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Abstract

Social media content can be used as a
complementary source to the traditional
methods for extracting and studying col-
lective social attributes. This study focuses
on the prediction of the occupational class
for a public user profile. Our analysis is
conducted on a new annotated corpus of
Twitter users, their respective job titles,
posted textual content and platform-related
attributes. We frame our task as classifi-
cation using latent feature representations
such as word clusters and embeddings. The
employed linear and, especially, non-linear
methods can predict a user’s occupational
class with strong accuracy for the coars-
est level of a standard occupation taxon-
omy which includes nine classes. Com-
bined with a qualitative assessment, the
derived results confirm the feasibility of
our approach in inferring a new user at-
tribute that can be embedded in a multitude
of downstream applications.

1 Introduction

The growth of online social networks provides the
opportunity to analyse user text in a broader context
(Tumasjan et al., 2010; Bollen et al., 2011; Lam-
pos and Cristianini, 2012). This includes the social
network (Sadilek et al., 2012), spatio-temporal in-
formation (Lampos and Cristianini, 2010) and per-
sonal attributes (Al Zamal et al., 2012). Previous
research has analysed language differences in user
attributes like location (Cheng et al., 2010), gender
(Burger et al., 2011), impact (Lampos et al., 2014)
and age (Rao et al., 2010), showing that language
use is influenced by them. Therefore, user text al-
lows us to infer these properties. This user profiling
is important not only for sociolinguistic studies, but
also for other applications: recommender systems

to provide targeted advertising, analysts who study
different opinions in each social class or integra-
tion in text regression tasks such as voting intention
(Lampos et al., 2013).

Social status reflected through a person’s occu-
pation is a factor which influences language use
(Bernstein, 1960; Bernstein, 2003; Labov, 2006).
Therefore, our hypothesis is that language use in
social media can be indicative of a user’s occu-
pational class. For example, executives may write
more frequently about business or financial news,
while people in manufacturing positions could re-
fer more to their personal interests and less to job
related activities. Similarly, we expect some cate-
gories of people, like those working in sales and
customer services, to be more social or to use more
informal language.

Focusing on the microblogging platform of Twit-
ter, we explore our hypothesis by studying the
task of predicting a user’s occupational class given
platform-related attributes and generated content,
i.e. tweets. That has direct applicability in a broad
range of areas from sociological studies, which
analyse the behaviour of different occupations, to
recruiting companies that target people for new job
opportunities. For this study, we created a publicly
available data set of users, including their profile
information and historical text content as well as
a label to an occupational class from the “Stan-
dard Occupational Classification” taxonomy (see
Section 2).

We frame our task as classification, aiming to
identify the most likely job class for a given user
based on profile and a variety of textual features:
general word embeddings and clusters (or ‘topics’).
Both linear and non-linear classification methods
are applied with a focus on those that can assist in-
terpretation and offer qualitative insights. We find
that text features, especially word clusters, lead
to good predictive performance. Accuracy for our
best model is well above 50% for 9-way classifi-
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cation, outperforming competitive methods. The
best results are obtained using the Bayesian non-
parametric framework of Gaussian Processes (Ras-
mussen and Williams, 2006), which also accom-
modates feature interpretation via the Automatic
Relevance Determination. This allows us to get in-
sight into differences in language use across job
classes and, finally, assess our original hypothesis
about the thematic divergence across them.

2 Standard Occupational Classification

To enable the user occupation study, we adopt a
standardised job classification taxonomy for map-
ping Twitter users to occupations. The Standard Oc-
cupational Classification (SOC)1 is a UK govern-
ment system developed by the Office of National
Statistics for classifying occupations. Jobs are cate-
gorised hierarchically based on skill requirements
and content. The SOC scheme includes nine major
groups coded with a digit from 1 to 9. Each ma-
jor group is divided into sub-major groups coded
with 2 digits, where the first digit indicates the ma-
jor group. Each sub-major group is further divided
into minor groups coded with 3 digits and finally,
minor groups are divided into unit groups, coded
with 4 digits. The unit groups are the leaves of the
hierarchy and represent specific jobs related to the
group.

