
Proceedings of Recent Advances in Natural Language Processing, pages 261–269,
Hissar, Bulgaria, 7-13 September 2013.

Temporal Relation Classification in Persian and English Contexts 

Mahbaneh Eshaghzadeh Torbati 

Department of Computer Engineering, 

Sharif University of Technology, 

 Tehran, Iran  

Mahbaneh.eshaghzadeh@gmail.com 

Gholamreza Ghassem-sani 

Department of Computer Engineering, 

 Sharif University of Technology, 

 Tehran, Iran  

sani@sharif.edu 

Seyed Abolghasem  

Mirroshandel 

Faculty of Engineering, 

 University of Guilan, 

 Rasht, Iran 

mirroshandel@guilan.ac.ir 

Yadollah Yaghoobzadeh 

Department of Computer  

Engineering, 

 Sharif University of  

Technology, Tehran, Iran  

yaghoobzadeh@ce.sharif.edu 

Negin Karimi Hosseini 

School of Computer Science, 

Faculty of Information Sci-

ence & Technology, Univer-

siti Kebangsaan Malaysia 

Negin62_k@yahoo.com 
 

Abstract 

This paper introduces the first pattern-based 

Persian Temporal Relation Classifier (PTRC) 

that finds the type of temporal relations 

between pairs of events in the Persian texts. 

The proposed system uses support vector 

machines (SVMs) equipped by combinations 

of simple, convolution tree, and string 

subsequence kernels (SSK). In order to 

evaluate the algorithm, we have developed a 

Persian TimeBank (PTB) corpus. PTRC not 

only increases the performance of the 
classification by applying new features and 

SSK, but also alleviates the probable adverse 

effects of the Free Word Orderness (FWO) of 

Persian on temporal relation classification. We 

have also applied our proposed algorithm to 

two standard corpora on English (i.e., 

TimeBank and TempEval-2) to measure the 

efficiency of the new features and SSK. The 

experiments show the accuracies of 65.6%, 

59.53%, 50.2%, and 62.17% on an augmented 

version of PTB, TimeBank, tasks E and F of 

TempEval-2, respectively. Consequently, we 
have achieved the third best result on 

TimeBank, and the second best result on the 

task F of TempEval-2. 

1 Introduction 

The goal in temporal relation classification is to 

find the temporal ordering between temporal 
entities of the input text. As a result, these 

relations can be used in applications such as 

question answering and summarization systems.  

In general, temporal relation classification is the 
task of determining when an event/time 

expression has taken place with respect to some 

other event/time expressions. In this study, we 

only try to find these relations between events, 

not between events and time expressions.  
In temporal corpora that have been created so 

far, different temporal relation classes have been 

considered. In TimeBank (Pustejovsky et al., 

2003), the first corpus that has changed the 

research trend towards machine learning 

methods, there are six different temporal 

relations, namely SIMULTANEOUS, INCLUDES, 

BEFORE, IBEFORE, BEGINS, and ENDS. On the 

other hand, in TempEval-1 (Verhagen et al., 

2007) and TempEval-2 (Verhagen et al., 2010), 
the temporal relations are BEFORE, OVERLAP, 

AFTER, BEFORE-OR-OVERLAP, OVERLAP-OR-

AFTER, and VAGUE. 

Despite the multitude of speakers of Persian 
(Bateni, 1995), there has not existed any corpus 

tagged with temporal relations in Persian yet. 

Thus, as the first step, events and its attributes 

were tagged in the PTB corpus (Yaghoobzadeh et 

al., 2012). We have continued their work by 

annotating temporal relations between tagged 

events and Signals, manually and based on an 
adapted version of the ISO-TimeML guideline 

(Pustejovsky et al., 2010). 

In the second step, our goal has been designing a 
system that classifies temporal relations in 

Persian texts. Considering that Free Word 

Orderness (FWO) could have a negative impact 

on classification, we have aimed to design our 
Persian Temporal Relation Classifier (PTRC) in 

a way that prevents side-effects as much as 

possible. Thus, a simple kernel was applied to a 
group of lexical and semantic features that were 

inherently resistant against FWO. Then, 

according to the efficiency of dependency 
relations in temporal classification, as well as 

their robustness and stability in dealing with 

FWO, for each sentence two dependency-based 
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tree structures were built. In addition, two 

different convolution tree kernels with various 

weighting methods were applied to them 

subsequently. Finally, a novel FWO-resistant 
kernel named string subsequent kernel (SSK) 

was applied to aforementioned structures.  

