
First Joint Conference on Lexical and Computational Semantics (*SEM), pages 265–274,
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Abstract

The Joint Conference on Lexical and Compu-
tational Semantics (*SEM) each year hosts a
shared task on semantic related topics. In its
first edition held in 2012, the shared task was
dedicated to resolving the scope and focus of
negation. This paper presents the specifica-
tions, datasets and evaluation criteria of the
task. An overview of participating systems is
provided and their results are summarized.

1 Introduction

Semantic representation of text has received consid-
erable attention these past years. While early shal-
low approaches have been proven useful for several
natural language processing applications (Wu and
Fung, 2009; Surdeanu et al., 2003; Shen and La-
pata, 2007), the field is moving towards analyzing
and processing complex linguistic phenomena, such
as metaphor (Shutova, 2010) or modality and nega-
tion (Morante and Sporleder, 2012).

The *SEM 2012 Shared Task is devoted to nega-
tion, specifically, to resolving its scope and focus.
Negation is a grammatical category that comprises
devices used to reverse the truth value of proposi-
tions. Broadly speaking, scope is the part of the
meaning that is negated and focus the part of the
scope that is most prominently or explicitly negated
(Huddleston and Pullum, 2002). Although negation
is a very relevant and complex semantic aspect of
language, current proposals to annotate meaning ei-
ther dismiss negation or only treat it in a partial man-
ner.

The interest in automatically processing nega-
tion originated in the medical domain (Chapman
et al., 2001), since clinical reports and discharge

summaries must be reliably interpreted and indexed.
The annotation of negation and hedge cues and their
scope in the BioScope corpus (Vincze et al., 2008)
represented a pioneering effort. This corpus boosted
research on scope resolution, especially since it was
used in the CoNLL 2010 Shared Task (CoNLL
ST 2010) on hedge detection (Farkas et al., 2010).
Negation has also been studied in sentiment analy-
sis (Wiegand et al., 2010) as a means to determine
the polarity of sentiments and opinions.

Whereas several scope detectors have been de-
veloped using BioScope (Morante and Daelemans,
2009; Velldal et al., 2012), there is a lack of cor-
pora and tools to process negation in general domain
texts. This is why we have prepared new corpora
for scope and focus detection. Scope is annotated
in Conan Doyle stories (CD-SCO corpus). For each
negation, the cue, its scope and the negated event, if
any, are marked as shown in example (1a). Focus is
annotated on top of PropBank, which uses the WSJ
section of the Penn TreeBank (PB-FOC corpus). Fo-
cus annotation is restricted to verbal negations an-
notated with MNEG in PropBank, and all the words
belonging to a semantic role are selected as focus.
An annotated example is shown in (1b)1.
(1) a. [John had] never [said as much before]

b. John had never said {as much} before
The rest of this paper is organized as follows.

The two proposed tasks are described in Section 2,
and the corpora in Section 3. Participating systems
and their results are summarized in Section 4. The
approaches used by participating systems are de-
scribed in Section 5, as well as the analysis of re-
sults. Finally, Section 6 concludes the paper.

1Throughout this paper, negation cues are marked in bold
letters, scopes are enclosed in square brackets and negated
events are underlined; focus is enclosed in curly brackets.
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2 Task description

The *SEM 2012 Shared Task2 was dedicated to re-
solving the scope and focus of negation (Task 1 and
2 respectively). Participants were allowed to engage
in any combination of tasks and submit at most two
runs per task. A pilot task combining scope and
focus detection was initially planned, but was can-
celled due to lack of participation. We received a
total of 14 runs, 12 for scope detection (7 closed, 5
open) and 2 for focus detection (0 closed, 2 open).

Submissions fall into two tracks:

• Closed track. Systems are built using exclusively
the annotations provided in the training set and are
tuned with the development set. Systems that do
not use external tools to process the input text or
that modify the annotations provided (e.g., simplify
parse tree, concatenate lists of POS tags, ) fall under
this track.

