
Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, pages 35–39,
Donostia–San Sebastián, July 23–25, 2012. c©2012 Association for Computational Linguistics

Finite-state technology in a verse-making tool
Manex Agirrezabal, Iñaki Alegria, Bertol Arrieta

University of the Basque Country (UPV/EHU)
maguirrezaba008@ikasle.ehu.es, i.alegria@ehu.es, bertol@ehu.es

Mans Hulden
Ikerbasque (Basque Science Foundation)
mhulden@email.arizona.edu

Abstract

This paper presents a set of tools designed to
assist traditional Basque verse writers during
the composition process. In this article we
are going to focus on the parts that have been
created using finite-state technology: this in-
cludes tools such as syllable counters, rhyme
checkers and a rhyme search utility.

1 The BAD tool and the Basque singing
tradition

The BAD tool is an assistant tool for verse-makers
in the Basque bertsolari tradition. This is a form
of improvised verse composition and singing where
participants are asked to produce impromptu com-
positions around themes which are given to them
following one of many alternative verse formats.
The variety of verse schemata that exist all impose
fairly strict structural requirements on the composer.
Verses in the bertsolari tradition must consist of a
specified number of lines, each with a fixed num-
ber of syllables. Also, strict rhyme patterns must
be followed. The structural requirements are con-
sidered the most difficult element in the bertsolar-
itza—however, well-trained bertsolaris can usually
produce verses that fulfill the structural prerequisites
in a very limited time.

The BAD tool presented here is mainly di-
rected at those with less experience in the tradi-
tion such as students. One particular target group
are the bertso-eskola-s (verse-making schools) that
have been growing in popularity—these are schools
found throughout the Basque Country that train
young people in the art of bertsolaritza.

The primary functionality of the tool is illustrated
in figure 1 which shows the main view of the util-
ity. The user is offered a form in which a verse
can be written, after which the system checks the

technical correctness of the poem. To perform this
task, several finite state transducer-based modules,
are used, some of them involving the metrics (syl-
lable counter) of the verse, and others the rhyme
(rhyme searcher and checker). The tool has support
for 150 well known verse meters.

In the following sections, we will outline the tech-
nology used in each of the parts in the system.

2 Related work

Much of the existing technology for Basque mor-
phology and phonology uses finite-state technology,
including earlier work on rhyme patterns (Arrieta
et al., 2001). In our work, we have used the Basque
morphological description (Alegria et al., 1996) in
the rhyme search module. Arrieta et al. (2001) de-
velop a system where, among other things, users can
search for words that rhyme with an introduced pat-
tern. It is implemented in the formalism of two-level
morphology (Koskenniemi, 1983) and compiled into
finite-state transducers.

We have used the open-source foma finite-state
compiler to develop all the finite-state based parts
of our tool.1. After compiling the transducers, we
use them in our own application through the C/C++
API provided with foma.

3 Syllable counter

As mentioned, each line in a verse must contain a
specified number of syllables. The syllable counter
module that checks whether this is the case consists
of a submodule that performs the syllabification it-
self as well as a module that yields variants produced
by optional apocope and syncope effects. For the
syllabification itself, we use the approach described
in Hulden (2006), with some modifications to cap-
ture Basque phonology.

1In our examples, FST expressions are written using foma
syntax. For details, visit http://foma.googlecode.com

35



Figure 1: A verse written in the BAD web application.

3.1 Syllabification

Basque syllables can be modeled by assuming a
maximum onset principle together with a sonority
hierarchy where obstruents are the least sonorous el-
ement, followed in sonority by the liquids, the nasals
and the glides. The syllable nuclei are always a sin-
gle vowel (a,e,i,o,u) or a combination of a low vowel
(a,e) and a high vowel (i,o,u) or a high vowel and an-
other high vowel.

The syllabifier relies on a chain of composed re-
placement rules (Beesley and Karttunen, 2003) com-
piled into finite-state transducers. These defini-
tions are shown in figure 2. The overall strategy
is to first mark off the nuclei in a word by the rule
MarkNuclei which takes advantage of a left-to-
right longest replacement rule. This is to ensure that
diphthongs do not get split into separate syllables
by the subsequent syllabification process. Follow-
ing this, syllables are marked off by the markSyll-
rule, which inserts periods after legitimate syllables.
This rule takes advantage of the shortest-leftmost re-
placement strategy—in effect minimizing the coda
and maximizing the size of the onset of a syllable to
the extent permitted by the allowed onsets and co-
das, defined in Onset and Coda, respectively.

