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Abstract 

We describe our CoNLL 2009 Shared Task 
system in the present paper. The system in-
cludes three cascaded components: a genera-
tive dependency parser, a classifier for 
syntactic dependency labels and a semantic 
classifier. The experimental results show that 
the labeled macro F1 scores of our system on 
the joint task range from 43.50% (Chinese) to 
57.95% (Czech), with an average of 51.07%. 

1 Introduction 

The CoNLL 2009 shared task is an extension of 
the tasks addressed in previous years: unlike the 
English-only 2008 task, the present year deals with 
seven languages; and unlike 2006 and 2007, se-
mantic role labeling is performed atop the surface 
dependency parsing. 

We took part in the closed challenge of the joint 
task.1 The input of our system contained gold stan-
dard lemma, part of speech and morphological fea-
tures for each token. Tokens which were 
considered predicates were marked in the input 
data. The system was required to find the follow-
ing information: 

• parent (syntactic dependency) for each to-
ken 

                                                           
1 For more details on the two tasks and challenges, see Haji� et 
al. (2009). 

• label for each syntactic dependency (to-
ken) 

• label for every predicate 

• for every token (predicate or non-
predicate) A and every predicate P in the 
sentence, say whether there is a semantic 
relation between P and A (A is an argu-
ment of P) and if so, provide a label for the 
relation (role of the argument) 

The organizers of the shared task provided train-
ing and evaluation data (Haji� et al., 2006; Sur-
deanu et al., 2008; Burchardt et al., 2006; Taulé et 
al., 2008; Kawahara et al., 2002; Xue and Palmer, 
2009) converted to a uniform CoNLL Shared Task 
format. 

2 System Description 

The system is a sequence of three components: a 
surface syntactic parser, a syntactic tagger that as-
signs labels to the syntactic dependencies and a 
semantic classifier (labels both the predicates and 
the roles of their arguments). We did not attempt to 
gain advantage from training a joint classifier for 
all the subtasks. We did not have time to do much 
beyond putting together the basic infrastructure. 
The components 2 and 3 are thus fairly primitive. 

2.1 Surface Dependency Parser 

We use the parser described by Zeman (2004). The 
parser takes a generative approach. It has a model 
of dependency statistics in which a dependency is 
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specified by the lemma and tag of the parent and 
the child nodes, by direction (left or right) and ad-
jacency. The core of the algorithm can be de-
scribed as repeated greedy selecting of best-
weighted allowed dependencies and adding them 
to the dependency tree. 

There are other components which affect the de-
pendency selection, too. They range from support-
ing statistical models to a few hard-coded rules. 
However, some features of the parser are designed 
to work with Czech, or even with the Prague De-
pendency Treebank. For instance, there is a spe-
cialized model for coordinative constructions. The 
model itself is statistical but it depends on the PDT 
annotation guidelines in various ways. Most nota-
bly, the training component recognizes coordina-
tion by the Coord dependency label, which is not 
present in other treebanks. Other rules (e.g. the 
constraints on the set of allowed dependencies) 
rely on correct interpretation of the part-of-speech 
tags. 

In order to make the parser less language-
dependent in the multilingual environment of the 
shared task, we disabled most of the abovemen-
tioned treebank-bound features. Of course, it led to 
decreased performance on the Czech data.2 

2.2 Assignment of Dependency Labels 

The system learns surface dependency labels as a 
function of the part-of-speech tags and features of 
the parent and the child node. Almost no back-off 
is applied. The most frequent label for the given 
pair of tags (and feature structures) is always se-
lected. If the pair of tags is unknown, the label is 
based on the features of the child node, and if it is 
unknown, too, the most frequent label of the train-
ing data is selected. 

Obviously, both the training and the labeling 
procedures have to know the dependencies. Gold 
standard dependencies are examined during train-
ing while parser-generated dependencies are used 
for real labeling. 

2.3 Semantic Classifier 

The semantic component solves several tasks. 
First, all predicates have to be labeled. Tokens that 

                                                           
2 However, the parser – without adaptation – would not do 
well on Czech anyway because the PDT tags are presented in 
a different format in the shared task data. 

are considered predicates in the particular treebank 
are marked on input, so this is a simple classifica-
tion problem. Again, we took the path of least re-
sistance and trained the PRED labels as a function 
of gold-standard lemmas. 

Second, we have to find semantic dependencies. 
Any token (predicate or not) can be the argument 
of one or more predicates. These relations may or 
may not be parallel to a syntactic dependency. For 
each token, we need to find out 1. which predicates 
it depends on, and 2. what is the label of its seman-
tic role in this relation? 

