
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 137–142,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Improving cross-domain n-gram language modelling with skipgrams

Louis Onrust
CLS, Radboud University Nijmegen

ESAT-PSI, KU Leuven
l.onrust@let.ru.nl

Antal van den Bosch
CLS, Radboud University Nijmegen
a.vandenbosch@let.ru.nl

Hugo Van hamme
ESAT-PSI, KU Leuven

hugo.vanhamme@esat.kuleuven.be

Abstract

In this paper we improve over the hierarch-
ical Pitman-Yor processes language model
in a cross-domain setting by adding skip-
grams as features. We find that adding
skipgram features reduces the perplexity.
This reduction is substantial when models
are trained on a generic corpus and tested
on domain-specific corpora. We also
find that within-domain testing and cross-
domain testing require different backoff
strategies. We observe a 30-40% reduction
in perplexity in a cross-domain language
modelling task, and up to 6% reduction
in a within-domain experiment, for both
English and Flemish-Dutch.

1 Introduction

Since the seminal paper on hierarchical Bayesian
language models based on Pitman-Yor processes
(Teh, 2006), Bayesian language modelling has re-
gained an interest. Although Bayesian language
models are not new (MacKay and Peto, 1995),
previously proposed models were reported to be
inferior compared to other smoothing methods.
Teh’s work was the first to report on improve-
ments over interpolated Kneser-Ney smoothing
(Teh, 2006).

To overcome the traditional problems of over-
estimating the probabilities of rare occurrences
and underestimating the probabilities of unseen
events, a range of smoothing algorithms have
been proposed in the literature (Goodman, 2001).
Most methods take a heuristic-frequentist ap-
proach combining n-gram probabilities for vari-
ous values of n, using back-off schemes or inter-
polation.

Teh (2006) showed that MacKay and Peto’s
(1995) research on parametric Bayesian language
models with a Dirichlet prior could be extended
to give better results, but also that one of the
best smoothing methods, interpolated Kneser-Ney
(Kneser and Ney, 1995), can be derived as an ap-
proximation of the Hierarchical Pitman-Yor pro-
cess language model (HPYLM).

The success of the Bayesian approach to lan-
guage modelling is due to the use of statistical dis-
tributions such as the Dirichlet distribution, and
distributions over distributions, such as the Dirich-
let process and its two-parameter generalisation,
the Pitman-Yor process. Both are widely stud-
ied in the statistics and probability theory com-
munities. Interestingly, language modelling has
acquired the status of a “fruit fly” problem in these
communities, to benchmark the performance of
statistical models. In this paper we approach lan-
guage modelling from a computational linguistics
point of view, and consider the statistical methods
to be the tool with the future goal of improving
language models for extrinsic tasks such as speech
recognition.

We derive our model from Teh (2006), and pro-
pose an extension with skipgrams. A frequentist
approach to language modelling with skipgrams is
described by Pickhardt et al. (2014), who intro-
duce an approach using skip-n-grams which are
interpolated using modified Kneser-Ney smooth-
ing. In this paper we show that a Bayesian skip-n-
gram approach outperforms a frequentist skip-n-
gram model.

2 Method

Traditionally, the most widely used pattern in lan-
guage modelling is the n-gram, which represents

137



a pattern of n contiguous words, of which we call
the first (n − 1) words the history or context, and
the nth word the focus word. The motivation for
using n-grams can be traced back to the distribu-
tional hypothesis of Harris (Harris, 1954; Sahl-
gren, 2008). Although n-grams are small patterns
without any explicit linguistic annotation, they are
surprisingly effective in many tasks, such as lan-
guage modelling in machine translation, automatic
speech recognition, and information retrieval.

One of the main limitations of n-grams is
their contiguity, because this limits the express-
ive power to relations between neighboring words.
Many patterns in language span a range that is
longer than the typical length of n; we call these
relations long-distance relations. Other patterns
may be within the range of n, but are still non-
contiguous; they skip over positions. Both types
of relations may be modelled with (syntactic)
dependencies, and modelling these explicitly re-
quires a method to derive a parser, e.g. a depend-
ency parser, from linguistically annotated data.

To be able to model long-distance and other
non-contiguous relations between words without
resorting to explicitly computing syntactic de-
pendencies, we use skipgrams. Skipgrams are
a generalisation of n-grams. They consist of n
tokens, but now each token may represent a skip
of at least one word, where a skip can match any
word. Let {m} be a skip of lengthm, then the {1}
house can match “the big house”, or “the yellow
house”, etc. We do not allow skips to be at the
beginning or end of the skipgram, so for n > 2
skipgrams are a generalisation of n-grams (Good-
man, 2001; Shazeer et al., 2015; Pickhardt et al.,
2014).