Table 1 shows a part of the SOC hierarchy. In to-
tal, there are 9 major groups, 25 sub-major groups,
90 minor groups and 369 unit groups. Although
other hierarchies exist, we use the SOC because
it has been published recently (in 2010), includes
newly introduced jobs, has a balanced hierarchy
and offers a wide variety of job titles that were
crucial in our data set creation.

3 Data

To the best of our knowledge there are no pub-
licly available data sets suitable for the task we
aim to investigate. Thus, we have created a new
one consisting of Twitter users mapped to their oc-
cupation, together with their profile information
and historical tweets. We use the account’s profile
information to capture users with self-disclosed
occupations. The potential self-selection bias is ac-
knowledged, but filtering content via self disclosure

1http://www.ons.gov.uk/ons/
guide-method/classifications/
current-standard-classifications/
soc2010/index.html; accessed on 24/02/2015.

Major Group 1 (C1): Managers, Directors and Senior Officials
Sub-major Group 11: Corporate Managers and Directors

Minor Group 111: Chief Executives and Senior Officials
Unit Group 1115: Chief Executives and Senior Officials
•Job: chief executive, bank manager
Unit Group 1116: Elected Officers and Representatives

Minor Group 112: Production Managers and Directors
Minor Group 113: Functional Managers and Directors
Minor Group 115: Financial Institution Managers and Directors
Minor Group 116: Managers and Directors in Transport and Logistics
Minor Group 117: Senior Officers in Protective Services
Minor Group 118: Health and Social Services Managers and Directors
Minor Group 119: Managers and Directors in Retail and Wholesale

Sub-major Group 12: Other Managers and Proprietors
Major Group (C2): Professional Occupations

•Job: mechanical engineer, pediatrist
Major Group (C3): Associate Professional and Technical Occupations

•Job: system administrator, dispensing optician
Major Group (C4): Administrative and Secretarial Occupations

•Job: legal clerk, company secretary
Major Group (C5): Skilled Trades Occupations

•Job: electrical fitter, tailor
Major Group (C6): Caring, Leisure and Other Service Occupations

•Job: nursery assistant, hairdresser
Major Group (C7): Sales and Customer Service Occupations

•Job: sales assistant, telephonist
Major Group (C8): Process, Plant and Machine Operatives

•Job: factory worker, van driver
Major Group (C9): Elementary Occupations

•Job: shelf stacker, bartender

Table 1: Subset of the SOC classification hierarchy.

is widespread when extracting large-scale data for
user attribute inference (Pennacchiotti and Popescu,
2011; Coppersmith et al., 2014).

Similarly to Hecht et al. (2011), we first assess
the proportion of Twitter accounts with a clear men-
tion to their occupation by annotating the user de-
scription field of a random set of 500 users. There
were chosen from the random 1% sample, having at
least 200 tweets in their history and with a majority
of English tweets. There, we can identify the fol-
lowing categories: no description (12.2%), random
information (22%), user information but not occu-
pation related (45.8%), and job related information
(20%).

To create our data set, we thus use the user de-
scription field to search for self-disclosed job titles
provided by the 4-digit SOC unit groups, since
they contain specific job titles. We queried Twit-
ter’s Search API to retrieve for each job title a max-
imum of 200 accounts which best matched occupa-
tion keywords. Then, we aggregated the accounts
into the 3-digit (minor) categories. To remove po-
tential ambiguity in the retrieved set, we manually
inspected accounts in each minor category and fil-
tered out those that belong to companies, contain
no description or the description provided does not
indicate that the user has a job corresponding to
the minor category. In total, around 50% of the
accounts were removed by manual inspection per-
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formed by the authors. We also removed users in
multiple categories and or users that have tweeted
less than 50 times in their history. Finally, we elim-
inated all 3-digit categories that contained less than
45 user accounts after this filtering. This process
produced a total number of 5,191 users from 55 mi-
nor groups (22 sub-major groups), spread across all
nine major SOC groups. The distribution of users
across these nine groups is: 9.7%, 34.5%, 20.6%,
3.8%, 16.7%, 6.1%, 1.4%, 4.2%, and 3% (follow-
ing the ordering of Table 1). In our data set the
most well represented minor occupational groups
are ‘Functional Managers and Directors’ (184 users
– code 113), ‘Therapy Professionals’ (159 users –
code 222) and ‘Quality and Regulatory Profession-
als’ (158 users – code 246), whereas the least rep-
resented ones are ‘Textile and Garment Trades’ (45
users – code 541), ‘Elementary Security Occupa-
tions’ (46 users – code 924), ‘Elementary Cleaning
Occupations’ (47 users – code 923). The mean num-
ber of users in the minor classes is equal to 94.4
with a standard deviation of 35.6. For these users,
we have collected all their tweets, going as far back
as the latest 3,200, and their profile information.
The final data set consists of 10,796,836 tweets col-
lected around 5 August 2014 and is openly avail-
able.2