• Open track. Systems can make use of any external
resource or tool. For example, if a team uses an ex-
ternal semantic parser, named entity recognizer or
obtains the lemma for each token by querying ex-
ternal resources, it falls under the open track. The
tools used cannot have been developed or tuned us-
ing the annotations of the test set.

Regardless of the track, teams were allowed to
submit their final results on the test set using a sys-
tem trained on both the training and development
sets. The data format is the same as in several pre-
vious CoNLL Shared Tasks (Surdeanu et al., 2008).
Sentences are separated by a blank line. Each sen-
tence consists of a sequence of tokens, and a new
line is used for each token.

2.1 Task 1: Scope Resolution
Task 1 aimed at resolving the scope of negation cues
and detecting negated events. The task is divided
into 3 subtasks:

1. Identifying negation cues, i.e., words that express
negation. Cues can be single words (e.g., never),
multiwords (e.g., no longer, by no means), or affixes
(e.g.l im-, -less). Note that negation cues can be
discontinuous, e.g., neither [. . . ] nor.

2. Resolving the scope of negation. This subtask ad-
dresses the problem of determining which tokens
within a sentence are affected by the negation cue.
A scope is a sequence of tokens that can be discon-
tinuous.

2www.clips.ua.ac.be/sem2012-st-neg/

3. Identifying the negated event or property, if any.
The negated event or property is always within the
scope of a cue. Only factual events can be negated.

For the sentence in (2), systems have to identify
no and nothing as negation cues, after his habit he
said and after mine I asked questions as scopes, and
said and asked as negated events.

(2) [After his habit he said] nothing, and after mine I
asked no questions.
After his habit he said nothing, and [after mine I

asked] no [questions].

2.1.1 Evaluation measures
Previously, scope resolvers have been evaluated at
either the token or scope level. The token level eval-
uation checks whether each token is correctly la-
beled (inside or outside the scope), while the scope
level evaluation checks whether the full scope is cor-
rectly labeled. The CoNLL 2010 ST introduced pre-
cision and recall at scope level as performance mea-
sures and established the following requirements: A
true positive (TP) requires an exact match for both
the negation cue and the scope. False positives (FP)
occur when a system predicts a non-existing scope
in gold, or when it incorrectly predicts a scope exist-
ing in gold because: (1) the negation cue is correct
but the scope is incorrect; (2) the cue is incorrect
but the scope is correct; (3) both cue and scope are
incorrect. These three scenarios also trigger a false
negative (FN). Finally, FN also occur when the gold
annotations specify a scope but the system makes no
such prediction (Farkas et al., 2010).

As we see it, the CONLL 2010 ST evaluation
requirements were somewhat strict because for a
scope to be counted as TP, the negation cue had
to be correctly identified (strict match) as well as
the punctuation tokens within the scope. Addi-
tionally, this evaluation penalizes partially correct
scopes more than fully missed scopes, since partially
correct scopes count as FP and FN, whereas missed
scopes count only as FN. This is a standard prob-
lem when applying the F measures to the evaluation
of sequences. For this shared task we have adopted
a slightly different approach based on the following
criteria:

• Punctuation tokens are ignored.
• We provide a scope level measure that does not re-

quire strict cue match. To count a scope as TP this
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measure requires that only one cue token is cor-
rectly identified, instead of all cue tokens.

• To count a negated event as TP we do not require
correct identification of the cue.

• To evaluate cues, scopes and negated events, partial
matches are not counted as FP, only as FN. This is to
avoid penalizing partial matches more than missed
matches.

The following evaluation measures have been
used to evaluate the systems:

• Cue-level F1-measures (Cue).
• Scope-level F1-measures that require only partial

cue match (Scope NCM).
• Scope-level F1-measures that require strict cue

match (Scope CM). In this case, all tokens of the
cue have to be correctly identified.

• F1-measure over negated events (Negated), com-
puted independently from cues and from scopes.

• Global F1-measure of negation (Global): the three
elements of the negation — cue, scope and negated
event — all have to be correctly identified (strict
match).

• F1-measure over scope tokens (Scope tokens). The
total of scope tokens in a sentence is the sum of to-
kens of all scopes. For example, if a sentence has
two scopes, one of five tokens and another of seven
tokens, then the total of scope tokens is twelve.

