
Proceedings of the Student Research Workshop associated with RANLP 2013, pages 79–85,
Hissar, Bulgaria, 9-11 September 2013.

Random Projection and Geometrization of String Distance Metrics

Daniel Devatman Hromada
Université Paris 8 – Laboratoire Cognition Humaine et Artificielle

Slovak University of Technology – Faculty of Electrical Engineering and
Information Technology
hromi@giver.eu

Abstract

Edit distance is not the only approach how
distance between two character sequences can
be calculated. Strings can be also compared in
somewhat subtler geometric ways. A
procedure inspired by Random Indexing can
attribute an D-dimensional geometric
coordinate to any character N-gram present in
the corpus and can subsequently represent the
word as a sum of N-gram fragments which the
string contains. Thus, any word can be
described as a point in a dense N-dimensional
space and the calculation of their distance can
be realized by applying traditional Euclidean
measures. Strong correlation exists, within the
Keats Hyperion corpus, between such cosine
measure and Levenshtein distance. Overlaps
between the centroid of Levenshtein distance
matrix space and centroids of vectors spaces
generated by Random Projection were also
observed. Contrary to standard non-random
“sparse” method of measuring cosine
distances between two strings, the method
based on Random Projection tends to naturally
promote not the shortest but rather longer
strings. The geometric approach yields finer
output range than Levenshtein distance and the
retrieval of the nearest neighbor of text’s
centroid could have, due to limited
dimensionality of Randomly Projected space,
smaller complexity than other vector methods.

Mèδεις ageôμετρèτος eisitô μου tèή stegèή

1 Introduction

Transformation of qualities into still finer and
finer quantities belongs among principal
hallmarks of the scientific method. In the world
where even “deep” entities like “word-
meanings” are quantified and co-measured by
ever-growing number of researchers in
computational linguistics (Kanerva et al., 2000;

Sahlgren, 2005) and cognitive sciences
(Gärdenfors, 2004), it is of no surprise that
“surface” entities like “character strings” can be
also compared one with another according to
certain metric.
 Traditionally, the distance between two strings
is most often evaluated in terms of edit distance
(ED) which is defined as the minimum number
of operations like insertion, deletion or
substitution required to change one string-word
into the other. A prototypical example of such an
edit distance approach is a so-called Levenshtein
distance (Levenshtein, 1966). While many
variants of Levenshtein distance (LD) exist,
some extended with other operations like that of
“metathese” (Damerau, 1964), some exploiting
probabilist weights (Jaro, 1995), some
introducing dynamic programming (Wagner &
Fischer, 1974), all these ED algorithms take as
granted that notions of insertion, deletion etc. are
crucial in order to operationalize similarity
between two strings.
 Within this article we shall argue that one can
successfully calculate similarity between two
strings without taking recourse to any edit
operation whatsoever. Instead of discrete
insert&delete operations, we shall focus the
attention of the reader upon a purely positive
notion, that of “occurence of a part within the
whole” (Harte, 2002). Any string-to-be-
compared shall be understood as such a whole
and any continuous N-gram fragment observable
within it shall be interpreted as its part.

2 Advantages of Random Projection

Random Projection is a method for projecting
high-dimensional data into representations with
less dimensions. In theoretical terms, it is
founded on a Johnson-Lindenstrauss (Johnson &
Lindenstrauss, 1984) lemma stating that a small
set of points in a high-dimensional space can be

79

embedded into a space of much lower dimension
in such a way that distances between the points
are nearly preserved. In practical terms,
solutions based on Random Projection, or a
closely related Random Indexing, tend to yield
high performance when confronted with diverse
NLP problems like synonym-finding (Sahlgren
& Karlgren, 2002), text categorization (Sahlgren
& Cöster, 2004), unsupervised bilingual lexicon
extraction (Sahlgren & Karlgren, 2005),
discovery of implicit inferential connections
(Cohen et al., 2010) or automatic keyword
attribution to scientific articles (El Ghali et al.,
2012). RP distinguishes itself from other word
space models in at least one of these aspects:

1. Incremental: RP allows to inject on-the-
fly new data-points (words) or their
ensembles (texts, corpora) into already
constructed vector space. One is not
obliged to execute heavy computations
(like Singular Value Decomposition in
case of Latent Semantic Analysis) every
time new data is encountered.