A separate Twitter data set is used as a reference
corpus in order to build the feature representations
detailed in Section 4. This data set is an extract
from the Twitter Gardenhose stream (a 10% repre-
sentative sample of the entire Twitter stream) from
2 January to 28 February 2011. Based on this con-
tent, we also build the vocabulary for the text fea-
tures, containing the most frequent 71,555 words.
We tokenise and filter for English using the Trend-
miner preprocessing pipeline (Preoţiuc-Pietro et al.,
2012).

4 Features

In this section, we overview the features used in
the occupational class prediction task. They are
divided into two types: (1) user level features, (2)
textual features.

4.1 User Level Features (UserLevel)

The user level features are based on the general
user information or aggregated statistics about the
tweets. Table 2 introduces the 18 features in this

2http://www.sas.upenn.edu/˜danielpr/
jobs.tar.gz

u1 number of followers
u2 number of friends
u3 number of times listed
u4 follower/friend ratio
u5 proportion of non-duplicate tweets
u6 proportion of retweeted tweets
u7 average no. of retweets/tweet
u8 proportion of retweets done
u9 proportion of hashtags
u10 proportion of tweets with hashtags
u11 proportion of tweets with @-mentions
u12 proportion of @-replies
u13 no. of unique @-mentions in tweets
u14 proportion of tweets with links
u15 no. of favourites the account made
u16 avg. number of tweets/day
u17 total number of tweets
u18 proportion of tweets in English

Table 2: User level attributes for a Twitter user.

category.

4.2 Textual Features

The textual features are derived from the aggre-
gated set of user’s tweets. We use our reference
corpus to represent each user as a distribution over
these features. We ignore the bio field from build-
ing textual features to avoid introducing biases
from our data collection method. While this is a re-
striction, our analysis showed that in less than 20%
of the cases the information in the bio is directly
relevant to the occupation.

4.2.1 SVD Word Embeddings (SVD-E)
We use a more abstract representation of words
than simple unigram counts in order to aid inter-
pretability of our analysis. We compute a word
to word similarity matrix from our reference cor-
pus. Normalised Pointwise Mutual Information
(NPMI) (Bouma, 2009) is used to compute word to
word similarity. NPMI is an information theoretic
measure indicating which words co-occur in the
same context, where the context is represented by
a whole tweet:

NPMI(x, y) = − log P(x, y) · log
P(x, y)

P(x) · P(y)
.

(1)
We then perform singular value decomposition
(SVD) on the word to word similarity matrix and
obtain an embedding of words into a low dimen-
sional space. In our experiments we tried the fol-
lowing dimensionalities: 30, 50, 100 and 200. The
feature representation for each user is obtained
summing over each of the embedding dimensions
across all words.
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4.2.2 NPMI Clusters (SVD-C)

We use the NPMI matrix described in the previous
paragraph to create hard clusters of words. These
clusters can be thought as ‘topics’, i.e. words that
are semantically similar. From a variety of cluster-
ing techniques we choose spectral clustering (Shi
and Malik, 2000; Ng et al., 2002), a hard-clustering
approach which deals well with high-dimensional
and non-convex data (von Luxburg, 2007). Spectral
clustering is based on applying SVD to the graph
Laplacian and aims to perform an optimal graph
partitioning on the NPMI similarity matrix. The
number of clusters needs to be pre-specified. We
use 30, 50, 100 and 200 clusters – numbers were
chosen a priori based on previous work (Lampos
et al., 2014). The feature representation is the stan-
dardised number of words from each cluster.

