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Abstract

We propose a brand new “Liberal” Event
Extraction paradigm to extract events and
discover event schemas from any input
corpus simultaneously. We incorporate
symbolic (e.g., Abstract Meaning Repre-
sentation) and distributional semantics to
detect and represent event structures and
adopt a joint typing framework to simulta-
neously extract event types and argument
roles and discover an event schema. Ex-
periments on general and specific domains
demonstrate that this framework can con-
struct high-quality schemas with many
event and argument role types, covering a
high proportion of event types and argu-
ment roles in manually defined schemas.
We show that extraction performance us-
ing discovered schemas is comparable to
supervised models trained from a large
amount of data labeled according to pre-
defined event types. The extraction quality
of new event types is also promising.

1 Introduction

Event extraction aims at identifying and typ-
ing trigger words and participants (arguments).
It remains a challenging and costly task. The
first question is what to extract? The TIP-
STER (Onyshkevych et al., 1993), MUC (Grish-
man and Sundheim, 1996), CoNLL (Tjong et al.,
2003; Pradhan et al., 2011), ACE 1 and TAC-
KBP (Ji and Grishman, 2011) programs found that
it was feasible to manually define an event schema
based on the needs of potential users. An ACE
event schema example is shown in Figure 1. This
process is very expensive because consumers and

1http://www.itl.nist.gov/iad/mig/tests/ace/

expert linguists need to examine a lot of data be-
fore specifying the types of events and argument
roles and writing detailed annotation guidelines
for each type in the schema. Manually-defined
event schemas often provide low coverage and fail
to generalize to new domains. For example, none
of the aforementioned programs include “dona-
tion” and “evacuation” in their schema in spite of
their potential relevance to users.

In this paper we propose Liberal Event Extrac-
tion, a new paradigm to take humans out of the
loop and enable systems to extract events in a more
liberal fashion. It automatically discovers a com-
plete event schema, customized for a specific input
corpus. Figure 1 compares the ACE event extrac-
tion paradigm and our proposed Liberal event ex-
traction paradigm.

We use the following examples to explain and
motivate our approach, where event triggers are in
bold and arguments are in italics and underlined:

E1. Two Soldiers were killed and one injured in the
close-quarters fighting in Kut.

E2. Bill Bennet’s glam gambling loss changed my
opinion.

E3. Gen. Vincent Brooks announced the capture
of Barzan Ibrahim Hasan al-Tikriti, telling re-
porters he was an adviser to Saddam.

E4. This was the Italian ship that was captured by
Palestinian terrorists back in 1985.

E5. Ayman Sabawi Ibrahim was arrested in Tikrit
and was sentenced to life in prison.

We seek to cluster the event triggers and event
arguments so that each cluster represents a type.
We rely on distributional similarity for our clus-
tering distance metric. The distributional hypoth-
esis (Harris, 1954) states that words often occur-
ring in similar contexts tend to have similar mean-
ings. We formulate the following distributional
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Traditional Event Extraction

Conflict Life

Attack Marry Die … Injure

…Type:

Subtype:

Argument:
Demonstrate

Entity Time Place
… …

Agent Victim Time…

Guidelines Documents
Sen 1: The Indian army stated that 4 Islamic militants 

were killed in 2 separate gun battles 20021228.

Sen 2: The embassy stated the British government is 
opposed to the death penalty in all circumstances.

Event : killed, Type: Die,  Arguments: 4 Islamic militants (Victim)

Null

Linguistic Resource Documents
Sen 1: The Indian army stated that 4 Islamic militants were killed in 2 separate gun battles 20021228.

Sen 2: The embassy stated the British government is opposed to the death penalty in all circumstances.

Event 2: killed, Type: Kill,  Arguments: 4 Islamic militants (Victim)

Event 1: stated, Type: State, Arguments: embassy (Agent), opposed (Topic)

Event 1: stated, Type: State,  Arguments: Indian army (Agent), killed (Topic)

Event 3: battles, Type: Battle,  Arguments: 4 Islamic militants (Agent), 20021228 (Time)

Event 2: opposed, Type: Oppose, Arguments: British government (Patient), death penalty (Theme)

Attack ImprisonBattle … Demand StateType:

Trigger Cluster:

Arguments:
Agent Time Place… …

Agent Patient Topic Time Place
…

Oppose

attackstrike
hitbombs …

imprison
prisoners

sentence
…… demand

urge
pressured …… … anti

opposed …

Manner

Liberal Event Extraction

Figure 1: Comparison between ACE Event Extraction and Liberal Event Extraction.

hypotheses specifically for event extraction, and
develop our approach accordingly.

Hypothesis 1: Event triggers that occur in sim-
ilar contexts and share the same sense tend to have
similar types.

Following the distributional hypothesis, when
we simply learn general word embeddings from
a large corpus for each word, we obtain similar
words like those shown in Table 1. We can see
similar words, such as those centered around “in-
jure” and “fight”, are converging to similar types.
However, for words with multiple senses such as
“fire” (shooting or employment termination), simi-
lar words may indicate multiple event types. Thus,
we propose to apply Word Sense Disambiguation
(WSD) and learn a distinct embedding for each
sense (Section 2.3).

injure Score fight Score fire Score
injures 0.602 fighting 0.792 fires 0.686

hurt 0.593 fights 0.762 aim 0.683
harm 0.592 battle 0.702 enemy 0.601
maim 0.571 fought 0.636 grenades 0.597

injuring 0.561 Fight 0.610 bombs 0.585
endanger 0.543 battles 0.590 blast 0.566
dislocate 0.529 Fighting 0.588 burning 0.562

kill 0.527 bout 0.570 smoke 0.558

Table 1: Top-8 Most Similar Words (in 3 Clusters)

Hypothesis 2: Beyond the lexical semantics of
a particular event trigger, its type is also depen-
dent on its arguments and their roles, as well as
other words contextually connected to the trigger.