The task is complex and there are apparently no 
simple solutions to it. We learn the semantic role 
labels as a function of the gold-standard part of 
speech of the argument, the gold-standard lemma 
of the predicate and the flag whether there is a syn-
tactic dependency between the two nodes or not. 
This approach makes it theoretically possible to 
make one token semantically dependent on more 
than one predicate. However, we have no means to 
control the number of the dependencies. 

3 Results 

The official results of our system are given in 
Table 1. The system made the least syntactic errors 
(attachment and labels) for Japanese. The Japanese 
treebank seems to be relatively easy to parse, as 
many other systems achieved very high scores on 
this data. At the other end of the rating scale, Chi-
nese seems to be the syntactically hardest lan-
guage. Our second-worst syntactic score was for 
Czech, most likely owing to the turning off all lan-
guage-dependent (and Czech-biased) features of 
the parser. 

An obvious feature of the table is the extremely 
poor semantic scores (in contrast to the accuracy of 
surface dependency attachment and labels). While 
the simplicity of the additional models does not 
seem to hurt too much the dependency labeling, it 
apparently is too primitive for semantic role label-
ing. We analyze the errors in more detail in Sec-
tion �4. 

The system is platform-independent;3 we have 
been running all the experiments under Linux on 
an AMD Opteron 848 processor, 2 GHz, with 
32 GB RAM. The running times and memory re-
quirements are shown in Table 2. 

                                                           
3 It is written entirely in Perl. 
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To assess the need for data, Table 3 presents se-
lected points on the learning curve of our system. 
The system has been retrained on 25, 50 and 75% 
of the training data for each language (the selection 
process was simple: the first N% of sentences of 
the training data set were used). 

Generally, our method does not seem very data-
hungry. Even for Japanese, with the smallest train-
ing data set, reducing training data to 25% of the 
original size makes the scores drop less than 1% 
point. The drop for other languages lies mostly 
between 1 and 2 points. The exceptions are (unla-
beled) syntactic attachment accuracies of Czech 
and Spanish, and labeled semantic F1 of Spanish 
and Chinese. The Chinese learning curve also con-
tains a nonmonotonic anomaly of syntactic de-
pendency labeling between data sizes of 50 and 
75% (shown in boldface). This can be probably 
explained by uneven distribution of the labels in 
training data. 

As to the comparison of the various languages 
and corpora, Japanese seems to be the most spe-
cific (relatively high scores even with such small 
data). Spanish and Catalan are related languages, 
their treebanks are of similar size, conform to simi-
lar guidelines and were prepared by the same team. 
Their scores are very similar. 

4 Discussion 

In order to estimate sources of errors, we are now 
going to provide some analysis of the data and the 
errors our system does. 

4.1 DEPREL Coverage 

The syntactic tagger (assigns DEPREL syntactic 
labels) and the semantic tagger (assigns PRED and 
APRED labels) are based on simple statistical 
models without sophisticated back-off techniques. 

Language Cs En De Es Ca Ja Zh 
Training sentences 43955 40613 38020 15984 14924 4643 24039 
Training tokens 740532 991535 680710 477810 443317 119144 658680 
Average sentence length 17 24 18 30 30 26 27 
Training minutes 9:21 10:41 8:28 6:17 5:42 1:24 7:01 
Training sentences per secnd 78 63 75 42 44 55 57 
Training tokens per second 1320 1547 1340 1267 1296 1418 1565 
Training rsize memory 3.9 GB 2.2 GB 2.7 GB 2.7 GB 2.4 GB 416 MB 1.5 GB 
Test sentences 4213 2399 2000 1725 1862 500 2556 
Test tokens 70348 57676 31622 50630 53355 13615 73153 
Parsing minutes 6:36 3:11 2:24 5:47 6:05 0:46 5:45 
Parsing sentences per second 10.6 12.6 13.9 5.0 5.1 10.9 7.4 
Parsing tokens per second 178 302 220 146 146 296 212 
Parsing rsize memory 980 MB 566 MB 779 MB 585 MB 487 MB 121 MB 444 MB 
 

Table 2. Time and space requirements of the syntactic parser. 