2. Multifunctional: As other vector-space
models, RP can be used in many diverse
scenarios. In RI, for example, words are
often considered to be the terms and
sentences are understood as documents.
In this article, words (or verses) shall be
considered as documents and N-gram
fragments which occur in them shall be
treated like terms.

3. Generalizable: RP can be applied in any
scenario where one needs to encode into
vectorial form the set of relations
between discrete entities observables at
diverse levels of abstraction (words /
documents, parts / wholes, features /
objects, pixels/images etc.).

4. Absolute: N-grams and terms, words and
sentences, sentences and documents – in
RP all these entities are encoded in the
same randomly constructed yet absolute
space . Similarity measurements can be
therefore realized even among entities
which would be considered as
incommensurable in more traditional
approaches1.

There is, of course, a price which is being paid
for these advantages: Primo, RP involves

1 In traditional word space models, words are considered
to be represented by the rows (vectors/points) of the
word-document matrix and documents to be its columns
(axes). In RP, both words (or word-fragments) and
documents are represented by rows.

stochastic aspects and its application thus does
not guarantee replicability of results. Secundo, it
involves two parameters D and S and choice of
such parameters can significantly modify
model’s performance (in relation to corpus upon
which it is applied). Tertio: since even the most
minute “features” are initially encoded in the
same way as more macroscopic units like words,
documents or text, i.e. by a vector of length D
“seeded” with D-S non-zero values, RP can be
susceptible to certain limitations if ever applied
on data discretisable into millions of distinct
observable features.

3 Method

The method of geometrization of strings by
means of Random Projection (RP) consists of
four principal steps. Firstly, strings contained
within corpus are “exploded” into fragments.
Secondly, a random vector is assigned to every
fragment according to RP’s principles. Thirdly,
the geometric representation of the string is
obtained as a sum of fragment-vectors. Finally,
the distance between two strings can be obtained
by calculating the cosine of an angle between
their respective geometric representations.

3.1 String Fragmentation

We define the fragment F of a word W having
the length of N as any continuous2 1-, 2-, 3-...N-
gram contained within W. Thus, a word of length
1 contains 1 fragment (the fragment is the word
itself), words of length 2 contain 3 fragments,
and, more generally, there exist N(N+1)/2
fragments for a word of length N. Pseudo-code
of the fragmentation algorithm is as follows:

function fragmentator;
for frag_length (1..word_length) {
 for offset (0..(word_length - frag_length)) {

 frags[]=substr (word,offset,frag_length);
 }
 }

where substr() is a function returning from the
string word a fragment of length frag_length
starting at specified offset.

2 Note that in this introductory article we exploit only
continuous N-gram fragments. Interaction of RP with
possibly other relevant patterns observable in the word –
like N-grams with gaps or sequences of members of
diverse equivalence classes [e.g. consonants/vowels] –
shall be, we hope, addressed in our doctoral Thesis or
other publications.

80

3.2 Stochastic fragment-vector generation

Once fragments are obtained, we transform them
into geometric entities by following the
fundamental precept of Random Projection:

To every fragment-feature F present in the
corpus, let’s assign a random vector of length
containing D-S elements having zero values
and S elements whose value is either -1 or 1.

The number of dimensions (D) and the seed
(S) are the parameters of the model. It is
recommended that S<<D. Table 1 illustrates how
all fragments of the corpus containing only a
word3 “DOG” could be, given that S=2,
randomly projected in a 5-dimensional space.

Fragment Vector
D 0, 1, 0, 0, -1
O 1, 1, 0, 0, 0
G 0, 0, -1, 0, -1

DO -1, 0, -1, 0, 0
OG 0, 1, 0, 1, 0

DOG 0, 0, 0, -1, -1

Table 1: Vectors possibly assigned to the
fragments of the word “dog” by RP5,2

3.3 String geometrization

Once random “init” vectors have been assigned
to all word-fragments contained within the
corpus, the geometrization of all word-strings is
relatively straightforward by applying the
following principle:

The vector representation of a word X can
be calculated as a sum of vectors associated to
fragments contained in the word X.