• Percentage of correct negation sentences (CNS).

A second version of the measures (Cue/Scope
CM/Scope NCM/Negated/Global-B) was calculated
and provided to participants, but was not used to
rank the systems, because it was introduced in the
last period of the development phase following the
request of a participant team. In the B version of the
measures, precision is not counted as (TP/(TP+FP)),
but as (TP / total of system predictions), counting in
this way the percentage of perfect matches among
all the system predictions. Providing this version of
the measures also allowed us to compare the results
of the two versions and to check if systems would
be ranked in a different position depending on the
version.

Even though we believe that relaxing scope eval-
uation by ignoring punctuation marks and relaxing
the strict cue match requirement is a positive feature
of our evaluation, we need to explore further in order
to define a scope evaluation measure that captures
the impact of partial matches in the scores.

2.2 Task 2: Focus Detection
This task tackles focus of negation detection. Both
scope and focus are tightly connected. Scope is the
part of the meaning that is negated and focus is that
part of the scope that is most prominently or explic-
itly negated (Huddleston and Pullum, 2002). Focus
can also be defined as the element of the scope that is
intended to be interpreted as false to make the over-
all negative true.

Detecting focus of negation is useful for retriev-
ing the numerous words that contribute to implicit
positive meanings within a negation. Consider the
statement The government didn’t release the UFO
files {until 2008}. The focus is until 2008, yielding
the interpretation The government released the UFO
files, but not until 1998. Once the focus is resolved,
the verb release, its AGENT The government and its
THEME the UFO files are positive; only the TEMPO-
RAL information until 2008 remains negated.

We only target verbal negations and focus is al-
ways the full text of a semantic role. Some examples
of annotation and their interpretation (Int) using fo-
cus detection are provided in (3–5).

(3) Even if that deal isn’t {revived}, NBC hopes to
find another.
Int: Even if that deal is suppressed, NBC hopes to
find another.

(4) A decision isn’t expected {until some time next
year}.
Int: A decision is expected at some time next year.

(5) . . . it told the SEC it couldn’t provide financial
statements by the end of its first extension
“{without unreasonable burden or expense}”.
Int: It could provide them by that time with a huge
overhead.

2.2.1 Evaluation measures
Task 2 is evaluated using precision, recall and F1.
Submissions are ranked by F1. For each negation,
the predicted focus is considered correct if it is a per-
fect match with the gold annotations.

3 Data Sets

We have released two datasets, which will be avail-
able from the web site of the task: CD-SCO for
scope detection and PB-FOC for focus detection.
The next two sections introduce the datasets.
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WL2 108 0 After After IN (S(S(PP* After
WL2 108 1 his his PRP$ (NP* his
WL2 108 2 habit habit NN *)) habit
WL2 108 3 he he PRP (NP*) he
WL2 108 4 said say VBD (VP* said said
WL2 108 5 nothing nothing NN (NP*))) nothing
WL2 108 6 , , , *
WL2 108 7 and and CC *
WL2 108 8 after after IN (S(PP* after
WL2 108 9 mine mine NN (NP*)) mine
WL2 108 10 I I PRP (NP*) I
WL2 108 11 asked ask VBD (VP* asked asked
WL2 108 12 no no DT (NP* no
WL2 108 13 questions question NNS *))) questions
WL2 108 14 . . . *)

Figure 1: Example sentence from CD-SCO.

3.1 CD-SCO: Scope Annotation
The corpus for Task 1 is CD-SCO, a corpus of Co-
nan Doyle stories. The training corpus contains The
Hound of the Baskervilles, the development corpus,
The Adventure of Wisteria Lodge, and the test corpus
The Adventure of the Red Circle and The Adventure
of the Cardboard Box. The original texts are freely
available from the Gutenberg Project.3

CD-SCO is annotated with negation cues and
their scope, as well as the event or property that is
negated. The cues are the words that express nega-
tion and the scope is the part of a sentence that is
affected by the negation cues. The negated event
or property is the main event or property actually
negated by the negation cue. An event can be a pro-
cess, an action, or a state.

