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Abstract

The distinction between restrictive and
non-restrictive modification in noun
phrases is a well studied subject in
linguistics. Automatically identifying
non-restrictive modifiers can provide NLP
applications with shorter, more salient
arguments, which were found beneficial
by several recent works. While previous
work showed that restrictiveness can be
annotated with high agreement, no large
scale corpus was created, hindering the
development of suitable classification
algorithms. In this work we devise a novel
crowdsourcing annotation methodology,
and an accompanying large scale corpus.
Then, we present a robust automated
system which identifies non-restrictive
modifiers, notably improving over prior
methods.

1 Introduction

Linguistic literature provides a large body of re-
search distinguishing between two types of mod-
ifiers within noun phrases: (1) Restrictive modi-
fiers, which constitute an integral part of the entity
referenced by the NP, e.g., the underlined modifier
in “She wore the necklace that her mother gave
her”, versus (2) Non-restrictive modifiers, which
provide an additional or parenthetical information
on an already definite entity, e.g., “The speaker
thanked president Obama who just came into the
room” (Huddleston et al., 2002; Fabb, 1990; Um-
bach, 2006).

The distinction between the two types is seman-
tic in nature and relies heavily on the context of
the NP. Evidently, many syntactic constructions
can appear in both restrictive and non-restrictive
uses. While the previous examples were of rela-

tive clauses, Figure 1 demonstrates this distinction
in various other syntactic constructions.

Identifying and removing non-restrictive mod-
ifiers yields shorter NP arguments, which proved
beneficial in many NLP tasks. In the context of
abstractive summarization (Ganesan et al., 2010)
or sentence compression (Knight and Marcu,
2002), non-restrictive modifiers can be removed
to shorten sentences, while restrictive modification
should be preserved.

Further, recent work in information extraction
showed that shorter arguments can be beneficial
for downstream tasks. Angeli et al. (2015) built
an Open-IE system which focuses on shorter ar-
gument spans, and demonstrated its usefulness in
a state-of-the-art Knowledge Base Population sys-
tem. Stanovsky et al. (2015) compared the per-
formance of several off-the-shelf analyzers in dif-
ferent semantic tasks. Most relevant to this work
is the comparison between Open-IE and Seman-
tic Role Labeling (Carreras and Màrquez, 2005).
Specifically, they suggest that SRL’s longer argu-
ments introduce noise which hurts performance
for downstream tasks.

Finally, in question answering, omitting non-
restrictive modification can assist in providing
more concise answers, or in matching between
multiple answer occurrences.

Despite these benefits, there is currently no con-
sistent large scale annotation of restrictiveness,
which hinders the development of automatic tools
for its classification. In prior art in this field, Dor-
nescu et al. (2014) used trained annotators to mark
restrictiveness in a large corpus. Although they
reached good agreement levels in restrictiveness
annotation, their corpus suffered from inconsisten-
cies, since it conflated restrictiveness annotation
with inconsistent modifier span annotation.

The contributions of this work are twofold. Pri-
marily, we propose a novel crowdsroucing anno-
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tation methodology which decouples the binary
(restrictive / non-restrictive) distinction from the
modifier span annotation (Section 3). Following
this methodology, in Section 4 we present a large
scale annotated corpus, which will allow further
research into the automatic identification of non-
restrictive modification.

Additionally, we developed a strong automatic
classifier, which learns from our new corpus (Sec-
tion 5). This classifier uses new linguistically mo-
tivated features which are robust enough to per-
form well over automatically predicted parse trees.

The corpus and the automatic classifier are both
made publicly available.1

While there is still much room for improve-
ment, especially in some of the harder, more
context-dependent, cases (most notably, preposi-
tional and adjectival modifiers), our system pro-
vides an applicable means for identifying non-
restrictive modification in a realistic NLP setting.

2 Background

In this section we cover relevant literature from
several domains. In Section 2.1 we discuss the es-
tablished linguistic distinction between restrictive
and non-restrictive modification. Following, in
Section 2.2 we discuss previous NLP work on an-
notating and identifying this distinction. Finally,
in Section 2.3 we briefly describe the recent QA-
SRL annotation paradigm (He et al., 2015), which
we utilize in Section 3 as part of our annotation
scheme.