For example, in E4, the fact that the patient role
is a vehicle (“Italian ship”), and not a person (as
in E3 and E5), suggests that the event trigger “cap-
tured” has type “Transfer-Ownership” as opposed
to “Arrest”. In E2, we know the “loss” event oc-
curs in a gambling scenario, so we can determine
its type as loss of money, not loss of life.

We therefore propose to enrich each trigger’s

representation by incorporating the distributional
representations of various words in the trigger’s
context. Not all context words are relevant to event
trigger type prediction, while those that are vary in
their predictive value. We propose to use seman-
tic relations, derived from a meaning representa-
tion for the text, to carefully select arguments and
other words in an event trigger’s context. These
words are then incorporated into a “global” event
structure for a trigger mention. We rely on seman-
tic relations to (1) specify how the distributional
semantics of relevant context words contribute to
the overall event structure representation; (2) de-
termine the order in which distributional semantics
of relevant context words are incorporated into the
event structure (Section 2.4).

2 Approach

2.1 Overview

Input Documents
FrameNet 

Lexical Units

Candidate Trigger & 
Argument Identification

Event Schema & Event Extraction Results

AMR Parsing

Event Structure Semantic 
Composition & Representation

Unlabeled 
Corpus

Word Sense 
Disambiguation

Distributional Semantic 
Representation

Word Sense based Trigger 
and Argument Representation

Joint Trigger and Argument Clustering

Event Type Naming

Argument Role Naming
AMR/PropBank/FrameNet/

VerbNet/OntoNotes Role 
Descriptions

Figure 2: Liberal Event Extraction Overview.

Figure 2 illustrates the overall framework of
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Liberal Event Extraction. Given a set of input doc-
uments, we first extract semantic relations, apply
WSD and learn word sense embeddings. Next, we
identify candidate triggers and arguments.

For each event trigger, we apply a series of com-
positional functions to generate that trigger’s event
structure representation. Each function is specific
to a semantic relation, and operates over vectors in
the embedding space. Argument representations
are generated as a by-product.

Trigger and argument representations are then
passed to a joint constraint clustering framework.
Finally, we name each cluster of triggers, and
name each trigger’s arguments using mappings be-
tween the meaning representation and semantic
role descriptions in FrameNet, VerbNet (Kipper et
al., 2008) and Propbank (Palmer et al., 2005).

We compare settings in which semantic re-
lations connecting triggers to context words
are derived from three meaning representations:
Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013), Stanford Typed Depen-
dencies (Marie-Catherine et al., 2006), and
FrameNet (Baker and Sato, 2003). We derive se-
mantic relations automatically for these three rep-
resentations using CAMR (Wang et al., 2015a),
Stanford’s dependency parser (Manning, 2003),
and SEMAFOR (Das et al., 2014), respectively.

2.2 Candidate Trigger and Argument
Identification

Given a sentence, we consider all noun and verb
concepts that are assigned an OntoNotes (Hovy et
al., 2006) sense by WSD as candidate event trig-
gers. Any remaining concepts that match both a
verbal and a nominal lexical unit in the FrameNet
corpus are considered candidate event triggers as
well. This mainly helps to identify more nominal
triggers like “pickpocket” and “sin”.2

For each candidate event trigger, we consider
as candidate arguments all concepts for which one
of a manually-selected set of semantic relations
holds between it and the event trigger. For the
setting in which AMR serves as our meaning rep-
resentation, we selected a subset of all AMR rela-
tions that specify event arguments, as shown in Ta-
ble 2. Note that some AMR relations generally do
not specify event arguments, e.g. “mode”, which
can indicate sentence illocutionary force, or “snt”

2For consistency, we use the same trigger identification
procedure regardless of which meaning representation is used
to derive semantic relations.

which is used to combine multiple sentences into
one AMR graph.3 When FrameNet is the mean-
ing representation we allow all frame relations to
identify arguments. For dependencies, we manu-
ally mapped dependency relations to AMR rela-
tions and use Table 2.

Categories Relations
Core roles ARG0, ARG1, ARG2, ARG3, ARG4

Non-core roles mod, location, poss, manner, topic,
medium, instrument, duration, prep-X

Temporal year, duration, decade, weekday, time
Spatial destination, path, location

Table 2: Event-Related AMR Relations.

In E1, for example, “killed”, “injured” and
“fighting” are identified as candidate triggers, and
three concept sets are identified as candidate argu-
ments using AMR relations: “{Two Soldiers, very
large missile}”, “{one, Kut}” and “{Two Soldiers,
Kut}”, as shown in Figure 3.

