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Abstract

This paper presents the submission of our
team (NORMAS) to the SemEval 2016 se-
mantic textual similarity (STS) shared task.
We submitted three system runs, each using
a set of 36 features extracted from the training
set. The runs explore the use of the following
three machine learning algorithms: Support
Vector Regression, Elastic Net and Random
Forest. Each run was trained using sentence
pairs from the STS 2012 training data. Fea-
tures extracted include lexical, syntactic and
semantic features. This paper describes the
features we designed for assessing the seman-
tic similarity between sentence pairs, the mod-
els we build using these features and the per-
formance obtained by the resulting systems on
the 2016 evaluation data.

1 Introduction

Computationally assessing the semantic similarity
of natural language data has gained the attention of
researchers in the field of computational linguistics.
Machines that are able to quantify the semantics of
natural language have numerous important applica-
tions including: Document Similarity (Elsayed et
al., 2008; Huang, 2008), Word Similarity (Resnik,
1995; Dagan, 2000; Bollegala et al., 2007; Pedersen
et al., 2004), Text Summarization (Barzilay and El-
hadad, 1999; Gong and Liu, 2001), Informtion Re-
trieval (Salton and Buckley, 1988; Manning et al.,
2008), Plagiarism detection (Si et al., 1997), Para-
phrase detection (Fernando and Stevenson, 2008)
and especially Machine Translation (Brown et al.,
1990).

The semantic textual similarity (STS) (Agirre et
al., 2012) task measures the level of semantic equiv-
alence between two approximately sentence sized
snippets of texts on a graded scale from 0 (unrelated)
to 5 (completely equivalent). This paper describes
our participation in the SemEval 2016 STS shared
task (Agirre et al., 2016). Our system explores 36
lexical and semantic features (e.g., string matching,
WordNet similarity, word overlap) in combination
with three very distinct learning algorithms (Support
Vector Regression, Elastic Net and Random forest).

The remainder of this paper is organized as fol-
lows: Section 2 describes our feature set in detail
and our approach to feature selection. Section 3 de-
scribes our machine learning models with section 4
presenting our results on the shared task evaluation
data.

2 Feature Generation

We used a mixture of lexical, syntactic and seman-
tic features extracted from text. Below, we describe
each of the features provided to our model.

2.1 Lexical Features
String matching: String matching techniques com-
pare words in two texts character by character and
can be used to approximately capture morphological
differences in the terms. Bär et al. (2012), one of the
best performing systems in 2012, used variants of
string matching algorithms. Our system made use of
features computed using the following string match-
ing methods:

1. Longest common Substring: This obtains the
longest sequences of words appearing in both
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sentences (Gusfield, 1997).

2. Levenshtein Distance: This measures the num-
ber of basic edit-operations (insertions, dele-
tions, and substitutions) required to change one
text into the other.

3. Jaccard Similarity: This measures the number
of words shared by two sentences in ratio with
the total number of words in the sentences i.e.
given sentences A and B, the ratio is defined as:

Jac =
A ∩B

A ∪B
(1)

Word Ordering: We use the union of all tokens in
a pair of sentences to build a vocabulary of non-
repeating terms. For each sentence, the position
mapping of each word in the vocabulary is used to
build a vector. To obtain the position mapping, a
unique index number is assigned to each vocabu-
lary term. To obtain the word order vector for a
sentence, each term in the vocabulary is compared
against terms in the sentence. If a vocabulary term
is found in the sentence, the index number of that
term in the vocabulary is added to the vector. Oth-
erwise, similarity of the vocabulary term and each
term in the sentence is calculated using a WordNet
based word similarity algorithm. The index num-
ber of the sentence term with highest similarity score
above a threshold is added. If the first two conditions
does not hold, 0 is added to the vector. Consider two
sentences S1 and S2,