2.1 Non-Restrictive Modification

Throughout the paper we follow Huddleston et
al.’s (2002) well-known distinction between two
types of NP modifiers: (1) Restrictive modifiers,
for which the content of the modifier is an integral
part of the meaning of the containing NP, and, in
contrast, (2) Non-restrictive modifiers, that present
a separate, parenthetical unit of information about
the NP.

While some syntactic modifiers (such as deter-
miners or genitives) are always restrictive, others
are known to appear in both restrictive as well as
non-restrictive uses, depending on semantics and
context (Huddleston et al., 2002; Fabb, 1990; Um-
bach, 2006). Among these are relative clauses, ad-
jectival, prepositional, non-finite, and verbal mod-

1http://www.cs.biu.ac.il/˜nlp/
resources/downloads

(RC1) The necklace that her mother gave her+

is in the safe.
(RC2) The governor disagreed with the U.S am-
bassador to China who seemed nervous−.
(NF1) People living near the site+ will have to
be evacuated.
(NF2) sheriff Arthur Lester, standing against the
wall−, looked tired.
(PP1) The kid from New York+ won the lottery.
(PP2) The assassination of Franz Ferdinand from
Austria− started WWI.
(AD1) The good+ boys won.
(AD2) The water level rose a good− 12 inches.

Figure 1: Restrictive (marked in red and a plus
sign) and non-restrictive (marked in blue and a mi-
nus sign) examples in different syntactic construc-
tions, see elaboration in Section 2. Examples in-
dex: RC - Relative clause, NF - Non-finite clauses
(Huddleston et al. [p. 1265]), PP - Prepositional
modifiers, AD - Adjectival modifiers (Huddleston
et al. [p. 528]).

ifiers. See Figure 1 for examples of different syn-
tactic constructions appearing in both restrictive as
well as non-restrictive contexts.

For example, for relative clause, Huddleston
et al. [p. 1058] identifies both restrictive as
well as non-restrictive uses (for which they use
the terms integrated and supplementary, respec-
tively). In the sentence marked (RC1), the high-
lighted relative clause is restrictive, distinguishing
the necklace being referred to from other neck-
laces, while in sentence (RC2), the relative clause
does not pick an entity from a larger set, but in-
stead presents separate information about an al-
ready specified definite entity.

2.2 Non-Restrictive Modification in NLP

Syntactic and semantic annotations generally
avoid the distinction between restrictive and non-
restrictive modification (referred here as “restric-
tiveness” annotation).

The syntactic annotation of the Penn TreeBank
(Marcus et al., 1993) and its common conversion
to dependency trees (e.g., (de Marneffe and Man-
ning, 2008)) do not differentiate the cases dis-
cussed above, providing the same syntactic struc-
ture for the semantically different instances. See
Figure 2 for an example.

Furthermore, prominent semantic annotations,
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such as PropBank (Palmer et al., 2005), AMR
(Banarescu et al., 2013), CCG (Hockenmaier and
Steedman, 2007), or FrameNet (Baker et al.,
1998), also avoid this distinction. For exam-
ple, PropBank does not differentiate between such
modifiers, treating both types of modification as
an integral part of an argument NP.

Two recent works have focused on automat-
ically identifying non-restrictive modifications.
Honnibal et al. (2010) added simple automated
restrictiveness annotations to NP-modifiers in the
CCGbank (Hockenmaier and Steedman, 2007).
Following a writing style and grammar rule, a
modifier was judged as non-restrictive if and only
if it was preceded by a comma.2 This annotation
was not intrinsically evaluated, as it was carried
as part of an extrinsic evaluation of a statistical
parser.

Having similar goals to ours, Dornescu et al.
(2014) sets the prior art at annotating and predict-
ing non-restrictive modification. In the annotation
phase, each of their trained annotators was asked
to (1) Mark spans of words in the sentence as
forming an NP modifier, and (2) Mark each span
they annotated in (1) as either restrictive or non-
restrictive, and specify its type from a predefined
list (e.g., relative clause, adjectival modifier, etc.).

Their inter-annotator agreement on the first task
(modifier span) was low, reaching pairwise F1
score of only 54.9%, possibly due to problems
in the annotation procedure, as acknowledged by
the authors. The second part of the annotation
achieved better agreement levels, reaching kappa
of 0.78 (substantial agreement) for type annotation
and 0.51 (moderate agreement) for restrictiveness
annotation.3

Following the creation of the annotated dataset,
they developed rule based and machine learning
classifiers. All of their classifiers performed only
at about 47% F1, at least partly due to the incon-
sistencies in span annotation discussed above.