Thus, the vector representation of a word
“dog” would be [0, 3, -2, 0, -3]. Note also that
this vector for the word “dog” is different from
randomly initialized fragment-vector referring to
the fragment “dog”. This is due to the fact that
the vector space of “fragments” and “words” are
two different spaces. One possible way how
could one can collapse the fragment space with
the string space is to convolute them by
Reflected Random Indexing (Cohen et al., 2010)
– such an approach, however, shall not be
applied in a limited scope of this article.

3.4 String distance calculation

The string geometrization procedure calculates a
vector for every string present in the corpus.
Subsequently, the vectors can be compared with

3 The role of fragment is analogical to the role of a “term”
in Random Indexing. And the role of the “word” is
identical to the role that “context” plays in RI.

each other. While other measures like Jaccard
index are sometimes also applied in relation to
RI, the distance between words X and Y shall be
calculated, in the following experiment, in the
most traditional way. Id est, as a cosine of an
angle between vectors VX and VY.

4 Experiment(s)

Two sets of simulations were conducted to test
our hypothesis. The first experiment looked for
both correlations as well as divergences between
three different word-couple similarity data-sets
obtained by applying three different measures
upon the content of the corpus. The second
experiment focused more closely upon overlaps
among the centroids of three diverse metric
spaces under study.

4.1 Corpus and word extraction

ASCII-encoded version of the poem “The Fall of
Hyperion” (Keats, 1819) was used as a corpus
from which the list of words was extracted by

1. Splitting the poem into lines (verses).
2. Splitting every verse into words,

considering the characters [:;,.?!()] as
word separator tokens.

3. In order to mark the word boundaries,
every word was prefixed with ^ sign and
post-fixed with $ sign.

4. All words were transformed into
lowercase.

 Corpus has size of 22812 bytes representing
529 lines which contain the total number of
Nw=1545 distinct word types exploded into
NF=22340 distinct fragments.

4.2 “Word couple” experiment

Three datasets were created, all containing the
list of all possible (i.e. Nw * Nw = (1545 * 1545) /
2 =1193512) distinct word-couples. For every
dataset, a string distance was calculated for every
word couple. Within the first dataset, the
distance was determined according to traditional
Levenshtein distance metrics. For second dataset,
an RPD distance has been calculated by
measuring word couple‘s cosine distance within
the vector space constructed by Random
Projection of words fragments set up with
parameters D=1000,S=5. The third dataset
contains values obtained by measuring the cosine
measure between two sparse non-random vector
representations of two different words , whereby
the features were obtained by means of the same
fragmentation algorithm as in the case of RPD,

81

but without Random Projection. In order to keep
this scenario as pure as possible, no other
processing (e.g. tf-idf etc.) was applied and the
values which we shall label as „geometric
distance“ (GD) denote simply the cosine
between two vectors of a non-stochastically
generated sparse fragment-word count matrix.

4.2.1 Results

Figure 1 shows relations between LD and RPD
distances of all possible couples of all words
contained in the Hyperion corpus. Both datasets
seem to be strongly significantly corellated both
according to Spearman‘s rho measure (p < 2.2e-
16) as well as according to Pearson‘s product-
moment correlation (p < 2.2e-16, cor =
-0.2668235). While fifteen different LDs from
the range of integers <0, 15> were observed
among words of corpus, one could distinguish
252229 diverse real-numbered RPD values
limited to interval <0, 1>.

Figure 1: Scatter plot displaying relations between
Levenshtein distances and cosine distances measured

in the vector space constructed by RI1000,5

String distance measured in the space
constructed by RP1000,5 also strongly correlates
(Pearson correlation coefficient = 0.992;
Spearman rho = 0.679; minimal p < 2.2e-16 for
both tests) with a GD cosine measure exploiting
a non-deformed fragment-word matrix.
 An important difference was observed, however,
during a more „local“ & qualitative analysis of
results produced by the two vectorial methods.
More concretely: while non-stochastic „sparse“
cosine GD distance tends to promote as „closest“
the couples of short strings, RPD yields the
highest score for couples of long words. This is
indicated by the list of most similar word-

couples generated by three methods present in
Table 2.

