
International Conference RANLP 2009 - Borovets, Bulgaria, pages 71–75

From Partial toward Full Parsing
Heshaam Faili

Department of Electrical and Computer Engineering
University of Tehran

Tehran, Iran
hfaili@ut.ac.ir

Abstract

Full-Parsing systems able to analyze sentences robustly and
completely at an appropriate accuracy can be useful in many
computer applications like information retrieval and machine
translation systems. Increasing the domain of locality by using
tree-adjoining-grammars (TAG) caused some researchers to use it
as a modeling formalism in their language application. But
parsing with a rich grammar like TAG faces two main obstacles:
low parsing speed and a lot of ambiguous syntactical parses. In
order to decrease the parse time and these ambiguities, we use an
idea of combining statistical chunker based on TAG formalism,
with a heuristically rule-based search method to achieve the full
parses. The partial parses induced from statistical chunker are
basically resulted from a system named supertagger, and are
followed by two different phases: error detection and error
correction, which in each phase, different completion heuristics
apply on the partial parses. The experiments on Penn Treebank
show that by using a trained probability model considerable
improvement in full-parsing rate is achieved.

Keywords
Full Parsing, Partial Parsing, Tree Adjoining Grammar,
SuperTagging

1. Introduction
In many applications like information retrieval and Rule-
based machine translation systems, accurate deep parse
structure of a sentence is required; hence a lot of research is
being done on introducing methods to produce deep
hierarchical syntactical structure of a given natural
language sentence [6]. Over the last decade, there has been
a great increase in the performance of parsers. Current
parsers achieve to a score of about 90% when measuring
just the accuracy of choosing these dependencies [4, 5 and
7]. The choice of formalism does not change the parsers’
accuracy significantly, because in all approaches word-
word dependencies are used as the only underlying
information. But because of the inherent ambiguity in the
natural languages, achieving to a full parses of a sentence is
a big challenges.
Tree-adjoining-grammars (TAG) have some specific
features, which are interested by researchers to be used as
modeling formalisms in their language application. The
parsing methods based on this formalism involve different
problems such as a lot of ambiguities and low parsing

speed. One of the main parsing algorithms based on TAG
formalism is presented by Van Noord [10] which runs in
O(n6) time complexity. This complexity in a real-size
grammar (like XTAG [9]) is not acceptable, especially for
a more complicated system like information retrieval and
machine translation systems. Also, because of the
ambiguities in the resulted parses, the output of this
algorithm must be disambiguated by another approach.
To overcome the mentioned problems, we use an
alternative approach which is based on statistical partial
parsers. One of the partial parser systems which alleviate
the TAG formalism problems in time complexity and
ambiguity is named supertagging, proposed by (Bangalore
and Joshi [2]). The idea behind supertagging is to extend
the notion of “tag” from a part of speech to a tag that
represents rich syntactic information. Each supertag can be
thought as an element in TAG formalism.
They also introduced “lightweight” parsing which follows
the supertagging. If words in a string can be tagged with
this rich syntactic information, then Bangalore and Joshi
claim, the remaining step of determining the actual
syntactic structure is trivial [2]. They propose a
“lightweight dependency parser” (LDA) which is a
heuristically-driven, very simple program that creates a
dependency structure from the supertags of the words.
While the supertagging only requires a notion of
syntactically relevant features, the stage of determining a
syntactic structure requires a grammar that uses these
syntactically relevant features. Given the correct supertags,
LDA performs with an unlabeled accuracy of about 95%.
Although supertagging is a worthwhile notion pursuing the
full-parsing, but approaching to a full-parse by the
proposed lightweight parser has a major obstacle.
Bangalore announced the accuracy of supertagging to be
about 92% based on the experiments done on Penn
Treebank [1]. This accuracy is not satisfiable to generate a
complete deep structure of the sentence by using
lightweight dependency analyzer. In a sentence with 15-
words length, LDA parser determines the correct full-parse
of the sentence with the probability about 95% * (0.92)15 =
27.5%. For longer sentences, lower accuracy has been
achieved. Nasr and Rambow try to improve the accuracy
by changing the heuristic dependency linker with a non-
lexical chart parser [8]. Like the original supertagger, their

71

method still has no access to lexical information and only
information about the supertags is combined with a chart
parser. They cut the error rate of the heuristic LDA by
more than half.
In this paper, we present a full-parsing method by
combining different heuristics with lightweight shallow
parser. Our approach is still in the spirit of Bangalore’s
work in the sense that lexical information is only used
during supertagging. The idea of this paper is based on
finding the erroneous supertags which are most probable to
be wrongly assigned, and then replacing them with proper
candidates.