In the third step, in order to further evaluate the 
efficiency of the new features and SSK in 

temporal classification, PTRC was applied to 

TimeBank and tasks E and F of TempEval-2.  
The remainder of this paper is as follows: 

Section 2 is about temporal classification 

methods. Section 3 explains some challenges in 

Persian, and accordingly Section 4 represents the 
solution for tackling such difficulties. Section 5 

includes the explanation of proposed system. 

Finally, in Sections 6 and 7, the results of the 
experiments and our conclusion are reported. 

2 Related work  

One of the most widely used temporal logics, 
which is the foundation of the most existing 

achievements related to temporal relation 

classification, was proposed by Allen (1984). 
Various rule-based studies were conducted based 

on 13 temporal relations defined between 

intervals in this logic. By creation of different 

temporal corpora, the research trend turned into 
machine learning methods, which so far achieved 

the best results in this regard. 

Among the outstanding methods performed on 
TimeBank, we can report four researches by 

(Lapata and Lascarides, 2006), (Chambers et al., 

2007), and (Mirroshandel et al., 2011a, b). The 
first method extracts novel syntactic features in 

an ensemble classification method (Lapata and 

Lascarides, 2006). They have simplified the 

problem by restricting the diversity of temporal 
classes. In the second method, a two-stage SVM-

based classification technique was proposed, in 

which event and attribute extraction in addition 
to temporal relation classification were executed 

(Chambers et al., 2007). Mirroshandel et al. 

(2011a, b) showed that the parse tree structures 
can be used as informative features in the 

temporal classification process. By applying 

convolution tree kernels to constituent and 

dependency parse trees, they developed two 
separated systems. Moreover, Mirroshandel and 

Ghassem-Sani (2010) have applied a 

bootstrapping method to their system and 
outperformed all related works.  

In TempEval workshops, systems with more 

innovative classifiers were presented. For 

instance, a classifier named Conditional Random 

Field (CRF) algorithm was applied in both 

(Kolya et al., 2010) and (Llorens et al., 2010). 

The system presented in (Yoshikawa et al., 2009) 
can be considered as the first advent of Markov 

Logic Network (MLN) in temporal classification 

participated in the TempEval-1 competition. Ha 
et al. (2010) also achieved the best accuracy for 

Task F in TempEval-2 by use of MLN.  

3 Persian Language Challenges 

3.1 Compound Verbs and Free Word 

Orderness 

Persian compound verbs are a kind of multiword 

light verb construction that still has remained as 
one of Persian challenges in NLP tasks (Rasooli 

et al., 2011). The complexity is due to the variety 

in count and type of nonverbal elements, in 

addition to syntactic flexibility such as unlimited 
word distance between the light verb and its 

components. Delxor kardan (to annoy), talâq 

dâdan (to divorce), and pas dâdan (to return) are 
some examples of compound verbs in Persian. 

Although formal sentences in Persian have the 

SOV structure, it is also a free word order 
language, in which the sentential constituents can 

be arbitrarily moved around in the sentence.  

3.2 Tackling Persian Challenges 

The task of temporal relation classification in 

Persian is more complicated than in other 
languages such as English. High Frequency of 

compound verbs and their by-product noun and 

adjective phrases in Persian, makes the feature 
extraction more complex. Fortunately, by the 

multiword annotation method that has been 

performed on PTB, feature extraction and 

dependency tree pruning (to be discussed in 
Section 5) have become straightforward. 

Furthermore, the syntactic feature efficiency can 

be devalued, due to the existence of FWO in 
sentence structures. Hence, in order to alleviate 

the adverse impact of FWO, a combination of 

three FWO-resistant kernels has been employed 
in the SVM classifier. 

The first kernel, named Ksimple, is a linear kernel 

that neutralizes the FWO side-effects by 

exploiting a collection of lexical and semantic 
features. These features are inherently stable 

against FWO. The second group of kernels 

consists of two weighted convolution tree kernels 
applied to two tree structures constructed and 

valued based on dependency relations and POS 

tags of sentence elements. These kernels take 
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advantage of both dependency structures and a 

bi-gram estimation of tree-constructing features. 