2.3 Trigger Sense and Argument
Representation

Based on Hypothesis 1, we learn sense-based em-
beddings from a large data set, using the Con-
tinuous Skip-gram model (Mikolov et al., 2013).
Specifically, we first apply WSD to link each word
to its sense in WordNet using a state-of-the-art
tool (Zhong and Ng, 2010), and map WordNet
sense output to OntoNotes senses. 4 We map each
trigger candidate to its OntoNotes sense and learn
a distinct embedding for each sense. We use gen-
eral lexical embeddings for arguments.

2.4 Event Structure Composition and
Representation

Based on Hypothesis 2, we aim to exploit linguis-
tic knowledge to incorporate inter-dependencies
between event and argument role types into our
event structure representation. Many meaning
representations could provide such information
to some degree. We illustrate our method for
building event structures using semantic relations
from meaning representations using AMR. In Sec-
tion 3.4 we compare results using Stanford Typed
Dependencies and FrameNet in place of AMR.

Let’s take E2 as an example. Based on AMR
annotation and Table 2, we extract semantically re-

3For relation details, see https://github.com/amrisi/amr-
guidelines/blob/master/amr.md

4WordNet-OntoNotes mapping from
https://catalog.ldc.upenn.edu/LDC2011T03
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E1:  Two Soldiers were killed by a very large missile and one injured in the close-quarters fighting in Kut.

[Event:Die] [Event:Injure] [Event:Attack]

PlacePlace Place
VictimVictim

Attacker

Instrument

kill-01

:ARG1 :instrument

injure-01 fight-01
:location:ARG0

Figure 3: Event Trigger and Argument Annotations and AMR Parsing Results of E1.

exchange for 15000 U.S. dollars. Event: ship,    
Arguments: man(Agent), Austrialia(Destination),heroin(Theme)

S2: State media didn’t identify the 2 convicts hanged in Zahedan but stated 
that they had been found guilty of transporting 5.25 kilograms of heroin.

Event: transporting,   Arguments: they(Agent), heroin(Theme)

S1: The construction of the facility started in 790000, but stopped after 
the 910000 Soviet collapse when Tajikistan slid into a 5 year civil war 
that undermined its economy. Event:construction,  

Arguments: facility(Product), 790000(Time)
S2: The closed Soviet-era military facility was fou-nded in 570000 and 
collects and analyzes all information gathered from Russia's military spy 
satellites. Event: founded,    

Arguments: Soviet-era facility(Product), 570000(Time)

Event Type: Build

 sentenced him to death in 1997.
Event: death,   Arguments: him(Theme), 1997(Time)

S2: A newspaper report on January 1, 2008 that Iran hanged two 
convicted drug traffickers in the south-eastern city of Zahedan.

S1: Colombian Government was alarmed because uranium is the 
primary basis for generating weapons of mass destruction.
Event:alarmed, Arguments:Columbian Government(Experiencer)

Event Type: Threaten

S2: Cluster bomblets have been criticized by human rights groups 
because they kill indiscriminately and because unexploded 
ordinance poses a threat to civilians similar to that of land mines.

Event:threat,  
Arguments:ordinance(Cause), civilian(Experiencer)

Event: hanged,   Arguments: Iran(Agent), drug traf- 
fickers(Theme), southeastern city of Zahedan(Place)

losegambleglamBill Bennet

:op1 :op2 :mod

:mod

:poss

Z1=fmod(Wmod,Xga,Yl)=XTgaWmodYl+b

Reconstruct: (X’ga,Y’l)=Z1W’mod+b’

Z2=fmod(Wmod,Xgl,Z1)

Z4=fposs(Wposs,Z3,Z2)

Reconstruct: (Z’3,Z’2)=Z4W’poss+b’

Z3=Avarage(VBill, VBennet) Z1

Z2

Z4

X’gamble Y’lose

Z’3 Z’2

Reconstruct: (X’gl,Z’1)=Z2W’mod+b’

X’glam Z’1

AMR annotation

Event Structure Representation

Event Structure for “lose”

:instance
:mod

:mod
:poss

:op1 :op2

Bill Bennet

glamgamble lose

:ARG0 (x8 / lose-1 
  :poss (x3 / person 

:name (n1 / name 
  :op1 "Bill" 
  :op2 "Bennet")) 

  :mod (x6 / glam) 
  :mod (x7 / gamble-01))

Figure 4: Partial AMR and Event Structure for E2.

lated words for the event trigger with sense “lose-
1” and construct the event structure for the whole
event, as shown in Figure 4.

We design a Tensor based Recursive Auto-
Encoder (TRAE) (Socher et al., 2011) framework
to utilize a tensor based composition function for
each of a subset of the AMR semantic relations
and compose the event structure representation
based on multiple functional applications. This
subset was manually selected by the authors as the
set of relations that link a trigger to concepts that
help to determine its type. Similarly, we selected a
subset of dependency and FrameNet relations us-
ing the same criteria for experiments using those
meaning representations.

Figure 4 shows an instance of a TRAE applied
to an event structure to generate its representation.
For each semantic relation type r, such as “:mod”,
we define the output of a tensor product Z via the
following vectorized notation:

Z = fmod(X,Y,W
[1:d]
r , b) = [X;Y ]TW [1:d]

r [X;Y ] + b

where Wmod ∈ R2d·2d·d is a 3-order tensor, and
X,Y ∈ Rd are two input word vectors. b ∈ Rd is
the bias term. [X;Y ] denotes the concatenation of
two vectors X and Y . Each slice of the tensor acts

as a coefficient matrix for one entry Zi in Z:

Zi = fmod(X,Y,W
[i]
r , b) = [X;Y ]TW [i]

r [X;Y ] + bi

We use the statistical mean to compose the
words connected by “:op” relations (e.g. “Bill”
and “Bennet” in Figure 4).

