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Abstract

This paper introduces a method for im-
proving tree edit distance (TED) for tex-
tual entailment. We explore two ways of
improving TED: we extend the standard
TED to use edit operations that apply to
subtrees as well as to single nodes; and
we use the ‘artificial bee colony’ algorithm
(ABC) to estimate the cost of edit oper-
ations for single nodes and subtrees and
to determine thresholds. The preliminary
results of the current work for checking
entailment between two texts are encour-
aging compared with the common bag-of-
words, string edit distance and standard
TED algorithms.

1 Introduction

One key task for natural language systems is to
determine whether one natural language sentence
entails another. Entailment can be defined as a re-
lationship between two sentences where the truth
of one sentence, the entailing expression, forces
the truth of another sentence, what is entailed.
Many natural language processing (NLP) tasks
such as information extraction and question an-
swering have to cope with this notion.
An alternative formulation for the entailment

between two texts is given by the recognising tex-
tual entailment (RTE) paradigm, which contrasts
with the standard definition of entailment above.
Dagan et al. (2005) describe RTE as a task of de-
termining, for two sentences text T and hypothe-
sis H, whether “. . . typically, a human reading T
would infer that H is most likely true.” According
to these authors, entailment holds if the truth of H,
as interpreted by a typical language user, can be
inferred from the meaning of T. This notion of en-
tailment is less rigorous, and less clearly defined,
than the standard notion, but it can be useful for

a number of tasks, and has been investigated very
extensively in recent times.
Tree edit distance (TED), which models T-H

pairs by explicitly transforming T into H via a
minimal cost sequence of editing operations, has
been widely used for this task. Using TED poses
two challenges: the standard three operations (i.e.
deletion, insertion and exchange) apply only to
single nodes, rather than to subtrees; and estimat-
ing a combination of costs for these operations
with threshold(s) is hard when dealing with com-
plex problems. This is because alterations in these
costs or choosing a different combination of them
can lead to drastic changes in TED performance
(Mehdad and Magnini, 2009).
In order to overcome these challenges, we have

extended the standard TED to deal with subtree
operations as well as operations on single nodes.
This allows the algorithm to treat semantically co-
herent parts of the tree as single items, thus allow-
ing for instance entire modifiers (such as prepo-
sitional phrase (PPs)) to be inserted or deleted as
single units. We have also applied the artificial
bee colony (ABC) algorithm (Akay and Karaboga,
2012) to estimate costs both of edit operations
(single node and subtree) and of threshold(s).
The work was carried out as part of an attempt

to build a textual entailment (TE) system for mod-
ern standard Arabic (MSA)(Alabbas, 2011). MSA
poses a number of problems that, while familiar
from other languages, make tasks such as TE par-
ticularly difficult for this language–the lack of di-
acritics in written MSA combines with the com-
plex derivational and inflectional morphology of
the language to produce worse levels of lexical
ambiguity than occur in many other languages; the
combination of free word-order, pro-drop, verb-
less sentences and complex nominals produces
higher levels of syntactic ambiguity than occur
in many other languages; and the combination of
these combinations makes things even worse. We
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have tested our algorithms on a corpus of MSA T-
H pairs. This corpus contains 600 pairs, binary
annotated as ‘yes’ and ‘no’ (a 50%-50% split).
The average length of sentence in this dataset is
25 words per sentence, with some sentences con-
taining 40+ words (see (Alabbas, 2013) for fur-
ther details of this dataset and description of the
methodology used for collecting it). In order to
maintain comparability with work on TE for En-
glish, in Section 4 we have replicated a number of
standard techniques (bag-of-words, Levenshtein
distance on strings, standard TED). These exper-
iments show that the extended version of TED,
ETED, improves the performance of our technique
for Arabic by around 3% in f-score and around
2% in accuracy compared with a number of well-
known techniques. The relative performance of
the standard techniques on our Arabic testset repli-
cates the results reported for these techniques for
English testsets. We have also applied our ETED
to the English RTE2 testset, where it again outper-
forms the standard version of TED.