2. Full Parsing
Although full parsing based on fully correct supertags is
very time-efficient [8], but acquiring the fully correct
supertagging itself is the main obstacle. The probability of
assigning correct supertag set S={s1,s2,…,sn} to all words
of a sentence W={w1,w2,…,wn} is equal to product of the
probability of correct assigning a single supertag si to i-th
word wi (i.e. p(si | wi)). Based on the experiments done by
Bangalore, the probability p(si | wi) is equal to 92.2%. So
full parsing probability by linking all supertags resulted
from supertagging process for a sentence with 15 words
length is equal almost be 29.5% and with 25 words near to
13.1%. To overcome this problem, n-best supertagging that
assign n-best supertags to each word was proposed by [1].
Based on this approach, by setting n = 3, supertagging
correctness increased to 97.1% and accordingly the rate of
fully-parsing for whole words in a sentence improved
efficiently. (e.g. 74.5% for sentences with 15 words length
and 64.3% for sentences with 25 words length). But using
n-best supertags followed by lightweight analyzer is equal
to find a combination of these supertags which satisfies all
available syntactical constraints on TAG. For 3-best
supertagger in 15 words length sentence, there are 315 =
14,348,907 combinations which should be checked in order
to choose the correct combination. In [8] a dynamic
programming method to resolve this complexity is used.
This problem can be seen as a search problem in the state
space of all supertags assigned to the words of the
sentence. The initial state is a combination of those tags
which are assigned by supertagger and the goal states are
those which LDA succeed to make a fully dependency
linkage between the supertags and hence in those states
full-syntactic structure of the sentence is generated. Hill-
climbing approach is chosen for search method and the
accuracy of LDA is calculated as a heuristic performance
measure of problem.

3. Search in the Supertag State Space
Same as other local search problems, the search can be
divided into two distinct phases: error detection and

correction. In fact, instead of associating n-best supertag to
every word of the sentence, the most probable erroneous
supertags resulted from n-best supertagging are detected
and substituted with proper alternatives which are proposed
by an error correction algorithm.
In each non-goal state (i.e. partial parse), error nodes are
supertags that are wrongly assigned and therefore they are
the cause of preventing LDA to produce exactly one
dependency diagram as the correct full parse tree of the
sentence. The result of LDA is a dependency diagram
which links all supertags based on its syntactical behavior
[1]. Four our experiments, we gathered 341 sentences,
which are failed to be parsed by LDA, and analyzed the
failing reasons. In the case of failing LDA to generate the
full connected structure, one of the three cases may happen.
These cases are shown in Table 1. As it’s shown in the
table, different heuristics for detecting the faulty nodes are
demonstrated too. These heuristics show the supertags
which are most probable to be wrong and should to be
replaced with proper candidates.
Table 1. The cases in which supertagger fails to generate the

full syntactic structure

Case 1

The LDA output diagram is not fully connected
graph and it contains multiple partial graphs. In
this case, substitution slots of some supertags
are not filled by other tags. From the total 341
faulty test sentences, this case appears in 172
sentences, that is about 50% of all corpus fails
to be parsed because of this problem.

Proposed
faulty

nodes in
case 1

The partial trees’ root is mostly an erroneous
node, which its supertag should be substituted
to better one (i.e. should to replace with another
supertag which contains more substitution slots
in order to make a link with other partial trees).
Changing this node with proper one could
correct 150 sentences from the total 172 faulty
sentences of this case.

Case 2

Supertags of some words do not participate in
the dependency diagram and so some child
nodes are not included in its parent diagram.
Either footnode or substitution slots are
required to make a link between the orphan
child and parent node. This case appears in
more than 30% of test sentences.

Proposed
faulty

nodes in
case 2

The root node of trees that some of their
children are missed has a large potential to be
wrongly assigned supertag. These missed
children can be seen as slots that are not filled.
In our experiments, the total faulty sentences of
this case have been corrected by changing this
node.

72

Case 3

In the 15% of mentioned faulty test sentences,
the LDA output diagram has cycles in its
dependencies and therefore is not a valid
dependency structure diagram.

Proposed
faulty

nodes in
case 3

In the case of existence any loop in the
diagram, the verb nodes are usually ambiguous
and have a large potential to be erroneous. By
using this heuristic, the full parse structure of
70% of all unparsed sentences of case 3 is
correctly acquired.