After composing the vectors ofX and Y , we ap-
ply an element-wise sigmoid activation function to
the composed vector and generate the hidden layer
representations Z. One way to optimize Z is to try
to reconstruct the vectors X and Y by generating
X
′
and Y

′
fromZ, and minimizing the reconstruc-

tion errors between the input VI = [X,Y ] and out-
put layers VO = [X

′
, Y

′
]. The error is computed

based on Euclidean distance function:

E(VI , VO) =
1

2
||VI − VO||2

For each pair of words X and Y , the recon-
struction error back-propagates from its output
layer to input layer through parameters Θr =
(W

′
r, b

′
r,Wr, br). Let δO be the residual error of

the output layer, and δH be the error of the hidden
layer:

δO = −(VI − VO) · f ′sigmoid(V
O
H )

δH = (
d∑
k=1

δkO · (W
′k
r + (W

′k
r )T ) · V OH ) · f ′sigmoid(V

I
H)

where V I
H and V O

H denote the input and output

of the hidden layer, and V O
H = Z. W

′k
r is the kth

slice of tensor W
′
r .

To minimize the reconstruction errors, we uti-
lize gradient descent to iteratively update parame-
ters Θr:

∂E(Θr)

∂W ′k
r

= δkO · (V OH )T · V OH
∂E(Θr)

∂b′r
= −(VI − VO) · f ′sigmoid(V

O
H )

∂E(Θr)

∂W k
r

= δkH · (VI)T · VI

∂E(Θr)

∂br
= (

d∑
k=1

δkO · (W
′k
r + (W

′k
r )T ) · V OH ) · f ′sigmoid(V

I
H)

After computing the composition vector of Z1

based on X and Y , for the next layer, it com-
poses Z1 and another new word vector such as
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Xgl. For each type of relation r, we randomly
sample 2,000 pairs to train optimized parameters
Θr. For each event structure tree, we iteratively
repeat the same steps for each layer. For multiple
arguments at each layer, we compose them in the
order of their distance to the trigger: the closest
argument is composed first.

2.5 Joint Trigger and Argument Clustering
Based on the representation vectors generated
above, we compute the similarity between each
pair of triggers and arguments, and cluster them
into types. Recall that a trigger’s arguments are
identified as in section 2.2. We observe that, for
two triggers t1 and t2, if their arguments have the
same type and role, then they are more likely to
belong to the same type, and vice versa. Therefore
we introduce a constraint function f , to enforce
inter-dependent triggers and arguments to have co-
herent types:

f(P1,P2) = log(1 +
|L1 ∩ L2|
|L1 ∪ L2| )

where P1 and P2 are triggers. Elements of
Li are pairs of the form (r, id(a)), where id(a)
is the cluster ID for argument a that stands in
relation r to Pi. For example, let P1 and P2 be
triggers “capture” and “arrested” (c.f. Figure 5).
If Barzan Ibrahim Hasan al-Tikriti and Ayman
Sabawi Ibrahim share the same cluster ID, the pair
(arg1, id(Barzan Ibrahim Hasan al-Tikriti)) will
be a member of L1 ∩ L2. This argument overlap
is evidence that “capture” and “arrested” have the
same type. We define f where Pi are arguments,
and elements Li are defined analogously to above.

capture

captured arrested

sentenced

Barzan Ibrahim 
Hasan al-Tikriti

Tikrit

Ayman Sabawi 
Ibrahim

Palestinian 
terrorists

prison
Italian ship

:arg1

:arg1

:location

:arg1

:arg0 :arg1

:location

Figure 5: Joint Constraint Clustering for E3,4,5.

Given a trigger set T and their corresponding ar-
gument set A, we compute the similarity between
two triggers t1 and t2 and two arguments a1 and
a2 by:

sim(t1, t2) = λ · simcos(E
t1
g , E

t2
g )+

(1− λ) · Σr∈Rt1∩Rt2
simcos(E

t1
r , E

t2
r )

|Rt1 ∩Rt2 |
+ f(t1, t2)

sim(a1, a2) = simcos(E
a1
g , Ea2g ) + f(a1, a2)

where Et
g represents the trigger sense vector and

Ea
g is the argument vector. Rt is the AMR re-

lation set in the event structure of t, and Et
r de-

notes the vector resulting from the last application
of the compositional function corresponding to the
semantic relation r for trigger t. λ is a regulariza-
tion parameter that controls the trade-off between
these two types of representations. In our experi-
ment λ = 0.6.

We design a joint constraint clustering ap-
proach, which iteratively produces new clustering
results based on the above constraints. To find a
global optimum, which corresponds to an approx-
imately optimal partition of the trigger set into K
clusters CT = {CT1 , CT2 , ..., CTK}, and a partition of the
argument set intoM clusters CA = {CA1 , CA2 , ..., CAM},
we minimize the agreement across clusters and the
disagreement within clusters:

arg min
KT ,KA,λ

O = (DT
inter +DT

intra) + (DA
inter +DA

intra)

DPinter =

K∑
i6=j=1

∑
u∈CPi ,v∈CPj

sim(Pu,Pv)

DPintra =

K∑
i=1

∑
u,v∈CPi

(1− sim(Pu,Pv))

We incorporate the Spectral Clustering algo-
rithm (Luxburg, 2007) into joint constraint clus-
tering process to get the final optimized clustering
results. The detailed algorithm is summarized in
Algorithm 1.