Pitman-Yor Processes (PYP) belong to the fam-
ily of non-parametric Bayesian models. Let W be
a fixed and finite vocabulary of V words. For each
wordw ∈W letG(w) be the probability ofw, and
G = [G(w)]w∈W be the vector of word probabil-
ities. Since word frequencies generally follow a
power-law distribution, we use a Pitman-Yor pro-
cess, which is a distribution over partitions with
power-law distributions. In the context of a lan-
guage model this means that for a space P (u),
with c(u·) elements (tokens), we want to parti-
tion P (u) in V subsets such that the partition is
a good approximation of the underlying data, in
which c(uw) is the size of subset w of P (u). We
assume that the training data is an sample of the

underlying data, and for this reason we seek to find
an approximation, rather than using the partitions
precisely as found in the training data.

Since we also assume that a power-law distribu-
tion on the words in the underlying data, we place
a PYP prior on G:

G ∼ PY(d, θ,G0),

with discount parameter 0 ≤ d < 1, a strength
parameter θ > −d and a mean vector G0 =
[G0(w)]w∈W . G0(w) is the a-priori probability of
word w, which we set uniformly: G0(w) = 1/V
for all w ∈ W . In general, there is no known ana-
lytic form for the density of PY(d, θ,G0) when
the vocabulary is finite. However, we are inter-
ested in the distribution over word sequences in-
duced by the PYP, which has a tractable form, and
is sufficient for the purpose of language modelling.

Let G and G0 be distributions over W , and
x1, x2, . . . be a sequence of words drawn i.i.d.
from G. The PYP is then described in terms of a
generative procedure that takes x1, x2, . . . to pro-
duce a separate sequence of i.i.d. draws y1, y2, . . .
from the mean distributionG0 as follows. The first
word x1 is assigned the value of the first draw y1

from G0. Let t be the current number of draws
from G0, ck the number of words assigned the
value of draw yk and c· =

∑t
k=1 ck the number of

draws from G0. For each subsequent word xc·+1,
we either assign it the value of a previous draw yk,
with probability ck−d

θ+c· , or assign it the value of a
new draw from G0 with probability θ+dt

θ+c· .
For an n-gram language model we use a hier-

archical extension of the PYP. The hierarchical
extension describes the probabilities over the cur-
rent word given various contexts consisting of up
to n − 1 words. Given a context u, let Gu(w)
be the probability of the current word taking on
value w. A PYP is used as the prior for Gu =
[Gu(w)]w∈W :

Gu ∼ PY(d|u|, θ|u|, Gπ(u)),

where π(u) is the suffix of u consisting of all
but the first word, and |u| being the length of u.
The priors are recursively placed with parameters
θ|π(u)|, d|π(u)| and mean vector Gπ(π(u)), until we
get to G∅:

G∅ ∼ PY(d0, θ0, G0),

with G0 being the uniformly distributed global
mean vector for the empty context ∅.
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3 Backoff Strategies

In this paper we investigate three backoff
strategies: ngram, limited, and full. ngram is the
traditional n-gram backoff method as described by
Teh (2006); limited and full are extensions that
also incorporate skipgram probabilities. The full
backoff strategy is similar to ngram in that it al-
ways backs off recursively to the word probabilit-
ies, while limited halts as soon as a probability is
known for a pattern. The backoff strategies can be
formalised as follows. For all strategies, we have
that p(w|u) = G0(w) if u = ∅. For ngram, the
other case is defined as:

p(w|u) =
cuw· − d|u|tuw·
θ|u| + cu··

+
θ|u| + d|u|tu··
θ|u| + cu··

p(w|π(u))

with cuw· being the number of uw tokens, and
cu·· the number of patterns starting with context
u. Similarly, tuwk is 1 if draw the kth from Gu

was w, 0 otherwise. tuw· then denotes if there is a
pattern uw, and tu·· is the number of types follow-
ing context u.