S1: A panda bear
S2: A baby panda
Then the vocabulary is a list that contains the

union of tokens in S1 and S2 as shown below:
Vocabulary = A, baby, bear, panda
Vocabulary-Index = A:1, baby:2, bear:3,

panda:4
and the sentences are transformed to the vectors

below:
S1 = 1,0,3,4
S2 = 1,2,4,4
In the example, the vocabulary term bear does not

exist in S2. However, bear is closer to panda than
all the terms in S2. The similarity score between
them also exceeds the threshold. The index num-
ber of panda is thus assigned in place of bear. In

S1, the vocabulary term baby is not similar to any
term, thus 0 is assigned. The word ordering feature
is then computed as the cosine of the vectors after
the WordNet based similarity transformation.

Word Overlap: We use the word n-gram overlap
features of Šarić et al. (2012). The n-grams over-
lap is defined as the harmonic mean of the degree
of mappings between the first and second sentence
and vice versa, requiring an exact string match of
n-grams in the two sentences.

Ng(A,B) =
(
2(
| A |
A ∩B

+
| B |
A ∩B

)−1
)

(2)

Where A and B are the set of n-grams in the two
sentences. We computed three separate features us-
ing equation 2 for each of the following character
n-grams: unigram, bigrams and trigrams. We also
use weighted word overlap which uses information
content (Resnik, 1995).

wwo(A,B) =
∑
w∈A∩B ic(w)∑
w′∈B ic(w′)

(3)

ic(w) =

(
ln

∑
w′∈C freq(w

′
)

freq(w)

)
(4)

Where C is the set of words and freq(w) is the oc-
currence count obtained from the Brown corpus.
Our weighted word overlap feature is computed as
the harmonic mean of the functions wwo(A,B) and
wwo(B,A).

Entity Overlap: When two sentences have Named
Entities (NEs) in common, a semblance of similarity
is reflected. We extracted NEs from each sentence
using the Stanford NER tagger (Finkel et al., 2005;
Manning et al., 2014). The entity overlap feature is
obtained as follows:

EOV =
|A ∩̃B|
|A ∪B| (5)

Where A and B represent the set of named entities in
the first and second sentences, respectively. The in-
tersection, ∩̃, allows partial matches since the NEs
are considered equivalent if either there is an ex-
act match or if one NE is a substring of the other.
For example, ’President Obama’ is not the same
as ’Barack Obama’, but ’Obama’ is considered a
match for either of these.
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2.2 Syntactic Features

POS Overlap: We used the Stanford POS-tagger to
tag the words in each sentence with their POS cate-
gories. We group the words by the following coarse
grained POS categories: nouns, verbs, adjectives
and adverbs. We then compare the overlap between
these classes of part of speech in each sentence, e.g.,
we compare the nouns in sentence 1 to the nouns in
sentence 2 and vice versa across all 4 coarse grained
POS categories. The POS overlap features are de-
fined as the Jaccard similarity of the two sentences
across just the words in a particular POS category:

POVpos =
|Apos ∩Bpos|
|Apos ∪Bpos|

(6)

Where Apos and Bpos are the set of terms in POS
class pos of sentences 1 and 2, respectively. This
results in 4 unique POS overlap features.

Dependency Parsing: It is apt to assume that
shared named entities can point to similarity in sen-
tences. This assumption is more valid if sentences
share the same subject and object. For example, if a
named entity that is a subject in sentence1 is also the
subject in sentence2 and vice versa the object. As an
example, consider the two sentences below:

S1: Obama is the president of the United States
S2: Obama is the leader of the United States
In the first sentence, Obama is the subject (n-subj)

of President while State modifies (nmod) the Presi-
dent. Also in the second sentence Obama is the sub-
ject of leader while State modifies the word leader.