GD RPD
a
’

 vessels
vessel

it
i

comfort
comforts

i
’

sorrows
sorrow

at
a

’benign
benign

o
so

temples
temple

o
of

changing
unchanging

as
a

stream
 streams

o
or

immortal’s
immortal

’i
i

breathe
breath

an
a

trance
tranced

Table 2: Ten most similar world couples according to
non-random “sparse” geometric distance (GD) and

Randomly Projected Distance

4.3 The “centroid” experiment

Three types of concrete word-centroids were
extracted from the corpus. A string having the
smallest overall LD to all other strings in the
corpus shall be labeled as the “Levenshtein
centroid” (LC). A string having the maximal sum
of cosines in relation to other words shall be
labeled as the “Cosinal centroid” (CC). Contrary
to LC and CC, for calculation of which one has
to calculate distances with regard to all words in
the corpus, the “Geometric Centroid” (GC) was
determined as a word whose vector has the
biggest cosine in regard to “Theoretical
Centroid” (GC) obtained in a purely geometric
way as a sum of all word-vectors. Stochastic
CCRP and GCRP calculation simulations were
repeated in 100 runs with D=1000, S=5.

4.3.1 Results

The word “are” was determined to be the LC of
Hyperion corpus with average LDARE,X = 4.764 to
all words of the corpus. The same word are was
ranked, by a non-stochastic “sparse” geometric
distance algorithm, as 3rd most central CC and
36th most closest term to GC . Table 3 shows
ten terms with least overall LD to all other words
of the corpus (LC), ten terms with biggest cosine
in relation to all other terms of the corpus (CCGD)

82

and ten terms with biggest cosine in regard to
hypothetical Theoretical Centroid (GCGD) of a
sparse non-projected space obtained from the
Hyperion corpus.

Rank LC CCGD GCGD

1 are charm a
2 ore red o
3 ate arm I
4 ere a ‘
5 one me he
6 toes hard to
7 sole had at
8 ease reed an
9 lone domed me

 10 here are as

Table 3: Ten nearest neighbor words of three types of
non-stochastic centroids

 Shortest possible strings seem to be GCGD’s
nearest neighbors. This seems to be analogous to
data presented on Table 2. In this sense does the
GCGD method seem to differ from the CCGD

approach which tends to promote longer strings.
 Such a marked difference in behaviors between
GC and CC approaches was not observed in case
of spaces constructed by means of Random
Projection. In 100 runs, both GC and CC
centered approaches seemed to promote as
central the strings of comparable content and
length4. As is indicated by Table 4, the LC “are”
turned out to be the closest (i.e. Rank 1, when
comparing with Table 3) to all other terms in 6%
of Random Projection runs. In 6% of runs the
same term was labeled as the nearest neighbor to
the geometrical centroid of the generated space.
Other overlaps between all used methods are
marked by bold writing in Tables 3 and 4.

Word CCRPD GCRPD

see 20 28
he 11 8
are 6 6
ore 5 6
ere 4 5
set 6 5
she 5 4
sea 4 4
a 9 4

red 1 3

Table 4: Central terms of Randomly Projected spaces
and their frequency of occurence in 100 runs

 Analogically to the observation described in the
last paragraph of the section 4.2.1, it can be also
observed that the strings characterized as

4 In fact only in 22 runs did GCRPD differ from CCRPD

“closest” to the Theoretical Centroid of vector
spaces generated by Random Projection tend to
be longer than “minimal” string nearest to GCGD

determined in the traditional non-stochastic
feature-word vector space scenario.

5 Discussion

When it comes to CCRP-calculation run lasted,
in average, CCRPD-detection = 90 seconds, thus being
almost twice as fast than the LC-calculation
executed on the very same computer which
lasted twice the time LCdetection= 157 s for the
same corpus, indicating that the computational
complexity of our PDL (Glazebrook et al., 1997)
implementation of CCRP-detection is lesser than
the complexity of LC-detection based on PERL’s
Text::Levenshtein implementation of LD.

When it comes to the computational
complexity of the GC-calculation, it is evident
that GC is determined faster and by less complex
process than LCs or CCs . This is so because in
order to determine the GCRP of N words there is
no need to construct an N * N distance matrix.
On the contrary, since every word is attributed
coordinates in a randomly-generated yet
absolute space, the detection of a hypothetic
Geometric Centroid of all words is a very
straightforward and cheap process, as well as the
detection of GC’s nearest word neighbor..