2.6 Event Type and Argument Role Naming
For each trigger cluster, we utilize the trigger
which is nearest to the centroid of the cluster as
the event type name. For a given event trigger, we
assign a role name to each of its arguments (iden-
tified as in section 2.2). This process depends on
which meaning representation was used to select
the arguments.

For AMR, we first map the event trigger’s
OntoNotes sense to PropBank, VerbNet, and
FrameNet. We assign each argument a role
name as follows. We map AMR core roles
(e.g. “:ARG0”, “ARG1”) to FrameNet if possi-
ble, otherwise to VerbNet if possible, and finally
to PropBank roles if a mapping to VerbNet is not
available.5. Nearly 5% of AMR core roles can

5OntoNotes 5.0 provides a mapping;
https://catalog.ldc.upenn.edu/LDC2013T19
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Algorithm 1 Joint Constraint Clustering Algorithm
Input: Trigger set T , argument set A, their lexical em-
bedding ETg , EAg , event structure representation ETR , and the
minimal (Kmin

T , Kmin
A ) and maximal (Kmax

T , Kmax
A ) num-

ber of clusters for triggers and arguments;
Output: The optimal clustering results: CT and CA;

• Omin =∞, CT = ∅, CA = ∅
• For KT = Kmin

T to KT = Kmax
T , KA = Kmin

A to
KA = Kmax

A

– Clustering with Spectral Clustering Algorithm:
– CTcurr = spectral(T,ETg , E

T
R ,KT )

– CAcurr = spectral(A,EAg ,KA)

– Ocurr = O(CTcurr, CAcurr)
– if Ocurr < Omin
∗ Omin = Ocurr , CT = CTcurr , CA = CAcurr

– while iterate time ≤ 10

∗ CTcurr = spectral(T,ETg , E
T
R ,KT , CAcurr)

∗ CAcurr = spectral(A,EAg ,KA, CTcurr)
∗ Ocurr = O(CTcurr, CAcurr)
∗ if Ocurr < Omin
· Omin=Ocurr , CT = CTcurr, CA = CAcurr

• return Omin, CT , CA;

be mapped to FrameNet roles and 55% can be
mapped to VerbNet roles, and the remaining can
be mapped to PropBank. Table 3 shows some
mapping examples. We map non-core roles from
AMR to FrameNet, as shown in Table 4.

When Stanford Typed Dependencies are used
for meaning representation we construct a manual
mapping AMR relations and use the above proce-
dure. When FrameNet is used for meaning repre-
sentation we simply keep the FrameNet role name
for argument role naming.

Concept AMR
Core
Role

FrameNet
Role

VerbNet
Role

PropBank
Description

fire.1 ARG0 Agent Agent Shooter
fire.1 ARG1 Projectile Theme Gun/projectile
extrude.1 ARG0 Agent Extruder, agent
extrude.1 ARG1 Theme Entity extruded
extrude.1 ARG2 Source Extruded from
blood.1 ARG0 Agent
blood.1 ARG1 Theme, one bled

Table 3: Core Role Mapping Examples.

3 Evaluation

3.1 Data
We used the August 11, 2014 English Wikipedia
dump to learn trigger sense and argument embed-
dings. For evaluation we choose a subset of ERE
(Entity Relation Event) corpus (50 documents)
which has perfect AMR annotations so we can

AMR None-Core Role FrameNet Role
topic Topic

instrument Instrument
manner Manner

poss Possessor
prep-for, prep-to, prep-on-behalf Purpose

time, decade, year, weekday, duration Time
mod, cause, prep-as Explanation

prep-by, medium, path Means
location, destination, prep-in Place

Table 4: None-Core Role Mapping.

compare the impact of perfect AMR and system
generated AMR. To compare with state-of-the-art
event extraction on Automatic Content Extraction
(ACE2005) data, we follow the same evaluation
setting in previous work (Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011) and
use 40 newswire documents as our test set.

3.2 Schema Discovery

Figure 6 shows some examples as part of the event
schema discovered from the ERE data set. Each
cluster denotes an event type, with a set of event
mentions and sentences. Each event mention is
also associated with some arguments and their
roles. The event and argument role annotations
for sample sentences may serve as an example-
based corpus-customized “annotation guideline”
for event extraction.