By utilization of dependency relations and a tree 

sorting method, the FWO side-effects can be 
eliminated from these kernels. The third kernel is 

known as a string subsequence kernel (SSK) that 

evaluates the identical sub-strings of the tree 
paths joining the events involved in temporal 

relations. This kernel is being used in temporal 

classification for the first time and since it is 
operated on a dependency-based path, it is 

independent of sentence structure and FWO 

problem. In the following section, each kernel 

group will be discussed in more detail. 

4 Proposed Features and Kernels 

4.1 KSimple kernel and relevant features 

In this section the FWO-resistant feature set for 

both Persian and English systems as well as the 
KSimple kernel are discussed.  

Features: We divided features into three 

categories of Event-based, Temporal-Relation 
(TR)-based, and governing-based features. All 

new features are marked by * in this section. 

Event-based features: These features are 
determined for each event involved in a temporal 

relation. Tense, Mood, Aspect, Modality, 

Polarity, and Class are human annotated features 

extracted from related Persian and English 
corpora. The others, consist of Lemma, Voice* 

and Synset, are extracted automatically. 

Voice*: It is a binary feature, based on verb 
transitivity status, assigned to verbal events. 

Synset: WordNet and FarsNet (Shamsfard et al., 

2010) synsets are categorized based on their part 
of speech tags. Hence, the synset feature is partly 

evaluated incorrectly due to the probable 

dissimilarity of POS tags of events, although 

they are semantically related. Temporal pair of 
(Announced, Denote), which involves adjectival 

and verbal event respectively, is a constructive 

example in this respect. As a solution, we have 
developed this feature and estimate it based on 

all event derivations that exist in WordNet. 

Comparing with Wordnet, there still exist some 

deficiencies in Farsnet. Therefore in Persian 
synset extraction process, words have been 

initially mapped to their English peers in 

Wordnet, and then the required information has 
been extracted from Wordnet database. 

TR-based: These features are defined for each 

temporal relation listed as follows: 
Text order:  This feature refers to the event 

appearance orders in the context. 

Inter/Intra relation: This feature defines whether 

the events are within the same sentence or not. 

Be numerical*: It defines whether the nominal 

events have numerical essence or not. 
Be aspectual*: It defines whether the events have 

a triggering or terminating essence. 

Context topic*: This feature categorizes each 
context in one of the narrative, financial, 

biography, or accidental fields. 

Classified distance*: It classifies the eventual 
distance in the adjacent, near, or far classes. 

Signal lemma*: It contains the lemma of 

involved signal in a temporal relation. 

Signal class*: It classifies the signals into 
temporal classes based on (Mortazavinia, 2010).  

Governing-based features: Clearly, features such 

as Tense, Aspect, Voice, and Mood are verb-
specific and also crucial to temporal 

classification. Therefore, based on “NONE” 

values allocated to their mentioned features, non-
verbal events may be devalued in the 

classification process. In order to alleviate this 

probable impact, these feature values owned by 

governing verb of non-verbal events have been 
selected as substitute for the former ones. The 

governing verbs have been distinguished based 

on dependency relations. 
KSimple kernel: By utilization of this kernel, we 

try to calculate the temporal relation similarity in 

features in section 5.1.  By defining KS, TR, E, f, 

Tf, n, and C as KSimple kernel, temporal relation, 
event, event-based feature, TR-based feature, the 

feature count, and function of counting the 

number of common features of events involved 
in a temporal relation respectively, the KSimple 

kernel can be introduced as follows: 
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It should be noted that equation (1) is the 

manipulated version of the kernel introduced in 
(Mirroshandel et al., 2011b) utilized for the 

involving TR-based features in kernel evaluation. 