2 TED for RTE

The idea here is to convert both T and H from nat-
ural language expressions into parse trees through
parsing and then to explicitly transform T’s parse
tree into H’s parse tree, using a sequence of edit
operations (Kouylekov and Magnini, 2005; Bar-
Haim et al., 2007; Harmeling, 2009; Mehdad and
Magnini, 2009; Wang and Manning, 2010; Heil-
man and Smith, 2010; Stern et al., 2012). If a low-
cost transformation sequence can be found then
it may be that T entails H. Dependency parsers
(Kübler et al., 2009) are popular for this task, as
in other NLP areas in recent years, since they al-
low us to be sensitive to the fact that the links in a
dependency tree carry linguistic information about
relations between complex units.
Different sets of operations on trees, using var-

ious types of transformations in order to derive H
from T, have been suggested. Herrera et al. (2005),
for instance, used the notion of tree inclusion
(Kilpeläinen, 1992), which obtained one tree from
another by deleting nodes. Herrera et al. (2006)
and Marsi et al. (2006) used a tree alignment al-
gorithm (Meyers et al., 1996), which produces a
multiple sequence alignment on a set of sequences
over a fixed tree. TED (Zhang and Shasha, 1989;
Klein et al., 2000; Pawlik and Augsten, 2011) is
another example of a transformation-based model

in that it computes the minimum cost sequence of
transformations (e.g. insertion, deletion and ex-
change of nodes) that turns one tree into the other.
To obtain more accurate predictions, it is impor-
tant to define an appropriate inventory of edit op-
erations and assign appropriate costs to the edit
operations during a training stage (Kouylekov and
Magnini, 2005; Harmeling, 2009). For instance,
exchanging a noun with its synonyms or hyper-
nyms should cost less than exchanging it with
an unrelated word. Heilman and Smith (2010)
extended the above mentioned operations (e.g.
move-sibling, relabel-edge, move-subtree, etc.),
since the available edit operations are limited in
capturing certain interesting and prevalent seman-
tic phenomena. Similarly, a heuristic set of 28
edit operations, which include numbers of node-
exchanges and restructuring of the entire parse
tree, is suggested (Harmeling, 2009).
TED-based inference requires the specification

of a cost for each edit operation and a threshold for
the total cost of the edit sequence. Selecting a best
set of costs and a suitable threshold is challeng-
ing. Some researchers have defined costs manu-
ally (Kouylekov and Magnini, 2005), but they are
usually learned automatically (Harmeling, 2009;
Wang and Manning, 2010; Heilman and Smith,
2010; Stern and Dagan, 2011), e.g. Mehdad and
Magnini (2009) have used particle swarm opti-
mization (PSO), which is a stochastic technique
that mimics the social behaviour of bird flocking
and fish schooling (Russell and Cohn, 2012), for
estimating and optimising the cost of each edit op-
eration for TED.

2.1 Standard TED

In this paper we will use Zhang and Shasha
(1989)’s TED algorithm (henceforth, ZS-TED),
which is an efficient technique based on dynamic
programming to calculate the approximate tree
matching for two rooted ordered trees, as a starting
point. Ordered trees are trees in which the left-to-
right order among siblings is significant. Approxi-
mate tree matching allows us to match a complete
tree with just some parts of another tree. There are
three operations, namely deleting, inserting and
exchanging a node, which can transform one or-
dered tree to another. A nonnegative real cost is
associated with each edit operation. These costs
are changed to match the requirements of specific
applications. Deleting a node x means attaching
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its children to the parent of x. Insertion is the in-
verse of deletion, with an inserted node becom-
ing a parent of a consecutive subsequence in the
left-to-right order of its parent. Exchanging a node
alters its label. Detailed presentation of ZS-TED
can be found in (Bille, 2005): the main change
that we make to the basic algorithm is to include
extra tables for recording which operations were
performed rather than simply recording their cost.

2.2 Extended TED
The main weakness of ZS-TED is that it is not able
to perform transformations on subtrees (i.e. delete
subtree, insert subtree and exchange subtree). In
order to make ZS-TED deal with subtree opera-
tions, we need to follow two stages:

1. Run ZS-TED (without entire subtree opera-
tions) and compute the standard alignment from
the results;

2. Go over the alignment and group subtrees op-
erations (e.g. every consecutive k deletions that
correspond to an entire subtree reduces the edit
distance score by α × k + β for any desired α

and β in interval [0,1]).

We have applied this technique on Zhang and
Shasha (1989)’s O(n4) algorithm but it will also
work for Klein (1998)’sO(n3logn) algorithm, De-
maine et al. (2009)’s O(n3) algorithm or Pawlik
and Augsten (2011)’s O(n3) algorithm. The ad-
ditional time cost of O(n2) can be ignored since
it is less than the time cost for any available TED
algorithm.