Table 5 compares the coverage of event schema
discovered by our approach, using AMR as mean-
ing representation, with the predefined ACE and
ERE event schemas. Besides the types defined in
ACE and ERE, this approach discovers many new
event types such as Build and Threaten as dis-
played in Figure 6. Our approach can also discover
new argument roles for a given event type. For
example, for Attack events, besides five types of
existing arguments (Attacker, Target, Instrument,
Time, and Place) defined in ACE, we also dis-
cover a new type of argument Purpose. For ex-
ample, in “The Dutch government, facing strong
public anti-war pressure, said it would not com-
mit fighting forces to the war against Iraq but
added it supported the military campaign to dis-
arm Saddam.”, “disarm Saddam” is identified as
the Purpose for the Attack event triggered by
“campaign”. Note that while FrameNet specifies
Purpose as an argument role for the Attack, such
information specific to Attack is not part of AMR.
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S1: The court official stated that on 18 March 2008 Luong stated to judges 
that she was hired by an unidentified man to ship the heroin to Australia in 
exchange for 15000 U.S. dollars. Event: ship,    

Arguments: man(Agent), Austrialia(Destination),heroin(Theme)
S2: State media didn’t identify the 2 convicts hanged in Zahedan but stated 
that they had been found guilty of transporting 5.25 kilograms of heroin.

Event: transporting,   Arguments: they(Agent), heroin(Theme)

Event Type: Transport

S1: The construction of the facility started in 790000, but stopped after 
the 910000 Soviet collapse when Tajikistan slid into a 5 year civil war 
that undermined its economy. Event:construction,  

Arguments: facility(Product), 790000(Time)
S2: The closed Soviet-era military facility was fou-nded in 570000 and 
collects and analyzes all information gathered from Russia's military spy 
satellites. Event: founded,    

Arguments: Soviet-era facility(Product), 570000(Time)

Event Type: Build

Event Type: Die
S1: Police in the strict communist country discovered his metha-
mphetamine manufacturing plant disguised as a soap factory and 
 sentenced him to death in 1997.

Event: death,   Arguments: him(Theme), 1997(Time)
S2: A newspaper report on January 1, 2008 that Iran hanged two 
convicted drug traffickers in the south-eastern city of Zahedan.

S1: Colombian Government was alarmed because uranium is the 
primary basis for generating weapons of mass destruction.
Event:alarmed, Arguments:Columbian Government(Experiencer)

Event Type: Threaten

S2: Cluster bomblets have been criticized by human rights groups 
because they kill indiscriminately and because unexploded 
ordinance poses a threat to civilians similar to that of land mines.

Event:threat,  
Arguments:ordinance(Cause), civilian(Experiencer)

Event: hanged,   Arguments: Iran(Agent), drug traf- 
fickers(Theme), southeastern city of Zahedan(Place)

S1: Ras acts as a molecular switch that is activated upon GTP loading and 
deactivated upon hydrolysis of GTP to GDP.

Event: hydrolysis   Arguments: GTP (Patient), GDP (Result)

Event Type: Dissociate

S2: Activation requires dissociation of protein-bound GDP , an intrinsica- 
lly slow process that is accelerated by guanine nucleotide exchange factors.

Event: dissociation   Arguments: GDP (Patient)
S3: His - ubiquitinated proteins were purified by Co2+ metal affinity 
chromatography in 8M urea denaturing conditions.

Event: denaturing  Arguments: proteins(Patient)

Figure 6: Example Output of the Event Schema.

Data ACE ERE
Human SystemAMR Overlap Human PerfectAMR Overlap SystemAMR Overlap

# of Events 440 2,395 331 580 3,765 517 2,498 477
# of Event Types 33 134 N/A 26 137 N/A 120 N/A
# of Arguments 883 4,361 587 1,231 6,195 919 4,288 801

Table 5: Schema Coverage Comparison on ACE and ERE.

3.3 Event Extraction for All Types

To evaluate the performance of the whole event
schema, we randomly sample 100 sentences from
ERE data set and ask two linguistic experts to
fully annotate the events and arguments. As a
starting point, annotators were given output from
our Schema Discovery using gold standard AMR.
For each sentence, they saw event triggers and
corresponding arguments. Their job was to cor-
rect this output by marking incorrectly identified
events and arguments, and adding missing events
and arguments. The inter-annotator agreement is
83% for triggers and 79% for arguments.

To evaluate trigger and argument identification,
we automatically compare this gold standard with
system output (see Table 6). To evaluate trig-
ger and argument typing, annotators manually
checked system output and assessed whether the
type name was reasonable (see Table 6). Note that
automatic comparison between system and gold
standard output is not appropriate for typing; for
a given cluster, there is no definitive “best” name.

We found that most event triggers not recov-
ered by our system are multi-word expressions
such as “took office” or adverbs such as “previ-
ously” and “formerly”. For argument identifica-
tion, our approach fails to identify some arguments
that require world knowledge to extract. For ex-
ample, in “Anti-corruption judge Saul Pena stated
Montesinos has admitted to the abuse of authority

charge”, “Saul Pena” is not identified as a Adju-
dicator argument of event “charge” because it has
no direct semantic relations with the event trigger.

