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Abstract

RelHunter is a Machine Learning based
method for the extraction of structured in-
formation from text. Here, we apply Rel-
Hunter to the Hedge Detection task, pro-
posed as the CoNLL-2010 Shared Task1.
RelHunter’s key design idea is to model
the target structures as a relation over enti-
ties. The method decomposes the original
task into three subtasks: (i) Entity Iden-
tification; (ii) Candidate Relation Gener-
ation; and (iii) Relation Recognition. In
the Hedge Detection task, we define three
types of entities: cue chunk, start scope
token and end scope token. Hence, the
Entity Identification subtask is further de-
composed into three token classification
subtasks, one for each entity type. In
the Candidate Relation Generation sub-
task, we apply a simple procedure to gen-
erate a ternary candidate relation. Each in-
stance in this relation represents a hedge
candidate composed by a cue chunk, a
start scope token and an end scope to-
ken. For the Relation Recognition sub-
task, we use a binary classifier to discrim-
inate between true and false candidates.
The four classifiers are trained with the
Entropy Guided Transformation Learning
algorithm. When compared to the other
hedge detection systems of the CoNLL
shared task, our scheme shows a competi-
tive performance. The F -score of our sys-
tem is 54.05 on the evaluation corpus.
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1Closed Task 2: detection of hedge cues and their scopes.

1 Introduction

Hedges are linguistic devices that indicate un-
certain or unreliable information within a text.
The detection of hedge structures is important for
many applications that extract facts from textual
data. The CoNLL-2010 Shared Task (Farkas et
al., 2010) is dedicated to hedge detection.

A hedge structure consists of a cue and a scope.
In Figure 1, we present a sentence with two hedge
instances. The hedge cues are highlighted and
their scopes are delimited by brackets. The hedge
cue comprises one or more keywords that indi-
cate uncertainty. The hedge scope is the uncertain
statement which is hedged by the cue. The scope
always includes the corresponding cue.

[ They indicate that [ the demonstration
is possible in this context ] and there is a
correlation ]

Figure 1: Sentence with two hedge instances.

Over the last two decades, several Computa-
tional Linguistic problems have been successfully
modeled as local token classification tasks (Brill,
1995; Milidiú et al., 2009). Nevertheless, the
harder problems consist in identifying complex
structures within a text. These structures comprise
many tokens and show non local token dependen-
cies.

Phrase chunking (Sang and Buchholz, 2000) is
a task that involves structure recognition. Pun-
yakanok and Roth decompose this task into
four subtasks, that are sequentially solved (Pun-
yakanok and Roth, 2001). They use Hidden
Markov Models for the first three subtasks. They
find out that task decomposition improves the
overall token classification modeling.

Clause identification (Sang and Déjean, 2001)
is another task that requires structure recognition.
As clauses may embed other clauses, these struc-
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tures involve stronger dependencies than phrase
chunks. Carreras et al. propose an approach that
extends Punyakanok and Roth’s previous work
(Carreras et al., 2002). Their system comprises
complex methods for training and extraction, in
order to exploit the specific dependency aspects of
clause structures.

Phrase Recognition is a general type of task that
includes both phrase chunking and clause iden-
tification. Carreras et al. propose the Filtering-
Ranking Perceptron (FRP) system for this general
task (Carreras et al., 2005). The FRP task model-
ing is strongly related to previous proposals (Pun-
yakanok and Roth, 2001; Carreras et al., 2002).
However, it simultaneously learns to solve three
subtasks. FRP is very effective, although compu-
tationally expensive at both training and prediction
time. Currently, FRP provides the best performing
clause identification system.

In Morante and Daelemans (2009), the hedge
detection task is solved as two consecutive classi-
fication tasks. The first one consists of classify-
ing the tokens of a sentence as hedge cues using
the IOB tagging style. The second task consists of
classifying tokens of a sentence as being the start
of a hedge scope, the end of one, or neither. The
result of those two tasks is combined using a set of
six rules to solve the hedge detection task.

Here, we describe RelHunter, a new method
for the extraction of structured information from
text. Additionally, we apply it to the Hedge Detec-
tion task. RelHunter extends the modeling strat-
egy used both in Carreras et al. (2005) and Pun-
yakanok et al. (2001). Other applications of this
method are presented in Fernandes at al. (2009b;
2010).