To conclude this survey, although an effort was
made by Dorenscu et al. (2014), there is currently
no available consistent corpus annotated with non-
restrictive modifiers.

2Notice that this is indeed the case in some of the non-
restrictive examples in Figure 1.

3Note that the agreement for the first task is reported in
F1 while the second task is reported in Cohen’s kappa.

the boy who entered the room

det
nsubj

rcmod

det

dobj

president Obama who entered the room

nn
nsubj

rcmod

det

dobj

Figure 2: Restrictive (top) and non-restrictive
(bottom) NP modifications receive the same rep-
resentation in dependency trees. See Section 2.2.

2.3 QA-SRL
Traditional Semantic Role Labeling (SRL) (Car-
reras and Màrquez, 2005) is typically perceived as
answering argument role questions, such as who,
what, to whom, when, or where, regarding a tar-
get predicate. For instance, PropBank’s ARG0 for
the predicate say answers the question “who said
something?”.

QA-SRL (He et al., 2015) suggests that answer-
ing explicit role questions is an intuitive means
to solicit predicate-argument structures from non-
expert annotators. Annotators are presented with a
sentence in which a target predicate4 was marked,
and are requested to annotate argument role ques-
tions, phrased using a restricted grammar, and cor-
responding answers.

For example, given the sentence “President
Obama who flew to Russia called the vice presi-
dent” and the target predicate called, an annotator
can intuitively provide the following QA pairs: (1)
Who called? President Obama and (2) Whom did
someone call? the vice president.

In order to assess the validity of their annotation
scheme, He et al. annotated a large sample of the
PropBank corpus (1241 sentences) with QA-SRL,
and showed high agreement with PropBank over
this sample. In the following sections we make
use of these explicit role questions for annotating
non-restrictive modifiers.

3 Annotation Methodology

As mentioned in the Introduction, the first goal
of this work is to assemble a large and consis-
tent corpus, annotated with non-restrictive modifi-
cations. In this section, we present a crowdsourc-
ing methodology which allows us to generate such
corpus in a cost-effective manner (Section 3.2). As
a preliminary step, we conducted a smaller scale

4Currently consisting of automatically annotated verbs.
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expert annotation (Section 3.1), which will serve
as a gold standard with which to test the crowsd-
sourced annotations.

3.1 Expert Annotation

Two researchers, with linguistics and NLP educa-
tion, were presented with a sample of 219 mod-
ifiers of NPs in 100 sentences,5 and were asked
to annotate each modifier as either restrictive or
non-restrictive, according to the linguistic defini-
tion presented in Section 2. Prior to annotating the
expert dataset, the annotators discussed the pro-
cess and resolved conflicts on a development set
of 20 modifiers.

The annotators agreement was found to be high,
reaching agreement on 93.5% of the instances, and
κ of 84.2% . An analysis of the few disagreements
found that the deviations between the annotators
stem from semantic ambiguities, where two legit-
imate readings of the sentence led to disagreeing
annotations. For example, in “sympathetic fans
have sent Ms. Shere copies of her recipes clipped
from magazines over the years”, one annotator
read the underlined modifier clause as restrictive,
identifying particular recipes, while the second an-
notator read the modifier as non-restrictive, adding
supplementary information on the sent recipes.

Finally, we compose the expert annotation
dataset from the 207 modifiers agreed upon by
both annotators. In the next section we use
this dataset to evaluate the quality of our crowd-
sourced annotations.

3.2 Crowdsourcing Annotation Process

In our scheme, each annotation instance assigns a
binary label (restrictive or non-restrictive) to a 4-
tuple (s, v, p,m) – where m is a modifier of the
noun phrase p, which is an argument of a verbal
predicate v, in a sentence s. We incorporate v in
our scheme in order to provide non-trained anno-
tators with an argument role question (discussed
in 2.3), as elaborated below.6

Consider, for example, the sentence s – “the
speaker thanked [President Obama who just en-
tered the room]”. We want to annotate the re-
strictiveness value of the relative clause m (under-
lined), which modifies the matrix noun phrase p

5These were taken at random from the development par-
tition of the corpus described in Section 4.

6Our annotation currently covers the most common case
of NPs which serve as arguments of verbal predicates.

(bracketed), which is in turn an argument of a gov-
erning predicate v (in bold).