2.2.1 Find a sequence of single operations
In order to find the sequence of edit operations that
transforms one tree into another, such as the pair
shown in Figure 1, the computation proceeds as
follows: create a new matrix called δ2, which has
the same dimensions as the matrix δ which is used
to store the forest costs during ZS-TED to store the
sequence of edit operations as a list. In particu-
lar, when the values of δ are computed, the values
of δ2 are computed, by using the edit operation
labels: “i” for an insertion, “d” for deletion, “x”
for exchange and “m” for no operation (matching).
So, the final edit sequence to transform T1 into T2

in Figure 1 is dddmmiiimm.
The final mapping between T1 and T2 is shown

in Figure 1. For each mapping figure the inser-
tion, deletion, matching and exchange operations

are shown with single, double, single dashed and
double dashed outline respectively. The matching
nodes (or subtrees) are linked with dashed arrows.











 







 

 

Figure 1: Standard TED, mapping between T1 and
T2.

2.2.2 Find a sequence of subtree operations
Extending TED to cover subtree operations will
give us more flexibility when comparing trees (es-
pecially linguistic trees). Thus, we have extended
the TED algorithm to allow the standard edit oper-
ations (insert, delete and exchange) to apply both
single nodes and subtrees.
Let Ep=1..L ∈ {“d”, “i”, “x”, “m”} be an edit

operation sequence that transforms T1 into T2 by
applying the technique in Section 2.2.1. Sup-
pose that S1 and S2 are the optimal alignment
for T1 and T2 respectively, when the length of
S1 = S2 = L.
To find the optimal single and subtree edit op-

erations sequence that transform T1 into T2, each
largest sequence of same operation is checked to
see whether it contains subtree(s) or not. Checking
whether such a sequence corresponds to a subtree
depends on the type of edit operation, according
to the following rules: (i) if the operation is “d,”
the sequence is checked on the first tree; (ii) if the
operation is “i,” the sequence is checked on the
second tree; and (iii) otherwise, the sequence is
checked on both trees. After that, if the sequence
of operations corresponds to a subtree, then all the
symbols of the sequence are replaced by “+” ex-
cept the last one (which represents the root of the
subtree). Otherwise, checking starts from a new
sequence as explained below. For instance, let us
consider Eh, ..., Et, where 1 ≤ h < L, 1 <

t ≤ L, h < t, is a sequence of the same edit
operation, i.e. Ek=h..t ∈ {“d”, “i”, “x”, “m”}.
Let us consider h0 = h, we firstly check nodes
S1

h, ..., S1
t and S2

h, ..., S2
t to see whether they or not
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are subtrees. If Ek is “d,” the nodes S1
h, ..., S1

t are
checked, whereas the nodes S2

h, ..., S2
t are checked

when Ek is “i.” Otherwise, the nodes S1
h, ..., S1

t

and S2
h, ..., S2

t are checked. All edit operations
Eh, ..., Et−1 are replaced by “+” when this se-
quence is corresponding to a subtree. Then, we
start checking from the beginning of another se-
quence from the left of the subtree Eh, ..., Et, i.e.
t = h − 1. Otherwise, the checking is applied
with the sequence start from the next position, i.e.
h = h + 1. The checking is continued until h = t.
After that, when the (t − h) sequences that start
with different positions and end with t position do
not contain a subtree, the checking starts from the
beginning with the new sequence, i.e. h = h0 and
t = t− 1. The process is repeated until h = t.
So, the final edit sequence to transform T1 into

T2 in Figure 1 is ++d+m++imm.
The final mapping between T1 and T2 according

to the extended TED is shown in Figure 2.











 







 

 

Figure 2: Extended TED with subtree operations,
mapping between T1 and T2.

3 Optimisation algorithms

We used two optimisation algorithms, genetic al-
gorithm (GA) and artificial bee colony (ABC), to
estimate the cost of each edit operation (i.e. for
single nodes and for subtrees) and threshold(s)
based on application and type of system output.

3.1 GA
The GA starts with an initial population of solu-
tions (known as chromosomes). In each gener-
ation, solutions from the current population are
taken and used to form a new population by modi-
fying the selected solutions’ genome (recombined
and possibly randomly mutated). This is moti-
vated by a hope that the new population will be
better than the old one. Solutions which are se-
lected to form new solutions (offspring) are se-

lected according to their fitness–the more suitable
they are the more chances they have to reproduce.
The algorithm terminates when either a maximum
number of generations has been produced, or a
satisfactory fitness level has been reached for the
population. The main steps of the algorithm are
shown in Algorithm 1.