The remainder of this text is organized as fol-
lows. In Section 2, we present an overview of the
RelHunter method. The modeling approach for
the Hedge Detection task is presented in Sections
3 and 4. The experimental findings are depicted
and discussed in Section 5. Finally, in Section 6,
we present our final remarks.

2 RelHunter Overview

The central idea of RelHunter is to model the tar-
get structures as a relation over entities. To learn
how to extract this relation from text, RelHunter
uses two additional schemes: task decomposition
and interdependent classification.

We decompose the original task into three sub-

tasks: (i) Entity Identification; (ii) Candidate Re-
lation Generation; and (iii) Relation Recognition.
In Figure 2, we illustrate the application of Rel-
Hunter to hedge detection. We use the sentence
introduced by Figure 1.

Entity Identification is a local subtask, in which
simple entities are detected without any concern
about the structures they belong to. The outcome
of this subtask is the entity set. For instance, for
hedge detection, we identify three types of enti-
ties: hedge cues, tokens that start a scope and to-
kens that end a scope.

The second subtask is performed by a simple
procedure that generates the candidate relation
over the entity set. This relation includes true and
false candidates. This procedure considers do-
main specific knowledge to avoid the generation
of all possible candidates. In the hedge detection
task, we define the candidate relation as the set
of entity triples that comprise a hedge cue, a start
scope token and an end scope token, such that the
start token does not occur after the end token and
the hedge cue occurs between the start and the end
tokens.

The Relation Recognition subtask is a binary
classification problem. In this subtask, we dis-
criminate between true and false candidates. The
output relation produced in this subtask contains
the identified hedge instances.

3 Hedge Detection using RelHunter

In this section, we detail the RelHunter method
and describe its application to hedge detection.

3.1 Entity Identification

We consider three specific entity types: cue chunk,
start scope token, and end scope token. We divide
entity identification into three token classification
tasks, one for each entity type. Thus, we use the
original corpus to train three classifiers.

The cue chunk subtask is approached as a to-
ken classification problem by using the IOB tag-
ging style. The token tag is defined as follows: I,
when it is inside a hedge cue; O, when it is outside
a hedge cue; and B, when it begins a hedge cue
immediately after a distinct cue. As the baseline
classifier, we use the Cue Dictionary proposed in
Morante and Daelemans (2009), classifying each
occurrence of those words as a cue.

The start scope and end scope subtasks are
modeled as binary token classification problems.
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Figure 2: Diagram of the RelHunter method.

As the baseline classifier for the start scope sub-
task, we assign the first token of each hedge cue as
the start of a scope.

We have two baseline classifiers for the end
scope subtask: END and END-X. The END sys-
tem classifies as an end token the second to the
last token of each sentence that contains a cue.
Due to the frequent occurrence of parenthesized
clauses at the end of sentences in full articles, the
END-X system extends the END system with an
additional operation. It reassigns an end scope tag,
from a close parentheses token, to the token before
its corresponding open parentheses.

3.2 Candidate Relation Generation

We define as the candidate hedge relation the set
of entity triples that comprise a hedge cue, a start
scope token and an end scope token, such that the
start token does not occur after the end token and
the hedge cue occurs between the start and the end
tokens.

3.3 Relation Recognition

We train a binary classifier to discriminate be-
tween positive and negative candidates within the
candidate relation. This classifier is trained on the
relation dataset, which is built by a general pro-
cedure. This dataset contains an entry for each
candidate. For each candidate, we generate two
feature sets: local features and global features.

The local features include local information
about each candidate entity, namely: cue chunk,
start scope token and end scope token. These fea-
tures are retrieved from the original corpus. For
the start and end tokens, we use all their features in
the original corpus. For the cue chunk, we use the
features of the rightmost token within the chunk.

The global features follow Carreras et al.
(2002). These features are generated by consid-
ering the whole sentence where the candidate lies
in. They inform about the occurrence of relevant
elements within sentence fragments. We consider
as relevant elements the three entity types and ver-
bal chunks.

For each candidate entity, we consider three
fragments. The first one contains all the tokens be-
fore the entity. The second, all the entity tokens,
and the third all the tokens after the entity. Simi-
larly, for the whole candidate, we have three more
fragments: one containing all the tokens before the
candidate, another containing all the candidate to-
kens, and the third one containing all the tokens
after the candidate. Thus, there are 12 fragments
for each candidate, three for each entity plus three
for the whole candidate.