Although there is a loss of information compared
to the original representation, the clusters are very
useful in the model analysis step. Embeddings are
hard to interpret because each dimension is an ab-
stract notion, while the clusters can be interpreted
by presenting a list of the most frequent or repre-
sentative words. The latter are identified using the
following centrality metric:

Cw =
∑

x∈c NPMI(w, x)
|c| − 1

, (2)

where c denotes the cluster and w the target word.

4.2.3 Neural Embeddings (W2V-E)

Recently, there has been a growing interest in neu-
ral language models, where the words are projected
into a lower dimensional dense vector space via a
hidden layer (Mikolov et al., 2013b). These models
showed they can provide a better representation
of words compared to traditional language models
(Mikolov et al., 2013c) because they capture syntac-
tic information rather than just bag-of-context, han-
dling non-linear transformations. In this low dimen-
sional vector space, words with a small distance are
considered semantically similar. We use the skip-
gram model with negative sampling (Mikolov et al.,
2013a) to learn word embeddings on the Twitter
reference corpus. In that case, the skip-gram model
is factorising a word-context PMI matrix (Levy and
Goldberg, 2014). We use a layer size of 50 and the
Gensim implementation.3

3http://radimrehurek.com/gensim/
models/word2vec.html

4.2.4 Neural Clusters (W2V-C)
Similar to the NPMI cluster, we use the neural
embeddings in order to obtain clusters of related
words, i.e. ‘topics’. We derive a word to word simi-
larity matrix using cosine similarity on the neural
embeddings. We apply spectral clustering on this
matrix to obtain 30, 50, 100 and 200 word clusters.

5 Classification with Gaussian Processes

In this section, we briefly overview Gaussian Pro-
cess (GP) for classification, highlighting our mo-
tivation for using this method. GPs formulate a
Bayesian non-parametric machine learning frame-
work which defines a prior on functions (Ras-
mussen and Williams, 2006). The properties of
the functions are given by a kernel which models
the covariance in the response values as a function
of its inputs. Although GPs form a powerful learn-
ing tool, they have only recently been used in NLP
research (Cohn and Specia, 2013; Preoţiuc-Pietro
and Cohn, 2013) with classification applications
limited to (Polajnar et al., 2011).

Formally, GP methods aim to learn a function
f : Rd → R drawn from a GP prior given the
inputs xxx ∈ Rd:

f(xxx) ∼ GP(m(xxx), k(xxx,xxx′)) , (3)

wherem(·) is the mean function (here 0) and k(·, ·)
is the covariance kernel. Usually, the Squared Ex-
ponential (SE) kernel (a.k.a. RBF or Gaussian) is
used to encourage smooth functions. For the multi-
dimensional pair of inputs (xxx,xxx′), this is:

kard(xxx,xxx′) = σ2 exp

[
d∑
i

−(xi − x′i)2
2l2i

]
, (4)

where li are lengthscale parameters learnt only
using training data by performing gradient as-
cent on the type-II marginal likelihood. Intuitively,
the lengthscale parameter li controls the variation
along the i input dimension, i.e. a low value makes
the output very sensitive to input data, thus mak-
ing that input more useful for the prediction. If the
lengthscales are learnt separately for each input
dimension the kernel is named SE with Automatic
Relevance Determination (ARD) (Neal, 1996).

Binary classification using GPs ‘squashes’ the
real valued latent function f(x) output through a
logistic function: π(xxx) , P(y = 1|xxx) = σ(f(xxx))
in a similar way to logistic regression classification.
The object of the GP inference is the distribution
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of the latent variable corresponding to a test case
x∗:

P(f∗|xxx,yyy, x∗) =
∫

P(f∗|xxx, x∗, f)P(f |xxx,yyy)df ,

(5)
where P(f |xxx,yyy) = P(yyy|f)P(f |xxx)/P(yyy|xxx) is the
posterior over the latent variables. If the likelihood
P(yyy|f) is Gaussian, the combination with a GP
prior P(f |xxx) gives a posterior GP over functions.
In binary classification, the distribution over the
latent f∗ is combined with the logistic function to
produce the prediction:

π̄∗ =
∫
σ(f∗)P(f∗|xxx,yyy, x∗)df∗. (6)