Figure 1 shows an example sentence. Column 1
contains the name of the file, column 2 the sentence
#, column 3 the token #, column 4 the word, column
5 the lemma, column 6 the PoS, column 7 the parse
tree information and columns 8 to end the negation
information. If a sentence does not contain a nega-
tion, column 8 contains “***” and there are no more
columns. If it does contain negations, the informa-
tion for each one is encoded in three columns: nega-
tion cue, scope, and negated event respectively.

The annotation of cues and scopes is inspired by
the BioScope corpus, but there are several differ-
ences. First and foremost, BioScope does not an-
notate the negated event or property. Another im-

3http://www.gutenberg.org/browse/
authors/d\#a37238

Training Dev. Test
# tokens 65,450 13,566 19,216
# sentences 3644 787 1089
# negation sent. 848 144 235
% negation sent. 23.27 18.29 21.57
# cues 984 173 264
# unique cues 30 20 20
# scopes 887 168 249
# negated 616 122 173

Table 1: CD-SCO Corpus statistics.

portant difference concerns the scope model itself:
in CD-SCO, the cue is not considered to be part of
the scope. Furthermore, scopes can be discontinu-
ous and all arguments of the negated event are con-
sidered to be part of the scope, including the subject,
which is kept out of the scope in BioScope. A final
difference is that affixal negation is annotated in CD-
SCO, as in (6).

(6) [He] declares that he heard cries but [is] un[{able}
to state from what direction they came].

Statistics for the corpus is presented in Table 1.
More information about the annotation guidelines is
provided by Morante et al. (2011) and Morante and
Daelemans (2012), including inter-annotator agree-
ment.

The corpus was preprocessed at the University
of Oslo. Tokenization was obtained by the PTB-
compliant tokenizer that is part of the LinGO En-
glish Resource Grammar. 4

4http://moin.delph-in.net/
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Apart from the gold annotations, the corpus was
provided to participants with additional annotations:

• Lemmatization using the GENIA tagger (Tsuruoka
and Tsujii, 2005), version 3.0.1, with the ’-nt’ com-
mand line option. GENIA PoS tags are comple-
mented with TnT PoS tags for increased compati-
bility with the original PTB.

• Parsing with the Charniak and Johnson (2005) re-
ranking parser.5 For compatibility with PTB con-
ventions, the top-level nodes in parse trees (‘S1’),
were removed. The conversion of PTB-style syntax
trees into CoNLL-style format was performed using
the CoNLL 2005 Shared Task software.6

3.2 PB-FOC: Focus Annotation
We have adapted the only previous annotation effort
targeting focus of negation for PB-FOC (Blanco and
Moldovan, 2011). This corpus provides focus an-
notation on top of PropBank. It targets exclusively
verbal negations marked with MNEG in PropBank
and selects as focus the semantic role containing the
most likely focus. The motivation behind their ap-
proach, annotation guidelines and examples can be
found in the aforementioned paper.

We gathered all negations from sections 02–21,
23 and 24 and discarded negations for which the fo-
cus or PropBank annotations were not sound, leav-
ing 3,544 instances.7 For each verbal negation, PB-
FOC provides the current sentence, and the previous
and next sentences as context. For each sentence,
along with the gold focus annotations, PB-FOC con-
tains the following additional annotations:

• Token number;
• POS tags using the Brill tagger (Brill, 1992);
• Named Entities using the Stanford named en-

tity recognizer recognizer (Finkel et al., 2005);
• Chunks using the chunker by Phan (2006);
• Syntactic tree using the Charniak parser (Char-

niak, 2000);
• Dependency tree derived from the syntactic

tree (de Marneffe et al., 2006);

ErgTokenization, http://moin.delph-in.net/
ReppTop

5November 2009 release available from Brown University.
6http://www.lsi.upc.edu/˜srlconll/

srlconll-1.1.tgz
7The original focus annotation targeted the 3,993 negations

marked with MNEG in the whole PropBank.