Now let σn be the operator that adds a skip
to a pattern u on the nth position if there is not
already a skip. Then σ(u) = [σn(u)]|u|n=2 is the
set of patterns with one skip more than the num-
ber of skips currently in u. The number of gen-
erated patterns is ς = |σ(u)|. We also introduce
the indicator function S, which for the full backoff
strategy always returns its argument: Suw(y) = y.
The full backoff strategy is defined as follows, with
ux = σx(u), and discount frequency δu = 1:

p(w|u) =
ς∑

m=1

{
1

ς + 1

[
cumw· − δumd|um|tumw·

δumθ|um| + cum··
+

Sumw

(
θ|um| + d|um|tum··
δumθ|um| + cum··

p(w|π(um))
)]}

+
1

ς + 1

[
cuw· − δud|u|tuw·
δuθ|u| + cu··

+

Suw

(
θ|u| + d|u|tu··
δuθ|u| + cu··

p(w|π(u))
)]

The limited backoff strategy is an extension of
the full backoff strategy that stops the recursion if
a test pattern uw has already occurred in the train-
ing data. This means that the count is not zero,

and hence at training time a probability has been
assigned to that pattern. S is the indicator function
which tells if a pattern has been seen during train-
ing: Suw(·) = 0 if count(uw) > 0, 1 otherwise;
and δu = V −∑w∈W Suw(·). Setting Suw(·) = 0
stops the recursion.

4 Data

In this section we give an overview of the data sets
we use for the English and Flemish-Dutch experi-
ments.

4.1 English Data

For the experiments on English we use four cor-
pora: two large generic mixed-domain corpora
and two smaller domain-specific corpora. We train
on the largest of the two mixed-domain corpora,
and test on all four corpora.

The first generic corpus is the Google 1 billion
words shuffled web corpus of 769 million tokens
(Chelba et al., 2013). For training we use sets 1
through 100, out of the 101 available training sets;
for testing we use all available 50 test sets (8M
tokens). The second generic corpus, used as test
data, is a Wikipedia snapshot (368M tokens) of
November 2013 as used and provided by Pickhardt
et al. (2014). The first domain-specific corpus is
from JRC-Acquis v3.0 (Steinberger et al., 2006),
which contains legislative text of the European
Union (8M tokens). The second domain-specific
corpus consists of documents from the European
Medicines Agency, EMEA (Tiedemann, 2009).
We shuffled all sentences, and selected 20% of
them as the test set (3M tokens).

Since the HPYLM uses a substantial amount of
memory, even with histogram-based sampling, we
cannot model the complete 1bw data set without
thresholding the patterns in the model. We used
a high occurrence threshold of 100 on the uni-
grams, yielding 99,553 types that occur above this
threshold. We use all n-grams and skipgrams that
occurred at least twice, consisting of the included
unigrams as focus words, with UNKs occupying
the positions of words not in the vocabulary. Note
that because these settings are different from mod-
els competing on this benchmark, the results in
this paper cannot be compared to those results.

4.2 Flemish-Dutch Data

For the experiments on Flemish-Dutch data, we
use the Mediargus corpus as training material. It
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contains 5 years of newspaper texts from 12 Flem-
ish newspapers and magazines, totaling 1.3 billion
words.

For testing we use the Flemish part of the
Spoken Dutch Corpus (CGN) (Oostdijk, 2000)
(3.2M words), divided over 15 components, ran-
ging from spontaneous speech to books read
aloud. CGN also contains two components which
are news articles and news, which from a domain
perspective are similar to the training data of Me-
diargus. We report on each component separately.

Similarly to the 1bw models, we used a thres-
hold on the word types, such that we have a sim-
ilar size of vocabulary (100k types), which we pro-
duced with a threshold of 250. We used the same
occurrence threshold of 2 on the n- and skipgrams.

5 Experimental Setup

We train 4-gram language model on the two train-
ing corpora, the Google 1 billion word benchmark
and the Mediargus corpus. We do not perform
any preprocessing on the data except tokenisation.
The models are trained with a HPYLM. We do not
use sentence beginning and end markers. The res-
ults for the ngram backoff strategy are obtained
by training without skipgrams; for limited and full
we added skipgram features during training.