In each of the mentioned cases, the noisy nodes are
detected and then replaced with some other supertags
which will be proposed by other heuristics. So, the whole
search for finding the full-parse can be summarized as the
follows:
1- Use supertagger to achieve partial parse
2- Detect the full linkage by using LDA
3- In the case of using full linkage, stop
4- In the case of failure the full parses,

check if one of the three mentioned cases
happened

5- In the case of happening one of the
mentioned cases, replace the faulty node
proposed by error detection heuristic
with a better candidate

6- Go to step 2

4. Error Correction Heuristics
After detecting the erroneous nodes, a list of proper
candidates required to be substituted with the erroneous
supertags. Three heuristics are presented here to propose
the candidates to be replaced with the erroneous nodes,
where each of which improves the full parsing rate and
speed. These heuristics are as follows:

4.1 N-Best Heuristic
In this heuristic, the outputs of n-best supertagger are used
as successor candidates. The n-best supertagger is a
modified version of simple supertagger which proposes n
supertags for each word of the sentence. Suppose that m is
the number of faulty nodes which are detected by the
previously mentioned heuristics and n is the number of n-
best candidates which are predicted by supertagger, so
finding the best combination in this space involves O(mn)
cases. Breath first search (BFS) strategy is used to find the
best match in this state space. That is for each node; all its
successor nodes are generated first and then are evaluated
by LDA as an evaluation function. The search terminated
when the full parse structure of the input sentence is
acquired.

4.2 XTAG-Based Heuristic
In this heuristic, a human-crafted grammar based on tree-
adjoining formalism, named XTAG, is used. XTAG is an

on-going project to develop a wide-coverage grammar for
English using TAG formalism [9]. XTAG uses Lexicalized
TAG, where each lexical item is associated to many
elementary trees which can satisfy its structural constraints.
In this heuristic, these associations between each lexical
item and elementary trees are used as candidates to be
replaced with the detected faulty nodes.
When an error node is detected, other TAGs, which are
associated to those nodes’ lexical in the XTAG grammar
bank, are chosen as a substitution list. XTAG grammar
contains 1226 elementary trees which are categorized into
26 different family trees, and each lexical item especially
verb, associated to more than 10 elementary trees. Thus,
the candidate list to be substituted with erroneous nodes in
this method is much larger than previous one. Therefore,
both the time and performance are much higher than n-best
correction heuristic.

4.3 Trained Probability Model Heuristic
Although n-best is faster than XTAG heuristic, but the
performance of full-parsing is much lower. In the first
method the candidate list for correcting the error nodes is
so shorter than the later one, and thus it needs less time to
search among the combinations. Here a method using a
trained probability model is proposed. In fact, for any
supertags si, sj, the probability of changing a faulty
supertag sj to supertag si (i.e. P(si | sj)) which concludes a
full-parse tree is calculated.
These probabilities are estimated by using maximum
likelihood estimation method with counting the number of
successful changes of faulty supertag (sj) to correct
supertag (si). By using from an annotated corpus of 40,000
sentences and their syntactic parses, these changes are
computed in an iterative fashion. At each iteration, the
sentences are tagged by the supertagger and the correctness
of LDA algorithms is checked by the previously mentioned
error detection heuristics and the erroneous nodes are
detected. The faulty nodes then substituted with other
supertags proposed by a combination of XTAG-based and
10-best heuristics. Each time an error supertag sj is
replaced with supertag si, the resulting parse structure is
evaluated by PARSEVAL metrics [3]. If the result is a
satisfiable full deep structure, the frequency of successful
changing si to sj increases one unit. The whole process of
calculating the probability model P(si | sj) is shown in
figure 1.
The training algorithm is terminated when the changes of
the probabilities after running the experiment on the whole
40,000 sentences become ignorable. That is the total
number of changes in whole probabilities becomes less that
a predefined threshold. In our method, we set this threshold
to be less than 0.05% of all entry values. At the end of
process, all frequencies of changes in any faulty node
should be normalized by using equation (1) in order to get

73

the probability P(sj | si). Having these probabilities, an
ordered list of candidate nodes for any error supertag si is
achieved, which can be used in the error correction
method:

P(si | sj) = count(si, sj) / Σk count(sk, sj) (1)

Figure 1. The whole process of calculating the probability

model P(si | sj)

5. Evaluation
In order to evaluate the proposed methods, 3000 sentences
with their syntactic structure from Penn Treebank are

selected as test corpus. These sentences are completely
different from those that are used in the process of
calculating the changing probabilities.
We divided the test corpus into three different categories
based on the sentence length: the sentences shorter than 16
words, sentences with length between 16 and 25 words and
sentences longer than 25 words1.
The experiments include the evaluation of mentioned
heuristics such as 1-best, 10-best, 25-best, XTAG based
and trained probability model heuristics. In each
experiment, the percentage of full-parsed sentences and
parsing time are computed. Also, in order to evaluate the
resulting full-parse quality, PARSEVAL metrics,
introduced by [3], are calculated. We measure PARSEVAL
metric only for those sentences which have been fully-
parsed successfully.
Figure 2, 3 and 4 show the results of these experiments on
each of the mentioned category. The evaluations show that
considerable improvements both in time and percentage of
full-parsed sentences are achieved by using the trained
probability model heuristic. This method increases the full-
parse rate from the native supertagger (1-best heuristic) by
a factor of 3 in the first category, by a factor of 11 in the
second category and by the factor of 21 in the third
category. That is, the effects of the trained probability
model in long sentences are more than short sentences.
Comparing the mentioned figures, shows that by increasing
the sentence length, the percentage of full-parsing rate and
parsing speed decreases dramatically. Also, in the trained
probability model heuristic, the parsing speed increases
about twice than XTAG-based heuristic, while the full-
parsing rate also increases about 20%.