And since in RP, the length of GC-denoting
vector is limited to a relatively reasonable low
number of elements (i.e. D = 1000 in case of this
paper), it is of no surprise that the string closest
to GC shall be found more slowly by a traditional
“sparse vector” scenario whenever the number of
features (columns) > D. In our scenario with
NF=22340 of distinct features, it was almost 4
times faster to construct the vector space + find a
nearest word to GC of the Randomly Projected
space han to use a “sparse” fragment-term matrix
optimized by storing only non-zero values
(GCRPD-NN-detection ~ 6 sec ; GCGD-NN-detection ~ 22 sec).

Other thing worthy of interest could be that
contrary to a “sparse” method which seems to
give higher score to shorter strings, somewhat
longer strings seem to behave as if they were
naturally “pushed towards the centroid” in a
dense space generated by RP. If such is, verily,
the case, then we believe that the method
presented hereby could be useful, for example, in
domains of gene sequence analysis or other
scenarios where pattern-to-be-discovered is
“spread out” rather than centralized.

83

In practical terms, if ever the querying in RP
space shall turn out to have lesser complexity
than other vector models, our method could be
useful within a hybrid system as a fast stochastic
way to pre-select a limited set of “candidate”
(possibly locally optimal) strings which could be
subsequently confronted with more precise, yet
costly, non-stochastic metrics ultimately leading
to discovery of the global optimum.

Asides above-mentioned aspects, we believe
that there exists at least one other theoretical
reason for which the RP-based geometrization
procedure could deem to be a worthy alternative
to LD-like distance measures. That is: the
cardinality of a real-valued <0, 1> range of a
cosine function is much higher than a whole-
numbered <0, max(length(word))> range
possibly offered as an output of Levenshtein
Distance. In other terms, outputs of string
distance functions based on trigonometry of RP-
based vector spaces are more subtler, more fine-
grained, than those furnished by traditional LD.
While this advantage does not hold for
“weighted” LD measures we hope that this
article could motivate future studies aiming to
compare “weighted” LD and RPD metrics.

When it comes to the feature extracting
“fragment explosion” approach, it could be
possibly reproached to the method proposed
hereby that 1) the fragmentation component
which permutes blindly through all N-grams
presented in the corpus yields too many
“features”; that 2) that taking into account all of
them during the calculation of the word’s final
vector is not necessary and could even turn to be
computationally counter-productive; or that 3)
bi-grams and tri-grams alone give better results
than larger N (Manning et al., 2008). A primary
answer to such an ensemble of reproaches could
be, that by the very act of projecting data upon
limited set of same non-orthogonal dimensions,
the noise could simply cancel itself out5. Other
possible answer to the argument could be that
while the bi&tri-gram argument holds well for
natural language structures, the method we aim
to propose here has ambitions to be used beyond
NLP (e.g. bio-informatics) or pre-NLP (e.g. early
stages of language acquisition where the very
notion of N-gram does not make sense because
the very criterion of sequence segmentation &
discretization was not yet established). At last

5 And this “noise canceling property” could be especially
true for RP as defined in this paper where the rare non-
zero values in the random “init” vectors can point in
opposite directions (i.e. either -1 or 1).

but not least we could counter-argue by stating
that often do the algorithms based on a sort of
initial blind “computational explosion of number
of features” perform better than those who do not
perform such explosion, especially when coupled
with subsequent feature selection algorithms.
Such is the case, for example, of an approach
proposed by Viola & Jones in (Viola & Jones,
2001) which caused the revolution in the
computer vision by proposing that in order to
detect an object, one should look for
combinations of pixels instead of pixels.

In this paper, such combinations of “letter-
pixels” were, mutatis mutandi, called
“fragments”. Our method departs from an idea
that one can, and should, associate random
vectors to such fragments. But the idea can go
further. Instead of looking for occurrence of part
in the whole, a more advanced RI-based
approach shall replace the notion of “fragment
occuring in the word” by a more general notion
of “pattern which matches the sequence”. Thus
even the vector associated to pattern /d.g/ could
be taken into account during the construction of a
vector representing the word “dog”.