At the core of our experimental framework we
use cpyp,1 which is an existing library for non-
parametric Bayesian modelling with PY priors
with histogram-based sampling (Blunsom et al.,
2009). This library has an example application to
showcase its performance with n-gram based lan-
guage modelling. Limitations of the library, such
as not natively supporting skipgrams, and the lack
of other functionality such as thresholding and dis-
carding of certain patterns, led us to extend the lib-
rary with Colibri Core,2 a pattern modelling lib-
rary. Colibri Core resolves the limitations, and to-
gether the libraries are a complete language model
that handles skipgrams: cococpyp.3

Each model is run for 50 iterations (without
an explicit burn-in phase), with hyperparameters
θ = 1.0 and γ = 0.8. The hyperparameters are
resampled every 30 iterations with slice sampling
(Walker, 2007). We test each model on different
test sets, and we collect their intrinsic perform-
ance by means of perplexity. Words in the test set

1https://github.com/redpony/cpyp
2http://proycon.github.io/

colibri-core/
3https://github.com/naiaden/cococpyp

Test ngram limited ↓% full ↓%
1bw 171 141 6 199 -16
jrc 1232 994 19 728 41
emea 1749 1304 25 1069 39
wp 724 635 12 542 25

Table 1: Results of the full and limited back-
off systems, trained on 1bw, tested on 1bw (in-
domain), and cross-domain sets jrc, emea, and wp.
↓% is the relative reduction in perplexity for the
column to its left.

Comp. ngram limited ↓% full ↓%
a 1280 1116 13 828 35
b 847 785 7 639 24
c 1501 1272 15 946 37
d 1535 1306 15 975 36
f 708 647 9 572 19
g 479 445 7 440 8
h 1016 916 10 718 29
i 1075 990 8 783 27
j 469 434 7 442 6
k 284 253 11 333 -17
l 726 639 12 629 13
m 578 538 7 512 11
n 895 794 11 664 26
o 1017 887 13 833 18

Table 2: Results of the full and limited backoff
systems, trained on Mediargus, tested on CGN.
Components range from spontaneous (a) to non-
spontaneous (o), with components j (news reports)
and k (news) being in-domain for the training
corpus, and the other components being out-of-
domain. ↓% is the relative reduction in perplexity
for the column to its left.

that were unseen in the training data are ignored in
computing the perplexity on test data.

6 Results

The results are reported in terms of perplexity, in
Table 1 for English, and in Table 2 for Flemish-
Dutch. We computed baseline perplexity scores
with SRILM (Stolcke, 2002) for 1bw. We used
an interpolated modified Kneser-Ney language
model, with Good-Turing discounting to mimic
our thresholding options. Although the models
are not comparable, this is arguably the closest ap-
proximation in SRILM of our HPYLM. For 1bw
the baseline is 147; for jrc, emea, and wp, 1391,
1430, and 1403 respectively. In some cases the
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baseline is better compared to the ngram back-
off strategy. With adding skipgrams we always
outperform the baseline, especially on the out-of-
domain test sets.

We find that with large data sets adding skip-
grams lowers the perplexity, for both languages, in
both within- and cross-domain experiments. For
English, we observe absolute perplexity reduc-
tions up to 680 (a relative reduction of 39%) in
a cross-domain setting, and absolute perplexity
reductions of 10 (relative reduction of 6%) in a
within-domain setting. For Flemish-Dutch we ob-
serve similar results with absolute reductions up
to 560 (relative reduction of 36%) and 31 (relative
reduction 11%), respectively.

If we consider the three backoff strategies in-
dividually, we can see the following effects on
both English and Flemish-Dutch data. In a within-
domain experiment limited backoff is the best
strategy. In a cross-domain setting, the full back-
off strategy yields the lowest perplexity and largest
perplexity reductions. In the first case, stopping
the backoff when there is a pattern probability
for the word and its context yields a more certain
probability than when the probability is diffused
by more uncertain backoff probabilities.

Upon inspection of the model sizes, we observe
that the skipgram model contains almost five times
as many parameters as the n-gram model. This
difference is explained by the addition of skip-
grams of length 3 and 4, and the bigrams and
unigrams derived from these skipgrams. Each 4-
gram can be deconstructed into three skipgrams
of length 4, and one of these skipgrams yields a
skipgram of length 3. Tests with ngram backoff
on skipgram models show that the performance is
worse compared to ngram backoff in pure n-gram
models because of the extra bigrams and unigrams
(ngram ignores the skipgrams). Yet, the exper-
imental results also indicate that with sufficient
data, skipgram models outperform n-gram mod-
els. Because the difference in parameters is only
noticeable in terms of memory, and it hardly im-
pacts the run-time, this makes the skipgram model
the favourable model.

7 Conclusions

In this paper we showed that by adding skipgrams,
a straightforward but powerful generalisation of n-
gram word patterns, we can reduce the perplex-
ity of a Bayesian language model, especially in a

cross-domain language modelling task. By chan-
ging the backoff strategy we can also improve on
a within-domain task. We found this effect in two
languages.
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