4.2 Tree kernels and syntactic feature 

Dependency relation transformation:  The 
dependency relation contributes to utilize a 

mostly FWO-resistant version of sentence 

structure, in temporal classification. In order to 

construct dependency trees, two structures 
named Trans1 and Trans2 proposed in 

(Mirroshandel and Ghassem-Sani, 2011a) have 
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been implemented. Afterwards, a minor 

manipulation for applying tree kernels to inter-

sentence relations has been exerted on the parse 

trees. This process includes combining tree 
structures of each sentence by selecting them as 

children to arbitrary augmented node. The tree 

constructions are shown in figure 1 and 2. 
         Dep. Label                                                POSWord1 

              

Word1           Word2                                  LemmaWord1            Dep. Label 

                                                                                      POSWord2 

 
                                                                                    LemmaWord2 

Figure 1:  Trans1 transformation.  
(Mirroshandel and Ghassem-Sani, 2011a)        

                                                          

         Dep. Label                                                Dep. Label 

              
 Word1           Word2                              POSWord1                        POSWord2 

 

                                                             LemmaWord1          LemmaWord2  

Figure 2:  Trans2 transformation.  

(Mirroshandel and Ghassem-Sani, 2011a)   

  

Trans2 transformation is partially similar to 

constituent parse tree. As a result, it can be 
substituted for the original one in the proposed 

system. However, this structure would partly be 

FWO-affected. In other words, the priority of 

node appearance in a tree is dependent on their 
orders in the sentence. In Trans1, just children 

priority is manipulated by FWO, therefore a 

sorting method, based on ordered list of whole 
tree node values, has solved the problem and 

finally made Trans1 completely FWO-resistant. 

In Trans2, both dependency relation and sentence 
element order assign children of nodes, therefore 

this manipulation has been too complicated to be 

solved by a simple sorting method. Based on 

these explanations, Trans2 still remains FWO-
affected and would be just efficient for English 

temporal classifier. As we will see in Section 6, 

this structure will be automatically omitted 
among best Persian classifiers. 

Tree pruning and weighting methods: It has 

been shown that tree kernels operate more 

efficiently by being applied to pruned trees 
(Zhang et. al., 2006). Based on this observation, 

the path enclosed tree (PET) method has been 

exerted on the desired dependency trees. In this 
method, all the nodes of the path (the path from 

event nodes to their common parent) and the 

ones among this path would be designated as the 
desired portion of tree. 

In the next stage, three various weighting 

methods, inspired by (Mirroshandel et al., 

2011b), are applied to the pruned trees. The first 

method, named Argument Ancestor Path (AAP), 

just considers the nodes on the path enclosed by 

the event nodes, as well as their immediate 
descendants. The second one, named Argument 

Ancestor Path Distance (AAPD), allocates 

weights to all pruned tree nodes based on their 
distance from the nearest ancestor of one of the 

events in the path. The third method, known as 

Argument Distance Kernel (AD) is very similar 
to AAPD except that weights are evaluated based 

on the distance from the nearest event. 

Convolution tree kernels: Sentence structure 

can be referenced as one of the invaluable 
knowledge sources in the NLP applications. 

Convolution tree kernels compute the similarity 

between two trees by counting the number of 
common sub-trees. In our method, among 

various tree kernels, both subset tree (SST) 

(Collins and Duffy, 2001) and partial tree (PT) 
kernels (Moschitti, 2006b) have been applied to 

pruned and weighted tree structures. SST and PT 

have been reported to result more efficiently on 

constituent and dependency parse trees 
respectively (Moschitti, 2006b). SST sub-trees 

are restricted by the rule that states all nodes of 

sub-tree must appear with either all or none of its 
children. In contrast, PT sub-trees have no 

limitation on their structures and can have any 

arbitrary construction. 

4.3 Dependency path in SSK kernel 

Dependency path: The dependency path is a 
sequence of nodes enclosed between Trans1 

event nodes. Based on the Trans1 design, this 

path contains the dependency relations among 
the components of the dependents of the root of 

each sentence that contains temporal related 

events. Considering that FWO just changes the 
children orders of Trans1, the path will be FWO-

resistant. Consequently, no extra method is 

required for tackling the probable side-effects.  