Train Devel Test
1 role 2,210 515 672
2 roles 89 15 38
3 roles 3 0 2
All 2,302 530 712

Se
m

an
tic

ro
le

s
fo

cu
s

be
lo

ng
s

to

A1 980 222 309
AM-NEG 592 138 172
AM-TMP 161 35 46
AM-MNR 127 27 38
A2 112 28 36
A0 94 23 31
None 88 19 35
AM-ADV 78 23 26
C-A1 46 6 16
AM-PNC 33 8 12
AM-LOC 25 4 10
A4 11 2 5
R-A1 10 2 2
Other 40 8 16

Table 2: Basic numeric analysis for PB-FOC. The first 4
rows indicate the number of unique roles each negation
belongs to, the rest indicate the counts for each role.

• Semantic roles using the labeler described by
(Punyakanok et al., 2008); and

• Verbal negation, indicates with ‘N’ if that token
correspond to a verbal negation for which focus
must be predicted.

Figure 2 provides a sample of PB-FOC. Know-
ing that the original focus annotations were done on
top of PropBank and that focus corresponds to a sin-
gle role, semantic role information is key to predict
the focus. In Table 2, we show some basic numeric
analysis regarding focus annotation and the automat-
ically obtained semantic role labels. Most instances
of focus belong to a single role in the three splits
and the most common role focus belongs to is A1,
followed by AM-NEG, M-TMP and M-MNR. Note
that some instances have at least one word that does
not belong to any role (88 in training, 19 in develop-
ment and 35 in test).

4 Submissions and results

A total of 14 runs were submitted: 12 for scope de-
tection and 2 for focus detection. The unbalanced
number of submissions might be due to the fact that
both tasks are relatively new and the tight timeline
(six weeks) under which systems were developed.
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Marketers 1 NNS O B-NP (S1(S(NP*) 2 nsubj (A0*) * - *
believe 2 VBP O B-VP (VP* 0 root (V*) * - *
most 3 RBS O B-NP (SBAR(S(NP* 4 amod (A1* (A0* - FOCUS
Americans 4 NNPS O I-NP *) 7 nsubj * *) - FOCUS
wo 5 MD O B-VP (VP* 7 aux * (AM-MOD*) - *
n’t 6 RB O I-VP * 7 neg * (AM-NEG*) - *
make 7 VB O I-VP (VP* 2 ccomp * (V*) N *
the 8 DT O B-NP (NP* 10 det * (A1* - *
convenience 9 NN O I-NP * 10 nn * * - *
trade-off 10 NN O I-NP *)))))) 7 dobj *) *) - *
... 11 : O O * 2 punct * * - *
. 12 . O O *)) 2 punct * * - *

Figure 2: Example sentence from PB-FOC.

Team Prec. Rec. F1

O
pe

n UConcordia, run 1 60.00 56.88 58.40
UConcordia, run 2 59.85 56.74 58.26

Table 3: Official results for Task 2.

Some participants showed interest in the second task
and expressed that they did not participate because
of lack of time. In this section, we present the results
for each task.

4.1 Task 1
Six teams (UiO1, UiO2, FBK, UWashington,
UMichigan, UABCoRAL) submitted results for the
closed track with a total of seven runs, and four
teams (UiO2, UGroningen, UCM-1, UCM-2) sub-
mitted results for the open track with a total of five
runs. The evaluation results are provided in Ta-
ble 4, which contains the official results, and Table 5,
which contains the results for evaluation measures
B.

The best Global score in the closed track was ob-
tained by UiO1 (57.63 F1). The best score for Cues
was obtained by FBK (92.34 F1), for Scopes CM
by UiO2 (73.39 F1), for Scopes NCM by UWash-
ington (72.40 F1), and for Negated by UiO1 (67.02
F1). The best Global score in the open track was ob-
tained by UiO2 (54.82 F1), as well as the best scores
for Cues (91.31 F1), Scopes CM (72.39 F1), Scopes
NCM (72.39 F1), and Negated (61.79 F1).

