
models remain so small as to be statistically indis-
tinguishable.

6 Conclusion

With the goal of exploring how much useful syn-
tactic information is provided by unsupervised
word embeddings, we have presented three vari-
ations on a state-of-the-art parsing model, with
extensions to the out-of-vocabulary model, lexi-
con, and feature set. Evaluation of these modi-
fied parsers revealed modest gains on extremely
small training sets, which quickly vanish as train-
ing set size increases. Thus, at least restricted to
phenomena which can be explained by the exper-
iments described here, our results are consistent
with two claims: (1) unsupervised word embed-
dings do contain some syntactically useful infor-
mation, but (2) this information is redundant with
what the model is able to determine for itself from
only a small amount of labeled training data.

It is important to emphasize that these results
do not argue against the use of continuous repre-
sentations in a parser’s state space, nor argue more
generally that constituency parsers cannot possi-
bly benefit from word embeddings. However, the
failure to uncover gains when searching across a
variety of possible mechanisms for improvement,
training procedures for embeddings, hyperparam-
eter settings, tasks, and resource scenarios sug-
gests that these gains (if they do exist) are ex-
tremely sensitive to these training conditions, and
not nearly as accessible as they seem to be in de-
pendency parsers. Indeed, our results suggest a
hypothesis that word embeddings are useful for
dependency parsing (and perhaps other tasks) be-
cause they provide a level of syntactic abstrac-
tion which is explicitly annotated in constituency
parses. We leave explicit investigation of this hy-
pothesis for future work.

Acknowledgments

This work was partially supported by BBN under
DARPA contract HR0011-12-C-0014. The first
author is supported by a National Science Foun-
dation Graduate Research Fellowship.

826

References
Jacob Andreas and Zoubin Ghahramani. 2013. A gen-

erative model of vector space semantics. In Pro-
ceedings of the ACL Workshop on Continuous Vec-
tor Space Models and their Compositionality, Sofia,
Bulgaria.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Scott C. Deerwester, Susan T Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Dayne Freitag. 2004. Trained named entity recog-
nition using distributional clusters. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. In Proceedings of
the 42nd Annual Meeting on Association for Compu-
tational Linguistics, page 95. Association for Com-
putational Linguistics.

Karl Moritz Hermann and Phil Blunsom. 2013. The
role of syntax in vector space models of compo-
sitional semantics. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 894–904, Sofia, Bulgaria, August.

Zhongqiang Huang and Mary P. Harper. 2011.
Feature-rich log-linear lexical model for latent vari-
able pcfg grammars. In Proceedings of the Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 219–227.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 595–
603.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 746–751.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Assocation for Computational
Linguistics.

Hinrich Schütze. 1995. Distributional part-of-speech
tagging. In Proceedings of the European Associa-
tion for Computational Linguistics, pages 141–148.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with composi-
tional vector grammars. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 384–394. Proceedings of
the Annual Meeting of the Association for Compu-
tational Linguistics.

827