SSK Kernel: SSK was initially proposed for 
estimating a similarity measure between 

sequences (Lodhi et. al., 2002). This similarity 

measure is based on the number of weighted sub-
string matches that occur among sequences. The 

length of a sub-string, K, can be initialized 

manually based on the problem definition. In this 

method, both kinds of continuous and discrete 
matches are acceptable. For instance, both pairs 

of (car, card) and (car, custard) have the matches 

with the sub-string length of three as continuous 
and discrete matches, respectively. 
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SSK adaptation process: Benefiting from 

discrete match recognition, SSK contributes to 

compare extracted paths according to various 

sub-strings of POS and/or dependency tags, 
which is not possible by the aid of tree kernels. 

In order to take advantage of this capability, at 

first, a simple adaptation process needs to be 
executed on SSK. In original SSK, an alphabet 

letter is assumed as a comparing unit that can be 

expanded to sub-string by increasing the K value. 
On the other hand, in this study the comparing 

unit has been changed to POS and/or dependency 

labels. Therefore, a simple mapping method that 

relates a node label to an individual ASCII 
character can be used for the SSK adaptation. 

4.4 Kernel normalization and composition  

Normalization: The process of normalization is 

achieved by performing the equation 
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Composition: The proposed kernels have been 

combined in two types of linear (KL) and 

polynomial (KP) forms. Considering   as an 

adapted parameter, the definitions of these 

compositions are as follows: 

),()1(

),(),(

212

21121

TRTRK

TRTRKTRTRKL








 (3) 

),()1(

),(),(

212

21121

TRTRK

TRTRKTRTRK

P

P








 (4) 

2

22 )1( KK P   (5) 

5 Evaluation 

5.1 Characteristic of the Persian corpus 

Since there has not been created any temporal 

corpus in Persian yet, signals (as temporal 

entities) and event-event temporal relations were 

tagged in PTB (augmented PTB). For the 
evaluation purpose, PTRC in addition to English-

adapted version of this system were implemented 

and evaluated over various corpora such as 
augmented PTB, TimeBank and TempEval-2. 

The annotation process was performed according 

to the ISO-TimeML guideline. 401 signals and 
1,613 temporal relations were extracted within 

72 texts selected from PTB. The statistics of 

temporal relation classes are reported in Table 1. 

5.2 Feature selection 

In feature selection, we performed a two-stage 
analysis on the feature set by measuring the 

accuracies of both single-feature-included and 

single-feature-excluded models for each feature. 

In other words, two KSimple kernels were trained 

on two feature sets. In the single-feature-

included kernel, feature set just includes a target 
feature. On the other hand, in the single-feature-

excluded kernel, the feature set comprises all the 

features except the target feature. The final 
judgment about feature efficiency was made 

based on two measures named IncEva and 

ExcEva. The IncEva measure is based on single-
feature-included model and presents the 

accuracy in sole presence of the feature. The 

ExcEva is based on single-feature-excluded 

model and presents the accuracy decrement 
encountering the feature omission. 

 

Relation Type Frequency Frequency(%) 
BEFORE    807 50 
IBEFORE     83 5.15 

Begins     72 4.46 

Ends     47 2.91 
SIMULTENOUS    461 28.58 

INCLUDES    143 8.87 

TOTAL   1613 100 

Table 1: Temporal relation statistics in PTB. 

 

Features 
ExcEva 

(%) 

G-ExcEva 
  (%) 

G-IncEva 
(%) 

Lemma 0.31 0.49 55.26 

Class 0.49 0.80 50.22 

POS 0.19 0.31 51.45 

Tense -0.18 0.43 50.28 

Mood* -0.12 0.43 49.91 

Aspect -0.18 0.12    49.29 

Voice* 0 0.31    49.91 

Synset 0.43 0.62    45.42 

Signal class* 0.92 1.23    2.89 

Signal lemma* 0.12 0.49    2.89 

Be numerical* 0 0.06 49.60 

Be Aspectual* 0.43 0.8 51.63 

Text order 0.19 0.25 49.91 

Inter/Intra  

Relation 

0.12 0.12 49.91 

Context 

 Subject* 

0 0.06 49.91 

Classified 

 Distance* 

0 0.12 49.91 

Tree 1.11 1.48 52.86 

   KSimple Accuracy - - 61.6 

Table 2: Feature selection evaluations on PTB. 
 

Persian feature selection: Table 2 shows the 
feature selection results on the feature set 
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explained in Section 5, as well as Trans1 that is a 

tree feature extracted from augmented PTB. 