Algorithm 1 The basic algorithm for GA.
1: Initialise population;
2: repeat
3: Evaluation;
4: Reproduction;
5: Crossover;
6: Mutation;
7: until (termination conditions are met);

3.2 ABC algorithm
In the ABC algorithm, the colony of artificial bees
consists of three groups. First, employed bees go-
ing to the food source (a possible solution to the
problem to be optimised) that they have visited
previously. Second, onlookers waiting to choose
a food source. Third, scouts carrying out random
search. The first half of the colony consists of
the employed artificial bees and the second half
includes the onlookers and scouts. The number
of employed bees is equal to the number of food
sources. The employed bee of an abandoned food
source becomes a scout. The main steps of the al-
gorithm are shown in Algorithm 2.
ABC follows three steps during each cycle:

(i) moving both the employed and onlooker bees
onto the food sources; (ii) calculating their nectar
amounts (fitness value); and (iii) determining the
scout bees and then moving them randomly onto
the possible food sources.
The ABC algorithm has been widely used in

many optimisation applications, since it is easy to
implement and has fewer control parameters.

4 Experimental results

To check the effectiveness of the extended TED
with subtree operations, ETED, we used it to
check the entailment between T-H Arabic pairs of
text snippets and compared its results with a sim-
ple bag-of-words, Levenshtein distance and ZS-
TED on the same set of pairs.

4.1 Systems
We have investigated different approaches that can
be divided into two groups as follow.
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Algorithm 2 Pseudo-code of the ABC algorithm (Akay and Karaboga, 2012).
SN size of population.
D number of optimisation parameters.
xij solution i,j, i = 1 ...SN, j = 1 ...D
1: Initialise the population of solutions xi,j , i = 1...SN, j = 1...D, triali = 0;
2: Evaluate the population;
3: cycle = 1;
4: repeat
5: Produce new solutions vij for the employed bees (using vij = xij + φij(xij − xkj), where k ∈ {1, ..., SN} and φij is
a random number between [-1,1]) and evaluate them;

6: Apply the greedy selection process for the employed bees (if the new solution vij has an equal or better nectar (fitness)
than the old source, it is replaced with the old one in the memory. Otherwise, the old one is retained in the memory);

7: Calculate the probability values pi = fiti/
∑SN

i=1
fiti for the solutions xi;

8: Produce the new solutions vij for the onlookers from the solutions xi selected depending on pi and evaluate them;
9: Apply the greedy selection process for the onlookers;
10: Determine the abandoned solution for the scout, if exists, and replace it with a new randomly produced solution xi by

xj
i= xj

min+rand[0,1](x
j
max-xj

min);
11: Memorise the best solution achieved so far;
12: cycle = cycle+1;
13: until (cycle = Maximum Cycle Number);

Surface string similarity approaches
We tested the following approaches:

BoW: this approach uses the bag-of-words,
which measures the similarity between T and H as
a number of common words between them (either
in surface forms or lemma forms), divided by the
length of H, when the highest similarity is better.

LD1: this approach uses the Levenshtein dis-
tance with 0.5, 1, 1.5 for cost of deleting, inserting
and exchanging a word respectively.

LD2: the same as for LD1 except that the cost of
exchanging non-identical words is the Levenshtein
distance between the two words (with lower costs
for vowels) divided by the length of the longer of
the two words (derived and inflected forms of Ara-
bic words tend to share the same consonants, at
least in the root, so this provides a very approxi-
mate solution to the task of determining whether
two forms correspond to the same lexical item).

Syntactic similarity approaches
These approaches follow three steps:

1. each sentence is preprocessed by a tagger and
a parser in order to convert them to depen-
dency trees, using a combination of taggers
(i.e. AMIRA (Diab, 2009), MADA (Habash
et al., 2009) and maximum-likelihood (MXL)
tagger (Ramsay and Sabtan, 2009)) and parsers
(i.e. MALTParser (Nivre et al., 2007) andMST-
Parser (McDonald et al., 2006)), which give
around 85% for labelled accuracy (Alabbas and
Ramsay, 2012; Alabbas and Ramsay, 2011),

which is the best result we have seen for the
Penn Arabic treebank (PATB). We use these
combinations in series of experiments which in-
volve;

2. pairs of dependency trees are matched using the
ZS-TED/ETED to obtain a score for the pair;

3. either one threshold (for simple entails/fails-to-
entail tests or two (for entails/unknown/fails-to-
entail tests) are used to determine whether this
score should lead to a particular judgement.