To illustrate this process, supposing that we
are syllabifying the Basque word intransitiboa.
The first step in the syllabification process is
to mark the nuclei in the word, resulting in
{i}ntr{a}ns{i}t{i}b{o}{a}. In the more com-
plex syllabification step, the markSyll rule as-
sures that the juncture ntr gets divided as n.tr be-
cause nt.r would produce a non-maximal onset,
and i.ntr would in turn produce an illegal onset in

define Obs [f|h|j|k|p|s|t|t s|t z|t x|x|
z|b|d|g|v|d d|t t];

define LiqNasGli [l|r|r r|y|n|m];
define LowV [a|e|o];
define HighV [i|u];
define V LowV | HighV;
define Nucleus [V | LowV HighV |

[HighV HighV - [i i] - [u u]]];
define Onset (Obs) (LiqNasGli);
define Coda Cˆ<4;

define MarkNuclei Nucleus @-> %{ ... %};
define Syll Onset %{ Nucleus %} Coda;
define markSyll Syll @> ... "." || _ Syll ;
define cleanUp %{|%} -> 0;

regex MarkNuclei .o. markSyll .o. cleanUp;

Figure 2: Syllable definition

the second syllable. The final syllabification, af-
ter markup removal by the Cleanup rule, is then
in.tran.si.ti.bo.a. This process is illustrated in fig-
ure 3

In bertsolaritza, Basque verse-makers follow this
type of syllable counting in the majority if cases;
however, there is some flexibility as regards the syl-
labification process. For example, suppose that the
phrase ta lehenengo urtian needs to fit a line which
must contain six syllables. If we count the sylla-
bles using the algorithm shown above, we receive a
count of eight (ta le.hen.en.go ur.ti.an). However,
in the word lehenengo we can identify the syncope
pattern vowel-h-vowel, with the two vowels being
identical. In such cases, we may simply replace
the entire sequence by a single vowel (ehe → e).
This is phonetically equivalent to shortening the ehe-
sequence (for those dialects where the orthographi-
cal h is silent). With this modification, we can fit

36



the line in a 7 syllable structure. We can, however,
further reduce the line to 6 syllables by a second
type of process that merges the last syllable of one
word with the first of the next one and then resyl-
labifying. Hence, ta lehenengo urtian, using the
modifications explained above, could be reduced to
ta.le.nen.gour.ti.an, which would fit the 6 syllable
structure. This production of syllabification variants
is shown in figure 4.

transformazioei

tr{a}nsf{o}rm{a}z{i}{o}{ei}

markNuclei

syllabify
tr{a}ns.f{o}r.m{a}.z{i}.{o}.{ei}

cleanUp

trans.for.ma.zi.o.ei

Figure 3: Normal syllabification.

lehentasun

le.hen.ta.sun

syllabification

alternates

le.hen.ta.sun len.ta.sun

etxera etorri

e.txe.ra e.to.rri

syllabification

alternates

e.txe.ra e.to.rri e.txe.rae.to.rri

Figure 4: Flexible syllabification.

4 Finite-state technology for rhymes

4.1 Basque rhyme patterns and rules
Similar to the flexibility in syllabification, Basque
rhyme schemes also allows for a certain amount
of leeway that bertsolaris can take advantage of.
The widely consulted rhyming dictionary Hiztegi
Errimatua (Amuriza, 1981) contains documented a
number of phonological alternations that are accept-
able as off-rhymes: for example the stops p, t, and k
are often interchangeable, as are some other phono-
logical groups. Figure 5 illustrates the definitions
for interchangeable phonemes when rhyming. The
interchangeability is done as a prelude to rhyme
checking, whereby phonemes in certain groups,
such as p, are replaced by an abstract symbol de-
noting the group (e.g. PTK).

4.2 Rhyme checker
The rhyme checker itself in BAD was originally de-
veloped as a php-script, and then reimplemented as

define plosvl [p | t | k];
define rplosv [b | d | g | r];
define sib [s | z | x];
define nas [n | m];

define plosvlconv ptk -> PTK;
define rplosvconv bdgr -> BDGR;
define sibconv sib -> SZX;
define nasconv nas -> NM;

define phoRules plosvlconv .o. rplosvconv .o.
sibconv .o. nasconv ;

Figure 5: Conflation of consonant groups before rhyme
checking.

a purely finite-state system. In this section we will
focus on the finite-state based one.