This results in a non-Gaussian likelihood in the
posterior formulation and therefore, exact infer-
ence is infeasible for classification models. Multi-
ple approximations exist that make the computa-
tion tractable (Gibbs and Mackay, 1997; Williams
and Barber, 1998; Neal, 1999). In our experiments
we opt to use the Expectation Propagation (EP)
method (Minka, 2001) which approximates the non-
Gaussian joint posterior with a Gaussian one. EP
offers very good empirical results for many differ-
ent likelihoods, although it has no proof of con-
vergence. The complexity for the inference step is
O(n3). Given that our data set is very large and the
number of features is high, we conduct inference
using the fully independent training conditional
(FITC) approximation (Snelson and Ghahramani,
2006) with 500 random inducing points. We refer
the interested reader to Rasmussen and Williams
(2006) for further information on GP classification.

Although we could use multi-class classification
methods, in order to provide insight, we perform a
separate one-vs-all classification for each class and
then determine a label through the occupational
class that has the highest likelihood.

6 Experiments

This section presents the experimental results for
our task. We first compare the accuracy of our clas-
sification methods on held out data using each fea-
ture set and conduct a standard error analysis. We
then use the interpretability of the ARD length-
scales from the GP classifier to further analyse the
relevant features.

6.1 Predictive Accuracy
We assign users to one of nine possible classes (see
the ‘Major Groups’ on Table 1) using one set of

Feature LR SVM GP
Most frequent class 34.4% 34.4% 34.4%
UserLevel 34.0% 31.5% 34.2%
SVD-E-30 36.3% 35.0% 39.8%
SVD-E-50 36.7% 36.9% 38.6%
SVD-E-100 40.8% 41.9% 40.9%
SVD-E-200 40.0% 43.1% 43.8%
SVD-C-30 36.9% 36.5% 38.2%
SVD-C-50 37.7% 38.3% 40.5%
SVD-C-100 40.4% 42.1% 44.6%
SVD-C-200 44.2% 47.9% 48.2%
W2V-E-50 42.5% 49.0% 48.4%
W2V-C-30 40.0% 46.0% 47.1%
W2V-C-50 42.3% 48.5% 47.9%
W2V-C-100 44.4% 48.7% 51.3%
W2V-C-200 46.9% 51.7% 52.7%

Table 3: 9-way classification accuracy on held-out
data for our 3 methods. Textual features are ob-
tained using SVD or Word2Vec (W2V). E repre-
sents embeddings, C clusters. The final number
denotes the amount of clusters or the size of the
embedding.

features at a time. Experiments combining features
yielded only minor improvements. We apply com-
mon linear and non-linear methods together with
our proposed GP classifier. The linear method is
logistic regression (LR) with Elastic Net regulari-
sation (Freedman, 2009) and the non-linear one is
formulated by a Support Vector Machine (SVM)
with an RBF kernel (Vapnik, 1998). The accuracy
of our classifiers is measured on held-out data. Our
data set is divided into stratified training (80%),
validation (10%) and testing (10%) sets. The val-
idation set was used to learn the LR and SVM
hyperparameters, while the GP did not use this set
at all. We report results using all three methods and
all feature sets in Table 3.

We first observe that user level features (User-
Level; see Section 4.1) are not useful for predicting
the job class. This finding indicates that general so-
cial behaviour or user impact are likely to be spread
evenly across classes. It also highlights the diffi-
culty of the task and motivates the use of deeper
textual features.

The textual features (see Section 4.2) improve
performance as compared to the most frequent class
baseline. We also notice that the embeddings (SVD-
E and W2V-E) have lower performance than the
clusters (SVD-C and W2V-C) in most of the cases.
This is expected, as adding word vectors to rep-
resent a user’s text may overemphasise common
words. The size of the embedding also increases
performance. The W2V features show better ac-

1758



Rank Topic # Label Topic (most central words; most frequent words) MRR µ(l)

1 116 Arts
archival, stencil, canvas, minimalist, illustration, paintings, abstract, designs,

lettering, steampunk; art, design, print, collection, poster, painting, custom, logo,
printing, drawing