The table has been designed in a way that 

features were separated into two event-based and 
TR-based parts. Governing-based evaluations 

have been specified by the “G” prefix and 

governing features have been highlighted. In 
addition, the new features have been marked by 

*. The highlighted features contribute more 

efficiently than the simple event-based ones. 
Furthermore, as the number of signal-involved 

temporal relations is insignificant (about 199 

relations), the unsatisfactory G-IncEva value is 

justifiable. In fact, the signal-based features have 
been designed in a way to improve the 

classification accuracy in cooperation with other 

features. High G-ExcEva of the signal class is an 
evidence of this improvement. All features in 

Table 2, except Trans1, are exploited by the 

KSimple kernel. The last row shows the accuracy 
obtained by KSimple kernel on the standard test set. 

 

Features TE2-E TE2-F TimeBank 

Lemma ✓ ✓ ✓ 

Class ✓ ✓ ✓ 

POS ✓ ✓ ✓ 

Tense G
1
 ✓ ✓ 

Aspect G ✓ ✓ 

Polarity ✓ ✓ - 

Modality ✓ ✓ - 

Synset ✓ - ✓ 

Signal class - - ✓ 

Signal lemma - - ✓ 

Be numerical - - ✓ 

Be Aspectual ✓ ✓ - 

Text order ✓ ✓ - 

Inter/Intra  

Relation 
✓ ✓ ✓ 

Context 

 Subject 

- - ✓ 

Classified 

Distance 
✓ - ✓ 

  Ksimple Accuracy    49%    58.2% 57.98% 

Table 3. Selected features for TimeBank and 
TempEval-2 task E and F. 

 

English feature selection: Table 3 contains the 
designated features through the feature selection 

process on TimeBank (TB), the task E of 

TempEval-2 (TE2-E) and the task F of 

TempEval-2 (TE2-F). Signals are not annotated 

                                                
1 Governing version of selected feature. 

in the TempEval-2 database. As a result, the 

Signal-based features are ignored in the 

TempEval tasks. Similar to Table 2, the last row 

includes the KSimple-trained SVM results based on 
the marked features in the table. 

Table 4 contains the ExcEva evaluations of the 

novel features extracted from the English 
corpora. Despite the negative ExcEva value of 

the Classified Distance feature, its acceptable 

IncEva value, 50.2%, can justify the selection of 
this feature. It can be inferred from this table that 

the new features are also beneficial in English 

temporal classification. 

 

Features TE2-E 
(%) 

TE2-F 
(%) 

TB  
(%) 

 Signal class -  - 0.29 

 Signal lemma -  - 0.15 

 Be numerical -  - 0.50 

 Be Aspectual 0.39  0.33 - 

 Context Topic -  - 0.32 

 Classified Distance 0.39  - -0.32 

Table 4. Feature selection measures on 

TimeBank and TempEval-2 task E and F. 

5.3 Experimental Results 

We made use of LIBSVM Matlab source (Chang 

and Lin, 2001) for SVM classification, the 

MateParser (Bohnet, 2010) for dependency 
parsing, and JAWS (Spell, 2008) for retrieving 

information from WordNet. The implemented 

systems were applied to augmented PTB, 

TimeBank, tasks E and F of TempEval-2. We 
applied the five-fold cross validations method to 

PTB and TimeBank as well as simple 

classification to TempEval tasks. The evaluated 
accuracies are reported in tables 5, 6, 7, and 8. 

For more clarity, kernel compositions are 

formulated. In formulation method, names 
related to kernel compositions and either of tree 

and sequential kernels are subscripted by 

weighting and kernel methods, respectively. 

Moreover, “1” and “2” postfixes are added to the 
tree and sequential kernel names to indicate 

Trans1 and Trans2 structures.  