Our annotation procedure does not require the
annotator to be familiar with the formal linguistic
definition of restrictiveness. Instead, we use bi-
nary question-answering (true / false questions) as
an intuitive formulation of non-restrictive modifi-
cation. We present annotators with the argument
role question pertaining to the argument NP, and
ask whether this NP without the modifier gives the
same answer to the argument role question as the
original NP did.

In our example, an annotator is presented with
the argument role question “whom did someone
thank?” (which is answered by p), and is asked
to decide whether the reduced NP, “President
Obama”, provides the same answer to the ques-
tion as the full NP does. If the answer is positive
(as in this case), we consider the modifier to be
non-restrictive, otherwise we consider it to be re-
strictive.

As an example for the restrictive case, consider
“she wore [the necklace that her mother gave
her]”, and the respective argument role-question
“what did someone wear?”. In this case, as op-
posed to the previous example, the reduced NP
(“the necklace”) does not refer to the same entity
as the original NP, since we lose the specific iden-
tity of the necklace which was worn.

The intuition for this process arises from the
linguistic definition for modifier restrictiveness.
Namely, a restrictive modifier is defined as an in-
tegral part of the NP, and a non-restrictive modifier
as providing supplementary or additional informa-
tion about it. Therefore, in the restrictive case,
omitting the modifier would necessarily change
the meaning of the answer, while in the non-
restrictive case, omitting it would not change the
entity referenced by the full NP, and would there-
fore provide the same answer to the argument role
question.

4 Corpus

In this section we describe the creation of a consis-
tent human-annotated restrictiveness corpus, using
the annotation process described in the previous
section. We show this corpus to be of high quality
by comparing it with the independent expert anno-
tation. In Section 5 we use this corpus to train and
test several automatic classifiers.
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Modifier Type Identified By # Non-Restrictive
Agreement

κ %

Adjectival pos = JJ 684 41.36% 74.70 87.36
Prepositional pos = IN / TMP / LOC 693 36.22% 61.65 85.10
Appositive rel = APPO / PRN 342 73.68% 60.29 80.00
Non-Finite rel = TO 279 68.82% 71.04 86.48
Verbal pos = VB and not relative clause 150 69.33% 100 100
Relative clause pos = VB and child pos = WP 43 79.07% 100 100
Total - 2191 51.12% 73.79 87.00

Table 1: Corpus statistics by modifier types, which were identified by part of speech (pos) and depen-
dency label (rel) (Section 4.1). The number of instances (#) and non-restrictiveness percentage refer to
the full crowdsourced annotation. Agreement (Cohen’s κ and percent of matching instances) is reported
for the expert-annotated data (Section 4.2), between the expert and crowdsourced annotations.

4.1 Data Collection

We use the dataset which He et al. (2015) an-
notated with Question-Answer pairs (discussed in
Section 2.3), and keep their train / dev / test split
into 744 / 249 / 248 sentences, respectively. This
conveniently allows us to link between argument
NPs and their corresponding argument role ques-
tion needed for our annotation process, as de-
scribed in previous section.

This dataset is composed of 1241 sentences
from the CoNLL 2009 English dataset (Hajič et
al., 2009), which consists of newswire text anno-
tated by the Penn TreeBank (Marcus et al., 1993),
PropBank (Palmer et al., 2005), and NomBank
(Meyers et al., 2004), and converted into depen-
dency grammar by (Johansson and Nugues, 2008).

As mentioned in Section 3.2, each of our anno-
tation instances is composed of a sentence s, a ver-
bal predicate v, a noun phrase p, and a modifierm.
We extract each such possible tuple from the set of
sentences in the following automatic manner:

1. Identify a verb v in the gold dependency tree.

2. Follow its outgoing dependency arcs to a
noun phrase argument p (a dependent of v
with a nominal part of speech).

3. Find m, a modifying clause of p which might
be non-restrictive, according to the rules de-
scribed in Table 1, under the “Identified By”
column. This filters out modifiers which
are always restrictive, such as determiners
or genitives, following (Huddleston et al.,
2002), as discussed in Section 2. Notice that
this automatic modifier detection decouples

the span annotation from the restrictiveness
annotation, which was a source for inconsis-
tencies in Dornescu et al’s annotation (Sec-
tion 2.2).

This automatic process yields a dataset of 2191
modifiers of 1930 NPs in 1241 sentences. We note
that our collection process ensures that the cor-
pus correlates with the syntactic dependency an-
notation of the CoNLL 2009 shared task, and can
therefore be seen as an augmentation of its modi-
fier labels to include restrictiveness annotations.