.43 1.35

2 105 Health
chemotherapy, diagnosis, disease, inflammation, diseases, arthritis, symptoms,
patients, mrsa, colitis; risk, cancer, mental, stress, patients, treatment, surgery,

disease, drugs, doctor
.20 2.76

3 153 Beauty Care
exfoliating, cleanser, hydrating, moisturizer, moisturiser, shampoo, lotions,
serum, moisture, clarins; beauty, natural, dry, skin, massage, plastic, spray,

facial, treatments, soap
.19 3.69

4 21 Higher
Education

undergraduate, doctoral, academic, students, curriculum, postgraduate, enrolled,
master’s, admissions, literacy; students, research, board, student, college,

education, library, schools, teaching, teachers
.18 3.21

5 158 Software
Engineering

integrated, data, implementation, integration, enterprise, configuration,
open-source, cisco, proprietary, avaya; service, data, system, services, access,

security, development, software, testing, standard
.17 3.10

7 186 Football
bardsley, etherington, gallas, heitinga, assou-ekotto, lescott, pienaar, warnock,

ridgewell, jenas; van, foster, cole, winger, terry, reckons, youngster, rooney,
fielding, kenny

.16 3.11

8 124 Corporate
consortium, institutional, firm’s, acquisition, enterprises, subsidiary, corp,

telecommunications, infrastructure, partnership; patent, industry, reports, global,
survey, leading, firm, 2015, innovation, financial

.15 2.44

9 96 Cooking parmesan, curried, marinated, zucchini, roasted, coleslaw, salad, tomato, spinach,
lentils; recipe, meat, salad, egg, soup, sauce, beef, served, pork, rice .15 3.00

12 164 Elongated
Words

yaaayy, wooooo, woooo, yayyyyy, yaaaaay, yayayaya, yayy, yaaaaaaay,
wooohooo, yaayyy; wait, till, til, yay, ahhh, hoo, woo, woot, whoop, woohoo .11 3.47

16 176 Politics
religious, colonialism, christianity, judaism, persecution, fascism, marxism,

nationalism, communism, apartheid; human, culture, justice, religion, democracy,
religious, humanity, tradition, ancient, racism

.08 3.09

Table 4: Topics, represented by their most central and most frequent 10 words, sorted by their ARD
lengthscale MRR across the nine GP-based occupation classifiers. µ(l) denotes the average lengthscale
for a topic across these classifiers. Topic labels are manually created.
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Figure 1: Confusion matrix of the prediction results.
Rows represent the actual occupational class (C 1–
9) and columns the predicted class.

curacy than the SVD on the NPMI matrix. This
is consistent with previous work that showed the
efficiency of word2vec and the ability of those em-
beddings to capture non-linear relationships and
syntactic features (Mikolov et al., 2013a; Mikolov
et al., 2013b; Mikolov et al., 2013c).

LR has a lower performance than the non-linear

methods, especially when using clusters as features.
GPs usually outperform SVMs by a small margin.
However, these offer the advantages of not using
the validation set and the interpretability properties
we highlight in the next section. Although we only
draw our focus on major occupational classes, the
data set allows the study of finer granularities of oc-
cupation classes in future work. For example, pre-
diction performance for sub-major groups reaches
33.9% accuracy (15.6% majority class, 22 classes)
and 29.2% accuracy for minor groups (3.4% major-
ity class, 55 classes).

6.2 Error Analysis

To illustrate the errors made by our classifiers, Fig-
ure 1 shows the confusion matrix of the classi-
fication results. First, we observe that class 4 is
many times classified as class 2 or 3. This can be
explained by the fact that classes 2, 3 and 4 con-
tain similar types of occupations, e.g. doctors and
nurses or accountants and assistant accountants.
However, with very few exceptions, we notice that
only adjacent classes get misclassified, suggesting
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that our model captures the general user skill level.

6.3 Qualitative Analysis

The word clusters that were built from a reference
corpus and then used as features in the GP classi-
fier, give us the opportunity to extract some qual-
itative derivations from our predictive task. For
the rest of the section we use the best performing
model of this type (W2V-C-200) in order to anal-
yse the results. Our main assumption is that there
might be a divergence of language and topic us-
age across occupational classes following previous
studies in sociology (Bernstein, 1960; Bernstein,
2003). Knowing that the inferred GP lengthscale
hyperparameters are inversely proportional to fea-
ture (i.e. topic) relevance (see Section 5), we can
use them to rank the topic importance and give
answers to our hypothesis.