0

10

20

30

40

50

60

70

80

90

100

1-Best 10 – Best 25 – Best XTAG-based Trained
Probability

Model

Full Parsed (%)
Parse time (s)
Precision (%)
Recall (%)

Figure 2: Experimental results on sentences shorter than 16

words

1 Maximum length of selected sentences is bounded on 45 words.

Shallow Parsing

Supertagger LDA

Error
Case

Error = partial
tree root node

Error = root
node

Error = verb
node

Error Detection

Training Corpus

Partial Parses

Case 1

Case 2

Case 3

Generate a list of
candidates based on

XTAG elementary trees
and 10-best heuristic

Replace the
erroneous

supertag with a
member of list

Shallow Parsing Full-parse
achieved?

No

Yes

Increase the
successful changes

one unit

The whole
changes

ignorable?

Yes

End

No

Calculate P(si | sj) by
using equation (1)

74

0

20

40

60

80

100

120

1-Best 10 – Best 25 – Best XTAG-based Trained
Probability

Model

Full Parsed (%)
Parse time (s)
Precision (%)
Recall (%)

Figure 3: Experimental results on sentences between 16 and

25 words

0

20

40

60

80

100

120

140

160

180

1-Best 10 – Best 25 – Best XTAG-based Trained
Probability

Model

Full Parsed (%)
Parse time (s)
Precision (%)
Recall (%)

Figure 4: Experimental results on sentences longer than 25

words

6. Conclusion
Parsing is the one of the most important phases in many
natural language applications, like information retrieval
and rule-based machine translation systems, where it needs
full-syntactic analysis for the input sentence. Although
using more enriched grammar model, like TAG, is
preferred because of its power in the descriptive model, but
this kind of formalism lacks both in parsing speed and
accuracy.
To overcome these problems, we've taken the benefits of
speed and accuracy of a shallow parsing algorithm named
supertagger. We introduced several heuristics which get the
partial parses as the input and generate the full-parse
structure of the sentence.
Several experiments on different data set selected from
Penn Treebank show that by using error detection
heuristics with a trained probability model to propose
correcting candidates, the full-parsing rate as well as
parsing speed have been improved significantly.

7. References
[1] Bangalore S., Complexity of Lexical Descriptions and its

Relevance to Partial Parsing, PhD thesis, Department of
Computer and Information Sciences, University of
Pennsylvania, 1997.

[2] Bangalore S. and Joshi A., Supertagging: An approach to
almost parsing, Computational Linguistics, 25(2), pp. 237–
266, 1999.

[3] Black, E., Abnery, S., Flickinger, D. and et al., A procedure
for quantitatively comparing the syntactic coverage of
English grammars, DARPA Speech and Natural Language
Workshop, pp. 306-311, 1991.

[4] Clark S., Hockenmaier J., and Steedman M., Building deep
dependency structures with a wide coverage CCG parser. In
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, Philadelphia, Pennsylvania, pp.
327–334, July 2002.

[5] Collins, M., Three generative, lexicalized models for
statistical parsing, In Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics,
Madrid, Spain, July 1997.

[6] Faili, H. and Ghassem-Sani, G., An Application of
Lexicalized Grammars in English-Persian Translation,
Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI 2004), Universidad Politecnica de
Valencia, Spain, pp. 596-600, 2004.

[7] Hockenmaier J. and Steedman M., Generative models for
statistical parsing with combinatory categorial grammar, In
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, Philadelphia, Pennsylvania, pp.
335–342, July 2002.

[8] Nasr A., and Rambow O., supertagging and full parsing, In
Proceedings of the Workshop on Tree Adjoining Grammar
and Related Formalisms (TAG+7), Vancouver, BC, Canada,
2004.

[9] XTAG research group, A Lexicalized Tree Adjoining
Grammar for English, Technical Report IRCS 98-18,
Institute for Research in Cognitive Science, University of
Pennsylvania, pp. 5-10, 1998.

[10] Van Noord G., Head-corner parsing for TAG, In
Computational Intelligence, 10(4), pp. 525–534, 1994.

75