4.2 Task 2
Only one team participated in Task 2, UConcordia
from CLaC Lab at Concordia University. They sub-
mitted two runs and the official results are summa-
rized in Table 3. Their best run scored 58.40 F1.

5 Approaches and analysis

In this section we summarize the methodologies ap-
plied by participants to solve the tasks and we ana-
lyze the results.

5.1 Task 1
To solve Task 1 most teams develop a three module
pipeline with a module per subtask. Scope resolu-
tion and negated event detection are independent of
each other and both depend on cue detection. An
exception is the UiO1 system, which incorporates a
module for factuality detection. Most systems ap-
ply machine learning algorithms, either Conditional
Random Fields (CRFs) or Support Vector Machines
(SVMs), while less systems implement a rule-based
approach. Syntax information is widely employed,
either in the form of rules or incorporated in the
learning model. Multi-word and affixal negation
cues receive a special treatment in most cases, and
scopes are generally postprocessed.

The systems that participate in the closed track
are machine learning based. The UiO1 system is an
adaptation of another system (Velldal et al., 2012),
which combines SVM cue classification with SVM-
based ranking of syntactic constituents for scope
resolution. The approach is extended to identify
negated events by first classifying negations as fac-
tual or non-factual, and then applying an SVM
ranker over candidate events. The original treat-
ment of factuality in this system results in the high-
est score for both the negated event subtask and the
global task.

The UiO2 system combines SVM cue classifica-
tion with CRF-based sequence labeling. An original
aspect of the UiO2 approach is the model represen-
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tation for scopes and negated events, where tokens
are assigned a set of labels that attempts to de-
scribe their behavior within the mechanics of nega-
tion. After unseen sequences are labeled, in-scope
and negated tokens are assigned to their respective
cues using simple post-processing heuristics.

The FBK system consists of three different CRF
classifiers, as well as the UMichigan. A character-
istic of the cue model of the UMichigan system is
that tokens are assigned five labels in order to rep-
resent the different types of negation. Similarly, the
UWashington system has a CRF sequence tagger for
scope and negated event detection, while the cue de-
tector learns regular expression matching rules from
the training set. The UABCoRAL system follows
the same strategy, but instead of CRFs it employs
SVM Light.

The resources utilized by participants in the open
track are diverse. UiO2 reparsed the data with Malt-
Parser in order to obtain dependency graphs. For the
rest, the system is the same as in the closed track.
The global results obtained by this system in the
closed track are higher than the results obtained in
the open track, which is mostly due to a higher per-
formance of the scope resolution module. This is the
only machine learning system in the open track and
the highest performing one.

The UGroningen system is based on tools that
produce complex semantic representations. The sys-
tem employs the C&C tools8 for parsing and Boxer9

to produce semantic representations in the form of
Discourse Representation Structures (DRSs). For
cue detection, the DRSs are converted to flat, non-
recursive structures, called Discourse Representa-
tion Graphs (DRGs). These DRGs allow for cue de-
tection by means of labelled tuples. Scope detection
is done by gathering the tokens that occur within the
scope of the negated DRSs. For negated event detec-
tion, a basic algorithm takes the detected scope and
returns the negated event based on information from
the syntax tree within the scope.

UCM-1 and UCM-2 are rule-based systems that
rely heavily on information from the syntax tree.
The UCM-1 system was initially designed for pro-

8http://svn.ask.it.usyd.edu.au/trac/
candc/wiki/Documentation

9http://svn.ask.it.usyd.edu.au/trac/
candc/wiki/boxer

cessing opinionated texts. It applies a dictionary ap-
proach to cue detection, with the detection of affixal
cues being performed using WordNet. Non-affixal
cue detection is performed by consulting a prede-
fined list of cues. It then uses information from the
syntax tree in order to get a first approximation to
the scope, which is later refined using a set of post-
processing rules. In the case of the UCM-2 system
an algorithm detects negation cues and their scope
by traversing Minipar dependency structures. Fi-
nally, the scope is refined with post-processing rules
that take into account the information provided by
the first algorithm and linguistic clause boundaries.