We used the well-known Stanford Parser (Man-
ning et al., 2014; De Marneffe et al., 2006) to ex-
tract the subject-verb-object triples from each sen-
tence. In particular, the Neural Network-based de-
pendency parser (Chen and Manning, 2014) was em-
ployed. We compare the subject and object of both
sentences. If any of the objects or subjects in a sen-
tence is a NE, we simply compare with the corre-
sponding one from the other sentence by pure string
matching.When the same word takes either the role
of subject or object in the two sentences, we assign a
flat score of 0.5. If both the subject and object in the
two sentences correspond to the same NEs as in the
example above, we assign a score of 1.0. Otherwise,
we assign a score of 0.0.

2.3 Semantic Features

We extracted some semantic features using both
information induced from corpus data as well as
knowledge from existing semantic resources as de-
scribed below:

Word Embedding Similarity: Word2Vec1

(Mikolov et al., 2013b; Mikolov et al., 2013a) is an
algorithm for inducing vector space representations
of words, commonly known as word embeddings,
that capture semantic relatedness and similarity.
The method exploits the Distributional Hypothesis
(Turney et al., 2010) and works best when trained
on large corpora. We used the Gensim2 imple-
mentation of the algorithm with specific parameter
fine-tuning.3 Gensim implements a variant of the
algorithm known as Skip-Gram, which trains word
representations using a model that when given a
word will predict what words are likely to occur
within a fixed window around it.4 Once the word
embeddings have been trained, the similarity of
two words is computed as the cosine of the two
embedding vectors.5 Our word embeddings are
trained on a combination of the Wikipedia dump of
English language articles and the STS 2016 training
data.6

For sentence level similarity scores, we compare
each word in the first sentence to each word in the
second sentence, obtaining a similarity score with
the word2vec model. For each pair being com-
pared, if the similarity score is less than < 0.25 then
that similarity value is dropped. The final similarity
is computed by summing the pair similarity values
greater than 0.25 and dividing by the total count of
these similarity scores. The aggregation function is

1Word2vec is available at
https://code.google.com/p/word2vec/

2Gensim is a python library for an array of NLP tasks. It is
available at https://radimrehurek.com/gensim/

3Parameters used: Context Window: 5, Neural Network
layer size: 200, Minimum word count: 5.

4Skip-gram training generally performs better than an alter-
native Word2Vec model known as Continuous-Bag-of-Words
(CBOW) that uses an alternative objective that tries to predict a
word by conditioning on all of the words that surround it within
a window.

5model.similarity(word1, word2) returns a similarity value
from -1 to 1 between word1 and word2. Also model[word1]
returns a numpy vector of word1

6The wikipedia dump was downloaded on July 30, 2015. It
is accessible at https://dumps.wikimedia.org/enwiki/
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given below:

Sim =

∑m,n
i,j |S(wi, wj > x)|

tCount
(7)

Where S(wi, wj) is the similarity score for two
words, tCount is the total number of the set of simi-
larity scores that exceeds the threshold and Sim is the
aggregating function combining all pairwise similar-
ities.

WordNet similarity: The idea of pairing and ag-
gregating similarity of words from two sentences be-
ing compared is not new and has been used both in
textual entailment (Agichtein et al., 2008) and se-
mantic textual similarity (Bär et al., 2012). To de-
rive similarity from WordNet, we used both the path
length between each word as well as the depth func-
tion. Usually, longer path length between two con-
cepts signifies lower similarity. However, as pointed
out by Li et al. (2006), this obviates the distance
knowledge that can be easily observed from the hi-
erarchical organization of some semantic nets. As
a solution, the depth function was introduced, with
the intuition that words at upper layer of a semantic
nets contains general semantics and less similarity
while those at lower layers are more similar. Thus,
similarity should be a function of both the depth and
the path length distances between concepts. If f1(h)
is a function of the depth and f2(l) is a function of
the length, then the similarity between two word is
given by:

S(w1, w2) = f1(h).f2(l) (8)

The length function is a monotonically decreasing
function with respect to the path length l between
two concepts. This is captured by introducing a con-
stant alpha.

f2(l) = e−∝l (9)

Likewise, the depth function is monotonically in-
creasing with respect to the depth h of concept in
the hierarchy.

f1(h) =
eβh − e−βh

eβh + e−βh
(10)

The similarity between two concepts is then calcu-
lated by:

S(w1, w2) = e−∝l.
eβh − e−βh

eβh + e−βh
(11)

Li et al. (2006) empirically discovered that for op-
timal performance in WordNet, alpha should be set
to 0.2 and Beta set to 0.45. To aggregate the sim-
ilarities, we used the formula in equation 7 with a
threshold of 0.25.