We tested the following approaches:

ZS-TED1: this system uses ZS-TED with a
manually determined set of fixed costs. The cost
of deleting a node, inserting a node or exchanging
a node are 0, 10 and 10 respectively.

ZS-TED2: this system uses ZS-TED with a
manually determined intuition-based set of costs
that depend on a set of stopwords and on sets of
synonyms and hypernyms, obtained from Arabic
WordNet (AWN) (Black et al., 2006), as explained
in Figure 3 (column A). These costs are an up-
dated version of the costs used by Punyakanok et
al. (2004).

ZS-TED+GA: this system uses a GA to es-
timate the costs of edit single operations and
threshold(s) for ZS-TED. The chromosome for
binary decision output is {cost of deleting a
node, cost of inserting a node, cost of exchang-
ing a node, threshold}, and the fitness is a*f-
score+b*accuracy, where a and b are real numbers
in the interval [0,1]. Providing different values for
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a and b makes it possible to optimise the system
for different applications–in the experiments be-
low a is 0.6 and b is 0.4, which effectively puts
more emphasis on precision than on recall, but for
other tasks different values could be used. For
three-way decisions, the chromosome is the same
as for binary decisions except that we add a sec-
ond threshold, and the fitness is simply the f-score.
We used the steady state GA with the following
settings: 40 chromosomes as population size, uni-
form crossover (UX), Gaussian mutation and max-
imum number of generations is 100.

ZS-TED+ABC: the same as ZS-TED+GA ex-
cept using ABC instead of GA as the optimisation
algorithm. We used the ABC algorithm with the
following settings: 40 as the colony size and the
maximum number of cycles for foraging is 100.

ETED1: this system uses ETED with manually
assigned costs. The costs for single nodes are the
same for the ZS-TED1 experiment and the costs
for subtrees are half the sum of the costs of their
parts.

ETED2: this system uses ETED with the
intuition-based costs for single nodes given in Fig-
ure 3 (column A) and the costs for subtrees given
in Figure 3 (column B).

ETED+ABC: this system uses the ABC algo-
rithm to estimate the costs of edit single opera-
tions and threshold(s) for ETED. For binary de-
cision output, the chromosome is {cost of delet-
ing a node, cost of inserting a node, cost of ex-
changing a node, multiplier for the sum of the
costs of the deletions in a deleted subtree, multi-
plier for the sum of the costs of the insertions in
an inserted subtree, multiplier for the sum of the
costs of the exchanges in an exchanged subtree,
threshold}. For three-way decisions the chromo-
some also contains the second threshold. For both
cases the fitness is as for ZS-TED+GA. We do not
include GA results for ETED, as extensive com-
parison of the standard GA algorithm and ABC on
the ZS-TED experiments shows that ABC consis-
tently produces better results for the same initial
seeds and the same number of iterations.
The BoW algorithm and the basic string-edit al-

gorithm are supplemented by the first two of the
three procedures listed below and the others by all
three, to ensure that we get the best possible per-
formance at each stage:

• use AWN, OpenOffice Arabic dictionary and
others as a lexical resource in order to take ac-
count of synonymy, antonym and hyponymy re-
lations when comparing two words and when
calculating the cost of an edit;

• take into consideration the POS tag when com-
paring two similar words (i.e. they should have
the same POS tag);

• use a list of stopwords that contains some of
the commonest Arabic words, which are treated
specially when comparing words (e.g. by using
different edit costs for them in distance-based
approaches).

4.2 Results
We carried out experiments using the approaches
above with two types of decisions as below.

Simple binary decision (‘yes’ and ‘no’): T en-
tails H when the cost of matching is less (more in
case of bag-of-words) than a threshold. The re-
sults of this experiments, in terms of precision (P),
recall (R) and f-score (F) for ‘yes’ class and accu-
racy (Acc.), are shown in Table 1. ETED shows
a substantial improvement over bag-of-words and
Levenshtein distance (around 19% in f-score and
6% in total accuracy) and over ZS-TED (around
2% in f-score and 2% in total accuracy).
Although we are primarily interested in Arabic,

we have carried out parallel sets of experiments on
the English RTE2 parsed testset,1 using the Prince-
ton WordNet (PWN) as a lexical resource, with
the input text converted to dependency trees us-
ing Minipar (Lin, 1998). The pattern in Table 1
for English is similar to that for Arabic. ZS-TED
is better than bag-of-words, ETED is a further im-
provement over ZS-TED.