If we compare tracks, the Global best results ob-
tained in the closed track (57.63 F1) are higher than
the Global best results obtained in the open track
(54.82 F1). If we compare approaches, the best re-
sults in the two tracks are obtained with machine
learning-based systems. The rule-based systems
participating in the open track clearly score lower
(39.56 F1 the best) than the machine learning-based
system (54.82 F1).

Regarding subtasks, systems achieve higher re-
sults in the cue detection task (92.34 F1 the best) and
lower results in the scope resolution (72.40 F1 the
best) and negated event detection (67.02 F1 the best)
tasks. This is not surprising, not only because of
the error propagation effect, but also because the set
of negation cues is closed and comprises mostly sin-
gle tokens, whereas scope sequences are longer. The
best results in cue detection are obtained by the FBK
system that uses CRFs and applies a special proce-
dure to detect the negation cues that are subtokens.
The best scores for scope resolution (72.40, 72.39
F1) are obtained by two machine learning compo-
nents. UWashington uses CRFs with features de-
rived from the syntax tree. UiO2 uses CRFs mod-
els with syntactic and lexical features for scopes, to-
gether with a set of labels aimed at capturing the
behavior of certain tokens within the mechanics of
negation. The best scores for negated events (67.02
F1) are obtained by the UiO1 system that first clas-
sifies negations as factual or non-factual, and then
applies an SVM ranker over candidate events.

Finally, we would like to draw the attention to the
different scores obtained depending on the evalua-
tion measure used. When scope resolution is evalu-
ated with the Scope (NCM, CM) measure, results
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are much lower than when using the Scope To-
kens measure, which does not reflect the ability of
systems to deal with sequences. Another observa-
tion is related to the difference in precision scores
between the two versions of the evaluation mea-
sures. Whereas for Cues and Negated the differ-
ences are not so big because most cues and negated
events span over a single token, for Scopes they are.
The best Scope NCM precision score is 90.00 %,
whereas the best Scope NCM B precision score is
59.54 %. This shows that the scores can change
considerably depending on how partial matches are
counted (as FP and FN, or only as FN). As a final
remark it is worth noting that the ranking of systems
does not change when using the B measures.

5.2 Task 2
UConcordia submitted two runs in the open track.
Both of them follow the same three component ap-
proach. First, negation cues are detected. Second,
the scope of negation is extracted based on depen-
dency relations and heuristics defined by Kilicoglu
and Bergler (2011). Third, the focus of negation
is determined within the elements belonging to the
scope following three heuristics.

6 Conclusions

In this paper we presented the description of the first
*SEM Shared Task on Resolving the Scope and Fo-
cus of Negation, which consisted of two different
tasks related to different aspects of negation: Task 1
on resolving the scope of negation, and Task 2 on
detecting the focus of negation. Task 1 was di-
vided into three subtasks: identifying negation cues,
resolving their scope, and identifying the negated
event. Two new datasets have been produced for this
Shared Task: the CD-SCO corpus of Conan Doyle
stories annotated with scopes, and the PB-FOC cor-
pus, which provides focus annotation on top of Prop-
Bank. New evaluation software was also developed
for this task. The datasets and the evaluation soft-
ware will be available on the web site of the Shared
Task. As far as we know, this is the first task that fo-
cuses on resolving the focus and scope of negation.

A total of 14 runs were submitted, 12 for scope
detection and 2 for focus detection. Of these, four
runs are from systems that take a rule-based ap-

proach, two runs from hybrid systems, and the rest
from systems that take a machine learning approach
using SVMs or CRFs. Most participants designed a
three component architecture.

For a future edition of the shared task we would
like to unify the annotation schemes of the two cor-
pora, namely the annotation of focus in PB-FOC and
negated events in CD-SCO. The annotation of more
data with both scope and focus would allow us to
study the two aspects jointly. We would also like to
provide better evaluation measures for scope reso-
lution. Currently, scopes are evaluated in terms of
F1, which demands a division of errors into the cat-
egories TP/FP/TN/FN borrowed from the evaluation
of information retrieval systems. These categories
are not completely appropriate to be assigned to se-
quence tasks, such as scope resolution.
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