In order to find the corresponding argument role
question, we follow the process carried by He et
al.; An argument NP is matched to an annotated
Question-Answer pair if the NP head is within the
annotated answer span. Following this matching
process yields a match for 1840 of the NPs.

For the remaining 90 NPs we manually com-
pose an argument role question by looking at the
governing predicate and its argument NP. For ex-
ample, given the sentence “[The son of an im-
migrant stonemason of Slovenian descent] was
raised in a small borough outside Ebensburg”, the
predicate raised and the bracketed NP argument,
we produce the argument role question “Who was
raised?”.

The corpus category distribution is depicted in
Table 1, under column labeled “#”. In later sec-
tions we report agreement and performance across
these categories to produce finer grained analyses.

4.2 Crowdsourcing Annotation
We use Amazon Mechanical Turk7 to annotate the
2191 modifiers for restrictiveness, according to the

7https://www.mturk.com
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process defined in Section 3.2. Each modifier was
given to 5 annotators, and the final tag was as-
signed by majority vote. We used the development
set to refine the guidelines, task presentation, and
the number of annotators.

Each annotator was paid 5c for the annotation of
an NP, which in average provided 1.16 modifiers.
This sets the average price for obtaining a single
modifier annotation at 5 · 5

1.16 = 21.5c.
The agreement with the 217 NP modifiers anno-

tated by the experts (Section 3.1) and percentage
of positive (non-restrictive) examples per category
can be found in Table 1, in the columns labeled
“agreement”. The labels are generally balanced,
with 51.12% non-restrictive modifiers in the entire
dataset (varying between 36.22% for prepositional
modifiers and 79.07% for relative clauses).

Overall, the crowdsourced annotation reached
good agreement levels with our expert annota-
tion, achieving 73.79 κ score (substantial agree-
ment). The lowest agreement levels were found
on prepositional and appositive modifiers (61.65%
and 60.29%).8 Indeed, as discussed in Section
2, these are often subtle decisions which rely
heavily on context. For example, the following
instances were disagreed upon between our ex-
pert annotation and the crowdsourced annotation:
In “[Charles LaBella , the assistant U.S. attor-
ney prosecuting the Marcos case], did n’t return
phone calls seeking comment” (an appositive ex-
ample), the experts annotated the underlined mod-
ifier as non-restrictive, while the crowdsource an-
notation marked it as restrictive. Inversely, in “The
amendment prompted [an ironic protest] from
Mr. Thurmond”, the experts annotated the adjecti-
val modifier as restrictive, while the crowdsource
annotation tagged it as non-restrictive.

5 Predicting Non-Restrictive
Modification

In this section we present an automatic system
which: (1) Identifies NP modifiers in a depen-
dency parser’s output (as shown in Table 1, col-
umn “Identified By”) and (2) Uses a CRF model to
classify each modifier as either restrictive or non-
restrictive, based on the features listed in Table 2,

8While linguistic literature generally regards appositives
as non-restrictive, some of the appositions marked in the de-
pendency conversion are in fact misclassified coordinations,
which explains why some of them were marked as restrictive.

and elaborated below.9

5.1 Baselines
We begin by replicating the algorithms in the two
prior works discussed in Section 2.2. This allows
us to test their performance consistently against
our new human annotated dataset.

Replicating (Honnibal et al., 2010) They anno-
tated a modifier as restrictive if and only if it was
preceded with a comma. We re-implement this
baseline and classify all of the modifiers in the test
set according to this simple property.

Replicating (Dornescu et al., 2014) Their best
performing ML-based algorithm10 uses the super-
vised CRFsuite classifier (Okazaki, 2007) over
“standard features used in chunking, such as word
form, lemma and part of speech tags”. Replicat-
ing their baseline, we extract the list of features
detailed in Table 2 (in the row labeled “chunking
features”).

5.2 Our Classifier
In addition to Dornescu et al.’s generic chunking
framework, we also extract features which were
identified in the linguistic literature as indicative
for non-restrictive modifications. These features
are then used in the CRFsuite classifier (the same
CRF classifier used by Donescu et al.) to make the
binary decision. The following paragraphs elabo-
rate on the motivation for each of the features.