Making a three-way decision (‘yes,’ ‘unknown’
and ‘no’ (not ‘contradicts’) ): for this task we
use two thresholds, one to trigger a positive an-
swer if the cost of matching is lower than the lower
threshold (exceeds the higher one for the bag-of-
words algorithm) and the other to trigger a neg-
ative answer if the cost of matching exceeds the
higher one (mutatis mutandis for bag-of-words).
Otherwise, the result will be ‘unknown.’ The rea-
son for making a three-way decision is to drive
systems to make more precise distinctions. There
is a difference between knowing that H does not

1http://u.cs.biu.ac.il/~nlp/RTE2/Datasets/RTE-2\
%20Preprocessed\%20Datasets.html
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Cost (A) Single node (B) Subtree (more than one node)
Delete if X is a stop word =5, 0

else =7
Insert if Y is a stop word =5, double the sum of the costs of its parts

else =100
Exchange if X subsumes Y =0, if a subtree S1 is identical to a subtree S2=0

if X is a stop word =5, else half the sum of the costs of its parts
if Y subsumes or contradicts X=100
else =50

Figure 3: Intuition-based edit operation costs for the systems ZS-TED2 and ETED1 (X in T , Y in H).

Binary decision Three-way decision
Dataset Approach Pyes Ryes Fyes Acc. Fyes× 0.6+ Acc.× 0.4 P R F

ArbDS

BoW 63.6% 43.7% 0.518 59.3% 0.548 59.0 % 57.3% 0.581
LD1 64.7% 44% 0.524 60% 0.554 61.4% 58.0% 0.597
LD2 65% 47.7% 0.550 61% 0.574 62.9% 58.3 % 0.605
ZS-TED1 57.7% 64.7% 0.61 58.7% 0.601 64.3% 58.4% 0.612
ZS-TED2 61.6% 73.7% 0.671 63.8% 0.658 64.8% 58.3% 0.614
ZS-TED+GA 59.2% 92% 0.721 64.3% 0.690 65.5 % 58.6 % 0.619
ZS-TED+ABC 60.1% 91% 0.724 65.3% 0.696 67.8 % 58.2 % 0.626
ETED1 59% 65.7% 0.621 60% 0.613 65.3% 58.3% 0.616
ETED2 63.2% 75% 0.686 65.7% 0.674 66.7% 60% 0.632
ETED+ABC 61.5% 92.7% 0.739 67.3% 0.713 70.7% 62.4% 0.663

RTE2
BoW 53.1% 49.9% 0.514 52.9% 0.520 50.8% 48.3% 0.495
ZS-TED2 52.9% 62.5% 0.573 53.5% 0.558 52.3% 50.2% 0.512
ETED2 54.2% 66.6% 0.598 55.2% 0.580 54.3% 52.7% 0.535
ETED+ABC 55.4% 70.1% 0.619 56.8% 0.599 55.7% 56.1% 0.559

Table 1: Comparison between ETED, simple bag-of-words, Levenshtein distance and ZS-TED.

entail T and not knowing whether it does or not.
Note that answering ‘no’ here means “I believe
that H does not entail T ”, not “I believe that H

contradicts T .”
The results of this experiment, in terms of pre-

cision, recall and f-score for ‘yes’ class, are shown
in Table 1. Again, ETED shows a worthwhile im-
provement bag-of-words and Levenshtein distance
(around 6% in f-score) and over ZS-TED (around
4% in f-score).

5 Summary

We have described an extended version of tree edit
distance (TED) that allows operations (i.e. delete,
insert and exchange) both on single nodes and on
subtrees. The extended TED with subtree opera-
tions, ETED, is more effective and flexible than
the ZS-TED, especially for applications that pay
attention to relations among nodes (e.g. in lin-
guistic trees, deleting a modifier subtree should be
cheaper than the sum of deleting its components
individually).
We have also investigated the use of different

optimisation algorithms, and have shown that us-
ing these produces better performance than setting
the costs of edit operations by hand, and that using
the ABC algorithm produces better results for the

same amount of effort as traditional GAs.
The current findings, while preliminary, are

quite encouraging. The fact that the results on
our original testset, particularly the improvement
in f-score, were replicated for a testset where we
had no control over the parser that was used to
produce dependency trees from the T-H pairs pro-
vides some evidence for the robustness of the ap-
proach. We anticipate that in both cases having a
more accurate parser (our parser for Arabic attains
around 85% accuracy on the PATB, Minipar is re-
ported to attain about 80% on the Suzanne corpus)
would improve the performance of both ZS-TED
and ETED.
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