3.4 Impact of Semantic Information and
Meaning Representations

Table 7 assesses the impact of various types of
semantic information, and also compares the ef-
fectiveness of each type of meaning representation
for the typing task only. We note that F-measure
drops 14.4 points if only WSD based embeddings
are not used. In addition, AMR relations specify-
ing both core and non-core roles are informative
for learning distinct compositional operators. To
compare typing results across meaning representa-
tions, we use triggers identified by both the AMR
and FrameNet parsers. Using Stanford Typed De-
pendencies, relations are likely too coarse-grained
or lack sufficient semantic information. Thus, our
approach cannot leverage the inter-dependency
between event trigger type and argument role to
achieve pure trigger clusters. Compared with de-
pendency relations, the fine-grained AMR seman-
tic relations such as :location, :manner, :topic, :in-
strument appear to be more informative to infer
the argument roles. For example, in sentence “Ap-
proximately 25 kilometers southwest of Sringar
2 militants were killed in a second gun battle.”,
“gun” is identified as an Instrument for “battle”
event based on the AMR relation :instrument. In
contrast, dependency parsing identifies “gun” as a
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Method Trigger Identification (%) Trigger Typing (%) Arg Identification (%) Arg Typing (%)
P R F1 P R F1 P R F1 P R F1

Perfect AMR 87.0 98.7 92.5 70.0 79.5 74.5 94.0 83.7 88.6 72.4 64.4 68.2
System AMR 93.0 67.2 78.0 69.8 50.5 58.6 95.7 59.6 73.4 68.9 42.9 52.9

Table 6: Overall Performance of Liberal Event Extraction on ERE data for All Event Types.

Method Trigger F1 (%) Arg F1 (%)
P R F1 P R F1

Perfect AMR 70 79.5 74.5 72.4 64.4 68.2
w/o Structure

Representation
52.8 59.4 55.9 52.1 48.0 50.0

w/o WSD based
embeddings

62.8 57.4 60.1 61.9 50.3 55.5

w/o None-Core Roles 61.5 72.2 66.5 61.3 58.0 59.6
w/o Core Roles 57.3 49.7 53.2 63.6 49.5 55.7
System AMR 69.8 50.5 58.6 68.9 42.9 52.9

Replace AMR with
Dependency Parsing

45.9 61.9 52.7 63.9 18.2 28.4

Replace AMR with
FrameNet Parsing

43.1 57.1 49.2 78.1 7.1 13.0

Table 7: Impact of semantic information and rep-
resentations on typing for ERE data.

compound modifier of “battle”. Note that we used
a static mapping to map dependency relations to
AMR relations (see section 2.6), whereas ideally
this mapping would be context-dependent. Creat-
ing a context-dependent mapping would constitute
significant steps toward building an AMR parser.

Using FrameNet results in low recall for argu-
ment typing. SEMAFOR’s output often does not
identify all the arguments identified by our annota-
tors. Many triggers are associated with zero or one
argument, thus there is not enough data to learn the
event structure representation. In addition, most of
the arguments from identified by SEMAFOR are
long phrases. Because no internal structure is as-
signed, we simply average all single token’s vec-
tors to represent the phrase. However, the high
precision may be due to the fact that FrameNet re-
lations are designed to specify semantic roles.

3.5 Event Extraction for ACE/ERE Types

We manually select the event triggers in the ACE
and ERE evaluation sets discovered by our AMR-
based approaches that are ACE/ERE events based
on their annotation guidelines. If a trigger doesn’t
already have a gold standard ACE/ERE annota-
tion we provide one. For each such event we use
core roles and Instrument/Possessor/Time/Place
relations to detect arguments. Each trigger and
argument role type is assessed manually if an
ACE/ERE annotation does not exist. We evalu-
ate our approach for trigger and argument typing
by comparing system output to manual annota-

tion, considering synonymous labels to be equiva-
lent (e.g., our approach’s kill type ACE’s die). We
compare our approach with the following state-of-
the-art supervised methods which are trained from
529 ACE documents or 336 ERE documents:

• DMCNN: A dynamic multi-pooling convolu-
tional neural network based on distributed word
representations (Chen et al., 2015).
• Joint: A structured perceptron model based on

symbolic semantic features (Li et al., 2013).
• LSTM: A long short-term memory neural

network (Hochreiter and Schmidhuber, 1997)
based on distributed semantic features.

Table 8 shows the results. On ACE events, both
DMCNN and Joint methods outperform our ap-
proach for trigger and argument extraction. How-
ever, when moving to ERE event schema, although
re-trained based on ERE labeled data, their perfor-
mance still degrades significantly. These previous
methods heavily rely on the quality and quantity of
the training data. When the training data is not ad-
equate (the ERE training documents contain 1,068
events and 2,448 arguments, while ACE training
documents contain more than 4,700 events and
9,700 arguments), the performance is low. In con-
trast, our approach is unsupervised and can au-
tomatically identify events, arguments and assign
types/roles, and is not tied to one event schema.

3.6 Event Extraction for Biomedical Domain

To demonstrate the portability of our approach to
a new domain, we conduct our experiment on 14
biomedical articles (755 sentences) with perfect
AMR annotations (Garg et al., 2016). We utilize a
word2vec model6 trained from all paper abstracts
from PubMed7 and full-text documents from the
PubMed Central Open Access subset. To evaluate
the performance, we randomly sample 100 sen-
tences and ask a biomedical scientist to assess the
correctness of each event and argument role. Our
approach achieves 83.1% precision on trigger la-
beling (619 events in total) and 78.4% precision
on argument labeling (1,124 arguments in total).

6http://bio.nlplab.org/
7http://www.ncbi.nlm.nih.gov/pubmed

265



Method ERE: Trigger F1 (%) ERE: Arg F1(%) ACE: Trigger F1 (%) ACE: Arg F1 (%)
P R F1 P R F1 P R F1 P R F1

LSTM 41.5 46.8 44.1 9.9 11.6 10.7 66.0 60 62.8 29.3 32.6 30.8
Joint 42.3 41.7 42.0 61.8 23.2 33.7 73.7 62.3 67.5 64.7 44.4 52.7

DMCNN - - - - - - 75.6 63.6 69.1 68.8 46.9 53.5
LiberalPerfectAMR 79.8 50.5 61.8 48.9 32.9 39.3 - - - - - -
LiberalSystemAMR 88.5 42.6 57.5 47.6 30.0 36.8 80.7 50.1 61.8 51.9 39.4 44.8

Table 8: Performance on ERE and ACE events.