Enclosing commas We extend Honnibal’s et
al.’s classification method as a binary feature
which marks whether the clause is both preceded
and terminated with a comma. This follows
from a well-known writing style and grammar rule
which indicates that non-restrictive clausal modi-
fiers should be enclosed with a comma.

Governing relative In the linguistic literature,
it was posited that the word introducing a clausal
modifier (termed relative) is an indication for the
restrictiveness of the subordinate clause. For ex-
ample, Huddleston. et al. (2002) [p. 1059]
analyzes the word “that” as generally introduc-
ing a restrictive modifier, while a wh-pronoun is

9We use our new crowdsourced corpus to train our model
as well as the baseline model.

10They also implement a rule-based method, named
DAPR, which, when combined with the described ML ap-
proach surpasses their ML algorithm by ∼1.5% increase in
F1. We could not find a publicly available implementation of
this method.
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more likely to introduce non-restrictive modifica-
tion. We therefore extract features of the word
which governs the relative, such as the surface
form, its lemma, POS tag, and more. The full list
is shown under “Governing relative” in Table 2.

Named entities As illustrated throughout the
paper, modifiers of named entities tend to be non-
restrictive. We run the Stanford Named Entity
Recognizer (NER) (Finkel et al., 2005) and intro-
duce a feature indicating the type of named entity
(PERSON, ORG or LOC), where applicable.

Lexical word embeddings We include the pre-
trained word embeddings of the modifier’s head
word, calculated by (Mikolov et al., 2013). These
distributional features help the classifier associate
between similar words (for example, if “good” is
non-restrictive in some contexts, it is likely that
“fine” is also non-restrictive within similar con-
texts).

Modifier type We add the automatically identi-
fied modifier type as a feature, to associate certain
features as indicative for certain types of modifiers
(e.g., enclosing commas might be good indicators
for relative clause, while word embeddings can be
specifically helpful for adjectival modifiers).

6 Evaluation

We use the QA-SRL test section (containing 412
NP modifiers) to evaluate each of the systems de-
scribed in Section 5 on gold and predicted trees,
both provided in the CoNLL 2009 dataset (the pre-
dicted dependency relations were obtained using
MaltParser (Nivre et al., 2007)). The gold setting
allows us to test the performance of the systems
without accumulating parser errors. In addition, it
allows us to partition and analyze our dataset ac-
cording to the gold modifier type. The predicted
setting, on the other hand, allows us to evaluate
our classifier in a real-world application scenario,
given automatic parsing output.

6.1 Gold Trees
The results for each of the systems across our cate-
gories on the gold trees are shown in Table 3. Note
that we regard non-restrictive modification as pos-
itive examples, and restrictive modification as neg-
ative examples. This is in line with the applicative
goal of reducing argument span by removing non-
restrictive modifiers, discussed in the Introduction.
Switching the labels does not significantly change

System Feature Type Description
Honnibal et al. Preceding comma w[-1] == ,

Chunking features feats[head-1]
(Dornescu et al.) feats[head]

feats[head+1]

This paper Enclosing commas

true iff the
clause is preceded
and terminated
with commas
feats[parent-1]

Governing relative feats[parent]
feats[parent+1]
feats[pobj-1]

Prepositions feats[pobj]
feats[pobj+1]

NER
PERSON,
ORGANIZATION,
LOCATION

Lexical word
embeddings

Mikolov et al’s
300-dimensional
continuous word
embeddings

Modifier type
one of the
types described
in Table 1

Table 2: Features used for classification in each
of the systems as described in Section 5. head -
head of the modifier in the dependency tree. par-
ent - parent of head in the dependency tree. pobj
- object of the preposition, in case of prepositional
head. feats[i] refers to extracting the following
features from the word i: POS tag, lemma, is title,
is all lower case, is all upper case, is beginning /
end of sentence.

the numbers, since the corpus is relatively well
balanced between the two labels (as can be seen in
Table 1). Following are several observations based
on an error analysis of these results.

Prepositional and adjectival modifiers are
harder to predict All systems had more diffi-
culties in classifying both of these categories. This
reiterates the relatively lower agreement for these
categories between the crowdsource and expert
annotation, discussed in Section 4.2.