Language Average Cs En De Es Ca Ja Zh 
Labeled macro F1 51.07 57.95 50.27 49.57 48.90 49.61 57.69 43.50 
OOD lab mac F1 43.67 54.49 48.56 27.97     
Labeled syn accur 64.92 57.06 61.82 69.79 65.98 67.68 82.66 49.48 
Unlab syn accur 70.84 66.04 70.68 72.91 71.22 73.81 83.36 57.87 
Syn labeling accur 79.20 69.10 74.24 84.63 81.83 82.46 95.98 66.13 
OOD lab syn acc 50.20 51.45 62.83 36.31     
OOD unl syn acc 58.08 60.56 71.78 41.90     
OOD syn labeling 69.65 65.64 75.22 68.08     
Semantic lab F1 32.14 58.13 36.05 16.44 25.36 24.19 30.13 34.71 
OOD sem lab F1 32.86 56.83 31.77 9.98     
 

Table 1. The official results of the system. ISO 639-1 language codes are used (cs = Czech, en = English, de = Ger-
man, es = Spanish, ca = Catalan, ja = Japanese, zh = Chinese). “OOD” means “out-of-domain test data”. 
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Sparse data could pose a serious problem. So how 
sparse are the data? Some cue could be drawn from 
Table 3. However, we should also know how often 
the labels had to be assigned to an unknown set of 
input features. 

DEPREL (syntactic dependency label) is esti-
mated based on morphological tag (i.e. POS + 
FEAT) of both the child and parent. If the pair of 
tags is unknown, then it is based on the tag of the 
child, and if it is unknown, too, the most frequent 
label is chosen. Coverage is high: 93 (Czech) to 
97 % (Chinese) of the pairs of tags in test data 
were known from training data. Moreover, the er-
ror rate on the unknown pairs is actually much 
lower than on the whole data!4 

4.2 PRED Coverage 

PRED (predicate sense label) is estimated based on 
lemma. For most languages, this seems to be a 
good selection. Japanese predicate labels are al-
ways identical to lemmas; elsewhere, there are by 
average 1.05 (Chinese) to 1.48 (Spanish) labels per 
lemma; the exception is German with a label-
lemma ratio of 2.33. 

Our accuracy of PRED label assignment ranges 
from 71% (German) to 100% (Japanese). We al-
ways assign the most probable label for the given 

                                                           
4 This might suggest that the input features are chosen inap-
propriately and that the DEPREL label should be based just on 
the morphology of the child. 

lemma; if the lemma is unknown, we copy the 
lemma to the PRED column. Coverage is not an 
issue here. It goes from 94% (Czech) to almost 
100% (German).5 The accuracy on unknown lem-
mas could probably be improved using the sub-
categorization dictionaries accompanying the 
training data. 

 
Language Lemma PREDs 

1. mít 77 Cs 2. p�ijmout 8 
1. take 20 En 2. go 18 
1. kommen 28 De 2. nehmen 25 
1. pasar 10 
1. dar 10 
3. llevar 9 Es 

3. hacer 9 
1. fer 11 Ca 2. pasar 9 

Ja Always 1 PRED per lemma 
1.  (yào) 8 
1.  (y�u) 8 Zh 
1.  (d�) 8 

Table 4. Most homonymous predicates. 

                                                           
5 The coverage of Japanese is 88% but since Japanese PRED 
labels are exact copies of lemmas, even unknown lemmas 
yield 100%-correct labels. 

Score TrSize Average Cs En De Es Ca Ja Zh 
25% 69.38 63.72 69.70 71.36 68.99 72.41 82.58 56.90 
50% 70.14 64.96 70.13 72.11 70.37 72.83 82.99 57.58 
75% 70.51 65.50 70.37 72.50 70.83 73.47 83.17 57.73 

UnLab 
Syn 
Attach 

100% 70.84 66.04 70.68 72.91 71.22 73.81 83.36 57.87 
25% 78.47 68.28 73.79 84.21 80.67 81.92 95.70 64.71 
50% 78.94 68.68 74.08 84.44 81.59 81.99 95.86 65.94 
75% 79.03 68.87 74.14 84.51 81.67 82.19 95.97 65.83 

Syn 
Label 

100% 79.20 69.10 74.24 84.63 81.83 82.46 95.98 66.13 
25% 30.10 56.29 34.47 15.51 22.78 22.14 28.91 30.58 
50% 33.85 57.24 35.34 16.03 24.46 23.13 29.60 33.31 
75% 31.76 57.76 35.85 16.29 24.96 23.77 29.96 33.71 

Labeled 
Sem F1 

100% 32.14 58.13 36.05 16.44 25.36 24.19 30.13 34.71 
25% 49.19 55.87 49.06 48.10 46.22 47.76 56.66 40.64 
50% 50.28 56.99 49.66 48.90 47.97 48.53 57.23 42.66 
75% 50.68 57.53 50.01 49.26 48.47 49.21 57.52 42.73 

Labeled 
Macro 
F1 

100% 51.07 57.95 50.27 49.57 48.90 49.61 57.69 43.50 
 

Table 3. The learning curve of the principal scores. 
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4.3 APRED Assignment Analysis 

The most complicated part of the task is the as-
signment of the APRED labels. In a sense, APRED 
labeling is dependency parsing on a deeper level. It 
consists of several sub-problems: 

• Is the node an argument of any predicate at 
all? 