For each relevant element and fragment, we
generate two global features in the relation dataset:
a flag indicating the occurrence of the element
within the fragment and a counter showing its fre-
quency.

The relation dataset has km local features and
6r(k + 1) global features, where k is the relation
cardinality (number of entities), m is the number
of features in the original corpus, and r is the num-
ber of relevant elements.

Our current RelHunter implementation uses the
Entropy Guided Transformation Learning (ETL)
as its learning engine (Milidiú et al., 2008; dos
Santos and Milidiú, 2009). For instance, we train
four ETL based classifiers: one for each Entity
Identification subtask and one for the Relation
Recognition subtask. In the next section, we de-
scribe an important issue explored by the ETL al-
gorithm.
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4 Interdependent Classification

The input to the Relation Recognition subtask is
the candidate relation, i.e., a set of hedge candi-
dates. The corresponding classifier must discrim-
inate positive from negative candidates. However,
identifying one candidate as positive implies that
some other candidates must be negatives. This in-
volves a special modeling issue: interdependent
classification. The learning engine may explore
these dependencies, when building the classifier
for this subtask.

Interdependent classification is usually assumed
for neighboring examples. When the learning
model adopts a Markovian Property, then the
neighborhood is given by a context window. This
is the case for Markovian Fields such as Hidden
Markov Models. Another model that also explores
interdependent examples is ETL.

ETL is a very attractive modeling tool and has
been applied to several classification tasks (Mi-
lidiú et al., 2008; dos Santos and Milidiú, 2009;
Fernandes et al., 2009a; Fernandes et al., 2010).
ETL uses an annotated corpus, where the corre-
sponding class is attached to each example. The
corpus is partitioned into segments. Each segment
is a sequence of examples. Examples within the
same segment are considered dependent. Con-
versely, examples within different segments are
considered independent. Moreover, an example
classification depends only on the features of the
examples from its corresponding context window.
Hence, to apply ETL we need to provide three
modeling ingredients: segment definition, exam-
ple ordering within a segment and the context win-
dow size. Given that, classification dependencies
are explored by the ETL classifier. Hence, Rel-
Hunter uses ETL as its learning engine.

We include in the same segment the hedge can-
didates that have the same cue and start scope to-
kens. Within a segment, we order the candidates
by the order of the end token in the original cor-
pus. We use a context window of 7 candidates,
i.e., three candidates before the current, the current
candidate and three candidates after the current.

5 Experimental Results

We use the corpus provided in the CoNLL-2010
Shared Task to train and evaluate our hedge de-
tection system. We add the following annota-
tion to the corpus: word stems, part-of-speech
tags, phrase chunks, and clause annotations. Word

stems have been generated by the Porter stemmer
(Porter, 1980). The additional annotation has been
generated by ETL based systems (dos Santos and
Milidiú, 2009; Fernandes et al., 2009b; Milidiú et
al., 2008).

The CoNLL corpus is based on the BioScope
corpus (Vincze et al., 2008). Since it contains doc-
uments of two different kinds – paper abstracts and
full papers – we split it into two subcorpora. The
first subcorpus is called ABST and contains all the
paper abstracts. The second is called FULL and
contains all the full papers.

We have two experimental setups: Development
and Evaluation. In the Development Setup, we use
ABST as the training corpus and FULL as the de-
velopment corpus. This is a conservative decision
since the CoNLL Evaluation Corpus is comprised
only of full articles. In the Evaluation Setup, we
use the union of ABST and FULL as the train-
ing corpus and report the performance over the
CoNLL Evaluation Corpus.

5.1 Development

Here, we report the development setup experimen-
tal findings. In Table 1, we show the performance
of the three baseline classifiers. The start and end
classifiers are evaluated with golden standard cue
chunks. All results are obtained with the END-X
baseline system, except when explicitly stated.

Task Precision Recall F-score

Cue 51.96 51.65 51.80
Start scope 72.01 72.22 72.11
End scope 65.90 58.97 62.24

Table 1: Development performance of the three
Baseline Classifiers.