For clausal modifiers, preceding commas are
good in precision but poor for recall As can
be seen in Honnibal et al.’s columns, a preceding
comma is a good indication for a non-restrictive
clausal modifier (all categories excluding adjecti-
val or verbal modifiers), but classifying solely by
its existence misses many of the non-restrictive in-
stances.
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Modifier Type # Precision Recall F1
Honnibal Dornescu Our Honnibal Dornescu Our Honnibal Dornescu Our

Prepositional 135 .83 .67 .69 .1 .16 .41 .18 .26 .51
Adjectival 111 .33 .38 .59 .06 .06 .21 .11 .11 .31
Appositive 78 .77 .81 .82 .34 .93 .98 .47 .87 .89
Non-Finite 55 .77 .63 .64 .29 .97 .97 .42 .76 .77
Verbal 20 0 .75 .75 0 1 1 0 .86 .86
Relative clause 13 1 .85 .85 .27 1 1 .43 .92 .92
Total 412 .72 .72 .73 .19 .58 .68 .3 .64 .72

Table 3: Test set performance of the 3 different systems described in Sections 5 and 6 on gold trees from
the CoNLL 2009 dataset, across the different categories defined in Section 4.

Features P R F1
All .73 .68 .72

Baseline
- comma .72 .68 .70
- chunking .72 .66 .69

New
- governing relative .74 .61 .67
- prepositions .73 .67 .70
- word embeddings .72 .69 .71
- NER .71 .68 .70
- mod type .74 .66 .70

Table 4: Feature ablation tests on gold trees. Each
row specifies a different feature set – “All” speci-
fies the entire feature set from Table 2, while each
subsequent line removes one type of features.

(Dornescu et al., 2014) performs better on our
dataset Their method achieves much better re-
sults on our dataset (compare 64% overall F1 on
our dataset with their reported 45.29% F1 on their
dataset). This speaks both for their method as a
valid signal for restrictiveness annotation, as well
as for the improved consistency of our dataset.

Our system improves recall Overall, our sys-
tem significantly outperforms both baselines by
more than 8% gain in F1 score. Specifically, the
numbers show clearly that we improve recall in the
frequent categories of prepositional and adjectival
modifiers. Furthermore, the results of an ablation
test on our features (shown in Table 4) show that
chunking and governing relative features provide
the highest individual impact.

6.2 Predicted Trees

To test our classifier in a realistic setting we evalu-
ate its performance on predicted dependency trees.
To obtain the candidate modifiers, we use the same
extractor presented in previous sections, applied
on the predicted trees in the test section of the
CoNLL 2009 dataset. We then apply the models

System P R F1
Candidate Extraction .91 .93 .92
Honnibal .71 .18 .29
Dornescu .68 .53 .59
Our .69 .63 .66

Table 5: Restrictiveness results (bottom three
lines) on predicted trees. The top line (Candidate
Extraction) measures the percent of correct modi-
fiers identified in the predicted trees (shared across
all of the classifiers). See Section 6.2.

trained on the gold train set of the same corpus.
For evaluation, we use the gold labels and com-

pute (1) precision – the percent of predicted non-
restrictive modifiers which match a gold non-
restrictive modifier, and (2) recall – the percent of
gold non-restrictive modifiers which match a pre-
dicted non-restrictive modifier. Note that this met-
ric is strict, conflating both parser errors with our
classifier’s errors. The results are shown in Table
5.

The first line in the table measures the perfor-
mance of the modifier extractor module on the pre-
dicted trees. A predicted modifier is considered
correct if it agrees with a gold modifier on both its
syntactic head as well as its span. The modifier
extractor module is shared across all classifiers, as
discussed in Section 5, and its performance on the
predicted trees imposes an upper bound on all the
classifiers.

Both our and Dornescu’s classifiers drop 5-6
points in F1, keeping the differences observed
on the gold trees, while Honnibal et al.’s simple
comma-based classifier is less sensitive to parser
errors, dropping only one point in F1.

This small drop stems from our classifiers
largely relying only on the modifier head and its
span for feature computation, generally ignoring
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parsing errors within the modifier subtree.

7 Conclusions and Future Work

We presented an end-to-end framework for restric-
tiveness annotation, including a novel QA-SRL
based crowdsourcing methodology and a first con-
sistent human-annotated corpus. Furthermore, we
presented a linguistically motivated classifier, sur-
passing the previous baseline by 8% gain in F1.

Future work can use our annotated corpus to de-
velop classifiers that deal better with prepositional
and adjectival modifiers, which require deeper se-
mantic analysis.
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Màrquez, Adam Meyers, Joakim Nivre, Sebastian
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