• If so, how many predicates is the node ar-
gument of? Should the predicate be, say, 
coordination, then the node would seman-
tically depend on all members of the coor-
dination. 

• In what way is the semantic dependency 
related to the syntactic dependency be-
tween the node and its syntactic parent? In 
majority of cases, syntactic and semantic 
dependencies go parallel; however, there 
are still a significant number of semantic 
relations for which this assumption does 
not hold.6 

• Once we know that there is a semantic re-
lation (an APRED field should not be 
empty), we still have to figure out the cor-
rect APRED label. This is the semantic 
role labeling (or tagging) proper. 

                                                           
6 Nearly all Spanish and Catalan semantic dependencies are 
parallel to syntactic ones (but not all syntactic dependencies 
are also semantic); in most other languages, about two thirds 
of semantic relations match syntax. Japanese is the only lan-
guage in which this behavior does not prevail. 

Our system always makes semantic roles paral-
lel to surface syntax. It even does not allow for 
empty APRED if there is a syntactic dependency—
this turned out to be one of the major sources of 
errors.7 

The role labels are estimated based on the 
lemma of the predicate and the part of speech of 
the argument. Low coverage of this pair of features 
in the training data turns to be another major 
source of errors. If the pair is not known from 
training data, the system selects the most frequent 
APRED in the given treebank. Table 5 gives an 
overview of the principal statistics relevant to the 
analysis of APRED errors. 

5 Post-evaluation Experiments 

Finally, we performed some preliminary experi-
ments focused on the syntactic parser. As men-
tioned in Section �2.1, many features of the parser 
have to be turned off unless the parser understands 
the part-of-speech and morphological features. We 
used DZ Interset (Zeman, 2008) to convert Czech 
and English CoNLL POS+FEAT strings to PDT-
like positional tags. Then we switched back on the 
parser options that use up the tags and re-ran pars-
ing. The results (Table 6) confirm that the tag ma-
nipulation significantly improves Czech parsing 
while it does not help with English. 

 

                                                           
7 This is a design flaw that we overlooked. Most likely, mak-
ing empty APRED one of the predictable values would im-
prove accuracy. 

Language Cs En De Es Ca Ja Zh 
Potential APRED slots 1287545 195029 12066 192103 197976 57394 329757 
Filled in APREDs 87934 32968 10480 49904 52786 6547 49047 
Feature pair coverage (%) 46.05 40.04 14.99 29.34 29.89 18.31 38.08 
Non-empty APRED accuracy 73.19 64.65 67.37 56.90 57.89 59.20 68.77 
Unlabeled precision 34.94 26.86 10.88 21.71 20.25 9.13 25.66 
Unlabeled recall 62.61 63.86 97.52 93.40 92.72 22.10 67.82 
Unlabeled F 44.86 37.81 19.57 35.23 33.24 12.93 37.23 
Labeled precision 25.58 17.36 7.33 12.35 11.72 5.41 17.64 
Labeled recall 45.83 41.28 65.70 53.15 53.67 13.08 46.64 
Labeled F 32.83 24.44 13.19 20.05 19.24 7.65 25.60 
 

Table 5. APRED detailed analysis. Non-empty APRED accuracy includes only APRED cells that were non-empty 
both in gold standard and system output. Feature-pair coverage includes all cells filled by the system. Unlabeled preci-
sion and recall count non-empty vs. empty APREDs without respect to their actual labels. Counted on development 
data with gold-standard surface syntax. 
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 Cs En 
Before 65.81 69.48 
After 71.76 68.92 

Table 6. Unlabeled attachment accuracy on de-
velopment data before and after tagset conversion. 

6 Conclusion 

We described one of the systems that participated 
in the CoNLL 2009 Shared Task. We analyzed the 
weaknesses of the system and identified possible 
room for improvement. The most important point 
to focus on in future work is specifying where 
APRED should be filled in. The links between syn-
tactic and semantic structures have to be studied 
further. Subcategorization frames could probably 
help improve these decisions, too—our present 
system ignores the subcategorization dictionaries 
that accompany the participating treebanks. 
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