Vector Space based Similarity: We used the fea-
ture extraction module of the scikit-learn to extract
the TFIDF weighted feature vectors for the two sen-
tences and then calculated the cosine similarity be-
tween them:

cos(A,B) =

∑n
t=1 TFIDF (wt,A)TFIDF (wt,B)√∑n

t=1w
2
t,A

∑n
t=1w

2
t,B

(12)
Where A and B are the two texts being compared
for similarity. The term frequency TF and inverse
document frequency IDF are computed solely from
the compared sentence pairs.

Compositional Distributional Approach: A lim-
itation of Distributional Hypothesis (Harris, 1954;
Firth, 1957) is that it captures the meaning of
words in isolation. However, the true meaning of
a sentence must take into account the interplay be-
tween the words it contains (Mitchell and Lapata,
2008; Mitchell and Lapata, 2009; Grefenstette et al.,
2014). To account for this, we perform vector com-
position of the words in each sentence, using both
additive and multiplicative composition (Mitchell
and Lapata, 2010; Baroni, 2013). We obtained the
vectors from the Word2Vec model described earlier.
For the additive model, the vectors of all the words
in a sentence are summed together to get a single
vector for that sentence. Likewise, in the multiplica-
tive model, vectors of all words in a sentence are
multiplied component-wise to obtain a single vec-
tor for the sentence. To obtain similarity scores for
each composition method, i.e., additive and multi-
plicative, we take the cosine of the vector space rep-
resentation of the two sentences being compared.

3 System Description

For each sentence pair, our system generates 36 lexi-
cal, syntactic and semantic features. We experiment
with using three distinct learning algorithms to map
our feature representation onto an STS similarity
score for the pair. The three learning algorithms cor-
respond to the three runs we submitted to the shared
task: Normas-RF1, was trained with Random Forest
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Dataset Run1 Run2 Run3 Mean Baseline-Median Baseline-Best
Answer .160 .365 .276 .267 .480 .692

Question .467 .613 .653 .577 .571 .747
Postediting .720* .802* .797* .773 .812 .866
Plagiarism .621 .746 .724 .697 .789 .841
Headlines .588 .688 .722 .666 .764 .827

Runs Mean .508 .640 .630 .596
Table 1: Summary of Pearson Correlation Evaluation Of The Submitted System

(Breiman, 2001; Liaw and Wiener, 2002); Normas-
SV2, uses Support Vector Regression (Chang and
Lin, 2011; Basak et al., 2007); Normas-ECV3, is
based on Elastic Net (Zou and Hastie, 2005). As
training data, we used 2234 sentence pairs from the
2012 training data. Parameter fine-tuning7 for each
of the algorithms was done using OnWN dataset of
the STS 2013 evaluation data as the development
test set. We used the scikit-learn8 implementation
of the three algorithms.

4 Evaluation and Discussion

We conducted two experiments, Pre-Submission and
Post-Submission experiments. Table 1 summarizes
the result of the Runs submitted across the datasets
for the first experiment (Pre-Submission). The
scores in bold shows the best scores per dataset.
The scores with asterisk (*) appended shows the best
scores under each Run. We used the preliminary re-
sult of the 2016 STS task released by the organizers
as the baseline for evaluation. The preliminary re-
sult includes the median scores (Baseline-Median)
and best scores (Baseline-Best) of the participating
systems on each dataset. The Baseline Best is the
score of the top performing system for each dataset
of the Semeval 2016 task(Agirre et al., 2016).