In Table 2, we report the performance of the
three entity identification ETL classifiers. Again,
the start and end classifiers are evaluated with
golden standard cue chunks. These results indi-
cate that the end scope subtask is the hardest one.
Indeed, our ETL classifier is not able to improve
the baseline classifier performance. The last ta-
ble line shows the performance of the RelHunter
method on the target task – hedge detection.

5.2 Evaluation

Here, we report the evaluation setup findings. In
Table 3, we show the performance of the three
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Task Precision Recall F-score

Cue 81.23 73.20 77.01
Start scope 91.81 72.37 80.94
End scope 65.90 58.97 62.24

Hedge 53.49 34.43 41.89

Table 2: Development performance of the three
entity identification ETL classifiers and the Rel-
Hunter method to hedge detection.

baseline classifiers. The start and end classifiers
are evaluated with golden standard cue chunks.

Task Precision Recall F-score

Cue 45.12 60.02 51.52
Start scope 75.51 75.73 75.62
End scope 81.01 72.56 76.55

Table 3: Evaluation performance of the three
Baseline Classifiers.

In Table 4, we report the performance of the
three entity identification ETL classifiers. Again,
the start and end classifiers are evaluated with
golden standard cue chunks. The last table line
shows the performance of the RelHunter method
on the target task – hedge detection.

Task Precision Recall F-score

Cue 78.73 77.05 77.88
Start scope 89.21 77.86 83.15
End scope 81.01 72.56 76.55

Hedge 57.84 50.73 54.05

Table 4: Evaluation performance of the three
entity identification ETL classifiers and the Rel-
Hunter method to hedge detection.

In Table 5, we report the Hedge Detection per-
formances when using END and END-X, as the
baseline classifier for the end scope subtask. The
use of END-X improves the overall system F -
score by more than ten twelve.

In Table 6, we report the Final Results of the
CoNLL-2010 Shared Task – Closed Task 2. For
the sake of comparison, we also include the per-
formance of the RelHunter system with END-X,
that has been developed and tested after the com-

End scope Precision Recall F-score

END 45.96 38.04 41.63
END-X 57.84 50.73 54.05

Table 5: Evaluation performance of the RelHunter
system when using END and END-X.

petition end. The version with the END baseline
holds rank 7 at the competition.

Official
System P R F

Rank

1 Morante 59.62 55.18 57.32
2 Rei 56.74 54.60 55.65
3 Velldal 56.71 54.02 55.33
- RelHunter 57.84 50.73 54.05
4 Li 57.42 47.92 52.24
5 Zhou 45.32 43.56 44.42
6 Zhang 45.94 42.69 44.25
7 Fernandes 45.96 38.04 41.63
8 Vlachos 41.18 35.91 38.37
9 Zhao 34.78 41.05 37.66
10 Tang 34.49 31.85 33.12
11 Ji 21.87 17.23 19.27
12 Täckström 02.27 02.03 02.15

Table 6: Evaluation performance of the CoNLL-
2010 systems and the RelHunter method with the
END-X end scope classifier.

6 Conclusion

We propose RelHunter, a new machine learning
based method for the extraction of structured in-
formation from text. RelHunter consists in model-
ing the target structures as a relation over entities.
To learn how to extract this relation from text, Rel-
Hunter uses two main schemes: task decomposi-
tion and interdependent classification.

RelHunter decomposes the identification of en-
tities into several but simple token classification
subtasks. Additionally, the method generates a
candidate relation over the identified entities and
discriminates between true and false candidates
within this relation.

RelHunter uses the Entropy Guided Transfor-
mation Learning algorithm as its learning engine.
As Hidden Markov Models, ETL is able to con-
sider interdependent examples. RelHunter ex-
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ploits this powerful feature in order to tackle de-
pendencies among the hedge candidates.

RelHunter is easily applied to many complex
Computational Linguistic problems. We show its
effectiveness by applying it to hedge detection.
Other successful applications of this method are
presented in Fernandes et al. (2009b; 2010).

RelHunter explores the dependency among lin-
guistic structures by using a powerful feature of
the ETL algorithm. Nevertheless, this feature
is restricted to sequentially organized examples,
since ETL has been initially proposed for token
classification problems. Linguistic structures in-
volve topologies that are frequently more complex
than that. The ETL algorithm may be extended to
consider more complex topologies. We conjecture
that it is possible to consider quite general topolo-
gies. This would contribute to the construction of
better solutions to many Computational Linguistic
tasks.
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