Reminding that RP-based models perform
very well when it comes to offering solutions to
quite “deep” signifiée-oriented problems, we
find it difficult to understand why could not be
the same algorithmic machinery applied to the
problems dealing with “surface”, signifiant-
oriented problems, notably given the fact that
some sort of dimensionality reduction has to
occur whenever the mind tries to map >4D-
experiences upon neural substrate of the brain
embedded in 3D physical space.

Given that all observed correlations and
centroid overlaps indicate that the string distance
calculation based on Random Projection could
turn out to be a useful substitute for LD measure
or even other more fine-grained methods. And
given that RP would not be possible if the
Johnson-Lindenstrauss’s lemma was not valid,
our results could be also interpreted as another
empirical demonstration of the validity of the
JL-lemma.

Acknowledgments

The author would like to thank Adil El-Ghali for
introduction into Random Indexing as well as his
comments concerning the present paper; to prof.
Charles Tijus and doc. Ivan Sekaj for their
support and to Aliancia Fair-Play for permission
to execute some code on their servers.

84

References

Trevor Cohen, Roger Schvaneveldt & Dominic
Widdows. 2010. Reflective Random Indexing and
indirect inference: A scalable method for discovery of
implicit connections. Journal of Biomedical
Informatics, 43(2), 240–256.

Fred J. Damerau. 1964. A technique for computer
detection and correction of spelling errors.
Communications of the ACM, 7(3), 171–176.

Adil El Ghali, Daniel D. Hromada & Kaoutar El
Ghali. 2012. Enrichir et raisonner sur des espaces
sémantiques pour l’attribution de mots-clés. JEP-
TALN-RECITAL 2012, 77.

Peter Gärdenfors. 2004. Conceptual spaces: The
geometry of thought. MIT press.

Karl Glazebrook. Jarle Brinchmann, John Cerney,
Craig DeForest, Doug Hunt, Tim Jenness & Tuomas
Lukka. 1997. The Perl Data Language. The Perl
Journal, 5(5).

Verity Harte. 2002. Plato on parts and wholes: The
metaphysics of structure. Clarendon Press Oxford.

Matthew A. Jaro. 1995. Probabilistic linkage of large
public health data files. Statistics in medicine, 14(5-
7), 491–498.

William B. Johnson & Joram Lindenstrauss. 1984.
Extensions of Lipschitz mappings into a Hilbert
space. Contemporary mathematics, 26(189-206), 1.

Pentti Kanerva, Jan Kristofersson & Anders Holst.
2000. Random indexing of text samples for latent
semantic analysis. Proceedings of the 22nd annual
conference of the cognitive science society (Vol.
1036).

John Keats. 1819. The Fall of Hyperion. A Dream.
John Keats. complete poems and selected letters,
381–395.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions and reversals.
Soviet physics doklady (Vol. 10, p. 707).

Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini & Chris Watkins. 2002. Text
classification using string kernels. The Journal of
Machine Learning Research, 2, 419–444.

Christopher D. Manning, Prabhakar Raghavan &
Hinrich Schütze. 2008. Introduction to information
retrieval. Cambridge University Press.

Magnus Sahlgren. 2005. An introduction to random
indexing. Methods and Applications of Semantic
Indexing Workshop at the 7th International
Conference on Terminology and Knowledge
Engineering, TKE (Vol. 5).

Magnus Sahlgren & Rickard Cöster. 2004. Using bag-
of-concepts to improve the performance of support
vector machines in text categorization. Proceedings
of the 20th international conference on
Computational Linguistics (p. 487).

Magnus Sahlgren & Jussi Karlgren. 2002. Vector-
based semantic analysis using random indexing for
cross-lingual query expansion. Evaluation of Cross-
Language Information Retrieval Systems (p. 169–
176).

Magnus Sahlgren & Jussi Karlgren. 2005. Automatic
bilingual lexicon acquisition using random indexing
of parallel corpora. Natural Language Engineering,
11(3), 327–341.

Alan M. Turing. 1936. On computable numbers, with
an application to the Entscheidungsproblem.
Proceedings of the London mathematical society,
42(2), 230–265.

Paul Viola & Michal Jones. 2001. Rapid Object
Detection using a Boosted Cascade of Simple. Proc.
IEEE CVPR 2001.

Robert A. Wagner & Michael J. Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1), 168–173.

85