Table 4 shows 10 of the most informative top-
ics (represented by the top 10 most central and
frequent words) sorted by their ARD lengthscale
Mean Reciprocal Rank (MRR) (Manning et al.,
2008) across the nine classifiers. Evidently, they
cover a broad range of thematic subjects, includ-
ing potentially work specific topics in different do-
mains such as ‘Corporate’ (Topic #124), ‘Software
Engineering’ (#158), ‘Health’ (#105), ‘Higher Ed-
ucation’ (#21) and ‘Arts’ (#116), as well as topics
covering recreational interests such as ‘Football’
(#186), ‘Cooking’ (#96) and ‘Beauty Care’ (#153).

The highest ranked MRR GP lengthscales only
highlight the topics that are the most discrimina-
tive of the particular learning task, i.e. which topic
used alone would have had the best performance.
To examine the difference in topic usage across
occupations, we illustrate how six topics are cov-
ered by the users of each class. Figure 2 shows the
Cumulative Distribution Functions (CDFs) across
the nine different occupational classes for these six
topics. CDFs indicate the fraction of users having
at least a certain topic proportion in their tweets. A
topic is more prevalent in a class, if the CDF line
leans towards the bottom-right corner of the plot.

‘Higher Education’ (#21) is more prevalent in
classes 1 and 2, but is also discriminative for classes
3 and 4 compared to the rest. This is expected be-
cause the vast majority of jobs in these classes
require a university degree (holds for all of the jobs
in classes 2 and 3) or are actually jobs in higher
education. On the other hand, classes 5 to 9 have a
similar behaviour, tweeting less on this topic. We

also observe that words in ‘Corporate’ (#124) are
used more as the skill required for a job gets higher.
This topic is mainly used by people in classes 1
and 2 and with less extent in classes 3 and 4, in-
dicating that people in these occupational classes
are more likely to use social media for discussions
about corporate business.

There is a clear trend of people with more skilled
jobs to talk about ‘Politics’ (#176). Indeed, highly
ranked politicians and political philosophers are
parts of classes 1 and 2 respectively. Neverthe-
less, this pattern expands to the entire spectrum
of the investigated occupational classes, providing
further proof-of-concept for our methodology, un-
der the assumption that the theme of politics is
more attractive to the higher skilled classes rather
than the lower skilled occupations. By examining
‘Arts’ (#116), we see that it clearly separates class
5, which includes artists, from all others. This topic
appears to be relevant to most of the classifica-
tion tasks and it is ranked first according to the
MRR metric. Moreover, we observe that people
with higher skilled jobs and education (classes 1–3)
post more content about arts. Finally, we examine
two topics containing words that can be used in
more informal occasions, i.e. ‘Elongated Words’
(#164) and ‘Beauty Care’ (#153). We observe a
similar pattern in both topics by which users with
lower skilled jobs tweet more often.

1 2 3 4 5 6 7 8 9
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Figure 3: Jensen-Shannon divergence in the topic
distributions between the different occupational
classes (C 1–9).

The main conclusion we draw from Figure 2 is
that there exists a topic divergence between users in
the lower vs. higher skilled occupational classes. To
examine this distinction better, we use the Jensen-
Shannon divergence (JSD) to quantify the differ-
ence between the topic distributions across every
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Figure 2: CDFs for six of the most important topics; the x-axis is on the log-scale for display purposes. A
point on a CDF line indicates the fraction of users (y-axis point) with a topic proportion in their tweets
lower or equal to the corresponding x-axis point. The topic is more prevalent in a class, if the CDF line
leans closer to the bottom-right corner of the plot.