It can be seen from Table 1 that our best scores
were from #Run2 and #Run3. The Random Forest
algorithm performed poorly compared to the other
two Runs on all of the datasets. All three Runs
performed best on the Post-Editing dataset. This
conforms to the pattern observed from the Baseline

7For SVR, we used the LibSvm scikit implementation with
RBF kernel. We set C=1.0, epsilon=0.2 and cache size=200.
For Elastic Net we used alpha=0.5. Random Forest, we used
100 trees, max depth=None and max leaf nodes=None. Grid
search was used for hyperparameter optimization.

8http://scikit-learn.org/

scores. Analysis of this dataset revealed that the sen-
tences are longer and share more words.

Our worst performance across board is on the
Answer-Answer dataset. Inspecting the data reveals
that the sentences are both short and tend to share
words that have little or no impact on their overall
meaning. Our models may have been misguided by
these spurious matching words.

Overall, our best systems, #Run2 and #Run3,
have results very close to the Baseline-Best on
three datasets and outclassed Baseline-Median on
Question-question dataset. Our system performance
may have been handicapped by the limited amount
of data we used for training. Recall that we trained
our system on only 2234 sentences of the 2012 train-
ing data. The tiny size of the dataset was necessi-
tated by the complexity of computing some of the
semantic features. Specifically, the WordNet sim-
ilarity features used. Also, analysis of our train-
ing data shows that the sentences are of few words
(short) and with high term overlap. Perhaps, our sys-
tem could have performed better with more training
data, especially if we had used a dataset with long
sentences and also included more training data from
previous STS evaluation tasks.

After the official evaluation, we reproduced our
experiment using a larger training set. The new
training data contains 9902 sentences drawn from
the 2012-2014 evaluation datasets. Using more
training data resulted in a notable improvement in
performance. Table 2 reports the results obtained
by our (post-submission) systems. The Percent-
age Gain column shows the improvement in per-
formance when the Mean result in the second ex-
periment is compared to the one submitted initially
(pre-submission).

The best improvement observed is from the
Answer-Answer dataset with 38.0 % improvement
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Dataset Run1 Run2 Run3 Mean Percent Gain Baseline-Median Baseline-Best
Answer .380 .542 .371 .431 38.0 .480 .692

Question .698 .714 .723 .711 18.8 .571 .747
Postediting .819* .852* .809* .826 6.80 .812 .866
Plagiarism .797 .821 .784 .800 12.8 .789 .841
Headlines .805 .789 .780 .791 15.8 .764 .827

Runs Mean .699 .743 .693 .711 16.1 .683 .794
Table 2: Post-Submission Experiment With More Training Data (9902 sentence pairs)

across all Runs. The result from our top performing
Runs across all datasets clearly surpass the Baseline-
Median results. The top scores for each dataset were
also very close to the Baseline-Best results. Our
overall Mean of 0.711 surpasses the overall Mean
of the Baseline-Median (0.683) and is far better than
the 0.596 obtained by our submitted systems.

5 Conclusion

This paper has described our system submission to
the SemEval 2016 STS shared task. We partici-
pated in the STS-Core (Monolingual subtask). We
submitted three Runs using the same feature set but
with models built by different machine learning al-
gorithms. We obtained the best performance from
the Support Vector Regression and Elastic Net based
models and observed relatively poor performance
from Random Forests.

The systems we submitted to the shared task ob-
tained results that are very close to the best perform-
ing shared task system in 3 datasets and above the
median mark on another dataset .

After the shared task, we reproduced our exper-
iment on a bigger training dataset. We obtained a
significant improvement (16.1%) when compared to
the first experiment.

In future work, we plan to investigate the signif-
icance of all features so as to identify noisy or less
important ones as well as to attempt to identify the
optimal combination of features. Another improve-
ment might be to build an ensemble combining in-
dividual systems built using variations in any one
of the following: learning algorithm, feature set, or
training data sampling (e.g., combining our best two
systems).
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