Experiments on PTB: In order to measure the 
effectiveness of PTRC kernel, a variety of linear 

and polynomial kernel compositions and 

different weighting methods have been 
implemented and evaluated. Among these 

compositions, the most efficient ones, based on 

three weighting methods, are reported in a two-

stage process in Table 5. In the first stage (SSK-
excluded), various tree kernels and KSimple 

compositions are examined. In the second stage 
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(SSK-included), the former compositions include 

the SSK to utilize its efficiency. Finally, Sorted-

PKAAPD, a sorted version of PKAAPD, is selected 

as the PTRC kernel. As it is shown in Table 5, 
the last kernel outperforms the other 

compositions. The definitions of these 

compositions are as follows (PKAAPD and Sorted- 
PKAAPD exclude the Trans2 structure): 



PKAAP  (Ksimple)

(1)(1K1SST K2SST K1SSK)
2
 

(6) 



PKAD  (Ksimple)

(1)(1K1SST K1SSK)
2
 

(7) 



PKAAPD  (Ksimple)

(1)(1K1SST K1PT K1SSK)
2
 

(8) 

 

Methods SSK-excluded 
(%) 

SSK-included 
    (%) 

Baseline
2
 50 50 

PKAAP 64.43 65.17 

PKAD 63.63 65.17 

PKAAPD 64.68 65.30 

Sorted-PKAAPD 64.55 65.60 

Table 5. The accuracy of PTRC on PTB. 

 
Experiments on TimeBank: Various 

compositions have been tested on AAPD 

weighted trees. Comparing to both supervised 
and semi-supervised methods, our system has 

gained the third best accuracy that have been 

achieved so far. Although, by excluding the 

state-of-the-art method, Mir-semi-supervised 
(Mirroshandel and Ghassem-Sani, 2010), which 

profits from external sources, the proposed 

system has gained second best place inferior to 
Chambers (Chambers et al., 2007). However, our 

method has outperformed the equivalent method, 

Mir-supervised (Mirroshandel et al., 2011b), 
which benefits from both constituent and 

dependency parse trees. The TB-KAAPD definition 

is as follow and the mentioned accuracies are 

reported in Table 6. 

2)121)(1(

)(





SSKSSTPT

AAPD

KKK

KsimpleKTB




 

(9) 

 

 

 

Methods Accuracy (%) 

Mir-semi-supervised 66.18 
Chambers 60.45 

TB-KAAPD 59.53 

Mir-supervised 58.76 

Table 6. Accuracy of methods on TimeBank. 
 

                                                
2 The Baseline is the majority class for relations. 

Experiments on TempEval tasks: Both tasks E 

and F are discussed in this section. As it is 

reported in Table 7, we have surpassed Mir-

semi-supervised system (Mirroshandel, 

Ghassem-sani, 2012) with notable improvement, 

although the acquired accuracy is still far from 

the state-of-the-art system named TRIPS 
(UzZaman and Allen, 2010). However, the result 

in task E is more promising, as we have achieved 

the second best result after NCSU (Ha et al., 
2010). Obviously our method has outperformed 

Mir-semi-supervised (Mirroshandel and 

Ghassem-sani, 2012) in this task, too. The 

definitions of tasks E and F are as follows: 

Task E: 

2)121)(1(

)(

SSKSST

simpleAAPD

KK

KKTE








 

(10) 

Task F:  

2)1211)(1(

)(

SSKPTSST

simpleAAPD

KKK

KKTE








 

(11) 

 

Methods Task E (%) Task F (%) 

TRIPS|NCSU-indi    58 66 

TE-KAAPD 50.20 62.17 
Mir-semi-Supervised 45.62 50.41 

Table 7. Accuracy of system on TempEval. 
 

Tree and SSK efficiency: The accuracy 

increases caused by applying tree and string 
subsequence kernels to both English and Persian 

corpora are more observable in Table 7, 8. 

 

Methods SSK-excluded 
(%) 

SSK-included 
    (%) 

Sorted-PKAAPD 64.55 65.60 

TB-KAAPD 58.76 59.53 

TE-KAAPD 49.80 50.20 

TE-KAAPD 60.85 62.17 

Table 8. Results of all implemented systems on 

Persian and English corpora.  

6 Conclusion 

In this paper, we have addressed the problem of 

temporal relation classification in Persian and 

English and SSK kernel applicable to both 
languages. As the first Persian temporal corpus, 

signals and event-event temporal relations have 

been annotated in PTB.  Variety of compositions 

including tree structures, various kernels and 
several weighting methods were examined and 

consequently the best compositions were 

selected as kernels in SVM. The experiments 
show notable improvement in both languages. 
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