It demonstrates that our approach can be rapidly
adapted to a new domain and discover domain-rich
event schema. An example schema for an event
type “Dissociate” is shown in Figure 7.

exchange for 15000 U.S. dollars. Event: ship,    
Arguments: man(Agent), Austrialia(Destination),heroin(Theme)

S2: State media didn’t identify the 2 convicts hanged in Zahedan but stated 
that they had been found guilty of transporting 5.25 kilograms of heroin.

Event: transporting,   Arguments: they(Agent), heroin(Theme)

S1: The construction of the facility started in 790000, but stopped after 
the 910000 Soviet collapse when Tajikistan slid into a 5 year civil war 
that undermined its economy. Event:construction,  

Arguments: facility(Product), 790000(Time)
S2: The closed Soviet-era military facility was fou-nded in 570000 and 
collects and analyzes all information gathered from Russia's military spy 
satellites. Event: founded,    

Arguments: Soviet-era facility(Product), 570000(Time)

Event Type: Build

 sentenced him to death in 1997.
Event: death,   Arguments: him(Theme), 1997(Time)

S2: A newspaper report on January 1, 2008 that Iran hanged two 
convicted drug traffickers in the south-eastern city of Zahedan.

S1: Colombian Government was alarmed because uranium is the 
primary basis for generating weapons of mass destruction.
Event:alarmed, Arguments:Columbian Government(Experiencer)

Event Type: Threaten

S2: Cluster bomblets have been criticized by human rights groups 
because they kill indiscriminately and because unexploded 
ordinance poses a threat to civilians similar to that of land mines.

Event:threat,  
Arguments:ordinance(Cause), civilian(Experiencer)

Event: hanged,   Arguments: Iran(Agent), drug traf- 
fickers(Theme), southeastern city of Zahedan(Place)

S1: Ras acts as a molecular switch that is activated upon GTP 
loading and deactivated upon hydrolysis of GTP to GDP.
Event: hydrolysis   Arguments:GTP (Patient), (GDP) (Result)

Event Type: Dissociate

S2: Activation requires dissociation of protein-bound GDP , an 
intrinsically slow process that is accelerated by guanine nucleotide 
exchange factors.

Event: dissociation   Arguments: GDP (Patient)
S3: His - ubiquitinated proteins were purified by Co2+ metal 
affinity chromatography in 8M urea denaturing conditions.

Event: denaturing  Arguments: proteins(Patient)

Figure 7: Example Output of the Discovered
Biomedical Event Schema.

4 Related Work

Most of previous event extraction work focused
on learning supervised models based on symbolic
features (Ji and Grishman, 2008; Miwa et al.,
2009; Liao and Grishman, 2010; Liu et al., 2010;
Hong et al., 2011; McClosky et al., 2011; Se-
bastian and Andrew, 2011; Chen and Ng, 2012;
Li et al., 2013) or distributional features through
deep learning (Chen et al., 2015; Nguyen and
Grishman, 2015). They usually rely on a pre-
defined event schema and a large amount of train-
ing data. Compared with other paradigms such
as Open Information Extraction (Etzioni et al.,
2005; Banko et al., 2007; Banko et al., 2008;
Etzioni et al., 2011; Ritter et al., 2012), Pre-
emptive IE (Shinyama and Sekine, 2006), On-
demand IE (Sekine, 2006) and semantic frame
based event discovery (Kim et al., 2013), our ap-
proach can explicitly name each event type and
argument role. Some recent work focused on
universal schema discovery (Chambers and Juraf-
sky, 2011; Pantel et al., 2012; Yao et al., 2012;
Yao et al., 2013; Chambers, 2013; Nguyen et al.,
2015). However, the schemas discovered from
these methods are rather static and they are not
customized for any specific input corpus.

Our work is also related to efforts at composing

word embeddings using syntactic structures (Her-
mann and Blunsom, 2013; Socher et al., 2013a;
Socher et al., 2013b; Bowman et al., 2014; Zhao
et al., 2015). Our trigger sense representation is
similar to Word Sense Induction (Navigli, 2009;
Bordag, 2006; Pinto et al., 2007; Brody and La-
pata, 2009; Manandhar et al., 2010; Navigli and
Lapata, 2010; Van de Cruys and Apidianaki, 2011;
Wang et al., 2015b). Besides word sense, we ex-
ploit related concepts to enrich trigger representa-
tion.

5 Conclusions and Future Work

We proposed a novel Liberal event extraction
framework which combines the merits of symbolic
semantics and distributed semantics. Experiments
on news and biomedical domain demonstrate that
this framework can discover explicitly defined rich
event schemas which cover not only most types in
existing manually defined schemas, but also new
event types and argument roles. The granularity
of event types is also customized for specific input
corpus. And it can produce high-quality event an-
notations simultaneously without using annotated
training data. In the future, we will extend this
framework to other Information Extraction tasks.
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