class pair. Figure 3 visualises these differences.
There, we confirm that adjacent classes use simi-
lar topics of discussion. We also notice that JSD
increases as the classes are further apart. Two main
groups of related classes, with a clear separation
from the rest, are identified: classes 1–2 and 6–9.
For the users belonging to these two groups, we
compute their topic usage distribution (for the top
topics listed in Table 4). Then, we assess whether
the topic usage distributions of those super-classes
of occupations have a statistically significant dif-

ference by performing a two-sample Kolmogorov-
Smirnov test. We enumerate the group topic usage
means in Table 5; all differences were indeed sta-
tistically significant (p < 10−5). From this compar-
ison, we conclude that users in the higher skilled
classes have a higher representation in all top topics
but ‘Beauty Care’ and ‘Elongated Words’. Hence,
the original hypothesis about the difference in the
usage of language between upper and lower occu-
pational classes is reconfirmed in this more generic
testing. A very noticeable difference occurs for the
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Topics C 1–2 C 6–9
Arts 4.95 2.79
Health 4.45 2.13
Beauty Care 1.40 2.24
Higher Education 6.04 2.56
Software Engineering 6.31 2.54
Football 0.54 0.52
Corporate 5.15 1.41
Cooking 2.81 2.49
Elongated Words 1.90 3.78
Politics 2.14 1.06

Table 5: Comparison of mean topic usage for
super-sets (classes 1–2 vs. 6–9) of the occupational
classes; all values were multiplied by 103. The dif-
ference between the topic usage distributions was
statistically significant (p < 10−5).

‘Corporate’ topic, whereas ‘Football’ registers the
lowest distance.

7 Related Work

Occupational class prediction has been studied in
the past in the areas of psychology and economics.
French (1959) investigated the relation between var-
ious measures on 232 undergraduate students and
their future occupations. This study concluded that
occupational membership can be predicted from
variables such as the ability of subjects in using
mathematical and verbal symbols, their family eco-
nomic status, body-build and personality compo-
nents. Schmidt and Strauss (1975) also studied the
relationship between job types (five classes) and
certain demographic attributes (gender, race, expe-
rience, education, location). Their analysis identi-
fied biases or discrimination which possibly exist
in different types of jobs. Sociolinguistic and so-
ciology studies deduct that social status is an im-
portant factor in determining the use of language
(Bernstein, 1960; Bernstein, 2003; Labov, 2006).
Differences arise either due to language use or due
to the topics people discuss as parts of various so-
cial domains. However, a large scale investigation
of this hypothesis has never been attempted.

Relevant to our task is a relation extraction ap-
proach proposed by Li et al. (2014) aiming to ex-
tract user profile information on Twitter. They used
a weakly supervised approach to obtain informa-
tion for job, education and spouse. Nonetheless,
the information relevant to the job attribute re-

gards the employer of a user (i.e. the name of a
company) rather than the type of occupation. In
addition, Huang et al. (2014) proposed a method
to classify Sina Weibo users to twelve predefined
occupations using content based and network fea-
tures. However, there exist significant differences
from our task since this inference is based on a dis-
tinct platform, with an ambiguous distribution over
occupations (e.g. more than 25% related to me-
dia), while the occupational classes are not generic
(e.g. media, welfare and electronic are three of the
twelve categories). Most importantly, the applied
model did not allow for a qualitative interpreta-
tion. Filho et al. (2014) inferred the social class of
social media users by combining geolocation infor-
mation derived from Foursquare and Twitter posts.
Recently, Sloan et al. (2015) introduced tools for
the automated extraction of demographic data (age,
occupation and social class) from the profile de-
scriptions of Twitter users using a similar method
to our data set extraction approach. They showed
that it is feasible to build a data set that matches
the real-world UK occupation distribution as given
by the SOC.

8 Conclusions

Our paper presents the first large-scale systematic
study on language use on social media as a factor
for inferring a user’s occupational class. To address
this problem, we have also introduced an exten-
sive labelled data set extracted from Twitter. We
have framed prediction as a classification task and,
to this end, we used the powerful, non-linear GP
framework that combines strong predictive perfor-
mance with feature interpretability. Results show
that we can achieve a good predictive accuracy,
highlighting that the occupation of a user influences
text use. Through a qualitative analysis, we have
shown that the derived topics capture both occupa-
tion specific interests as well as general class-based
behaviours. We acknowledge that the derivations
of this study, similarly to other studies in the field,
are reflecting the Twitter population and may expe-
rience a bias introduced by users self-mentioning
their occupations. However, the magnitude, occupa-
tional diversity and face validity of our conclusions
suggest that the presented approach is useful for
future downstream applications.
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