As the php version takes advantage of syllabifica-
tion, the one developed with transducers does not.
Instead, it relies on a series of replacement rules and
the special eq() operator available in foma. An
implementation of this is given in figure 6. As input
to the system, the two words to be checked are as-
sumed to be provided one after the other, joined by
a hyphen. Then, the system (by rule rhympat1)
identifies the segments that do not participate in the
rhyme and marks them off with “{” and “}” symbols
(e.g. landa-ganga → <{l}anda>-<{g}anga>).

The third rule (rhympat3) removes everything
that is between “{” and “}”, leaving us only with
the segments relevant for the rhyming pattern (e.g.
<anda>-<anga>). Subsequent to this rule, we
apply the phonological grouping reductions men-
tioned above in section 4.1, producing, for example
(<aNMBDGRa>-<aNMBDGRa>).

After this reduction, we use the eq(X,L,R)-
operator in foma, which from a transducer X, filters
out those words in the output where material be-
tween the specified delimiter symbols L and R are
unequal. In our case, we use the < and > symbols
as delimiters, yielding a final transducer that does
not accept non-rhyming words.

4.3 Rhyme search

The BAD tool also includes a component for search-
ing words that rhyme with a given word. It is devel-
oped in php and uses a finite-state component like-
wise developed with foma.

Similarly to the techniques previously described,
it relies on extracting the segments relevant to the

37



define rhympat1 [0:"{" ?* 0:"}"
[[[V+ C+] (V) V] | [(C) V V]] C* ];

# constraining V V C pattern
define rhympat2 ˜[?* V "}" V C];
# cleaning non-rhyme part
define rhympat3 "{" ?* "}" -> 0;
define rhympat rhympat1 .o. rhympat2 .o.

rhympat3;

# rhyming pattern on each word
# and phonological changes
define MarkPattern rhympat .o.

phoRules .o. patroiak;
# verifying if elements between < and >
# are equal
define MarkTwoPatterns

0:%< MarkPattern 0:%> %-
0:%< MarkPattern 0:%> ;

define Verify _eq(MarkTwoPatterns, %<, %>)
regex Verify .o. Clean;

Figure 6: Rhyme checking using foma.

rhyme, after which phonological rules are applied
(as in 4.1) to yield phonetically related forms. For
example, introducing the pattern era, the system re-
turns four phonetically similar forms era, eda, ega,
and eba. Then, these responses are fed to a trans-
ducer that returns a list of words with the same end-
ings. To this end, we take advantage of a finite-state
morphological description of Basque (Alegria et al.,
1996).

As this transducer returns a set of words which
may be very comprehensive—including words not
commonly used, or very long compounds—we then
apply a frequency-based filter to reduce the set of
possible rhymes. To construct the filter, we used
a newspaper corpus, (Egunkaria2) and extracted the
frequencies of each word form. Using the frequency
counts, we defined a transducer that returns a word’s
frequency, using which we can extract only the n-
most frequent candidates for rhymes. The system
also offers the possibility to limit the number of syl-
lables that desired rhyming words may contain. The
syllable filtering system and the frequency limiting
parts have been developed in php. Figure 7 shows
the principle of the rhyme search’s finite-state com-
ponent.

5 Evaluation

As we had available to us a rhyme checker written
in php before implementing the finite-state version,

2http://berria.info

regex phoRules .o. phoRules.i .o.
0:?* ?* .o. dictionary ;

Figure 7: Rhyme search using foma

it allowed for a comparison of the application speed
of each. We ran an experiment introducing 250,000
pairs of words to the two rhyme checkers and mea-
sured the time each system needed to reply. The
FST-based checker was roughly 25 times faster than
the one developed in php.

It is also important to mention that these tools
are going to be evaluated in an academic environ-
ment. As that evaluation has not been done yet, we
made another evaluation in our NLP group in or-
der to detect errors in terms of syllabification and
rhyme quality. The general feeling of the experiment
was that the BAD tool works well, but we had some
efficiency problems when many people worked to-
gether. To face this problem some tools are being
implemented as a server.

6 Discussion & Future work

Once the main tools of the BAD have been devel-
oped, we intend to focus on two different lines of
development. The first one is to extend to flexibil-
ity of rhyme checking. There are as of yet patterns
which are acceptable as rhymes to bertsolaris that
the system does not yet recognize. For example,
the words filma and errima will not be accepted by
the current system, as the two rhymes ilma and ima
are deemed to be incompatible. In reality, these two
words are acceptable as rhymes by bertsolaris, as
the l is not very phonetically prominent. However,
adding flexibility also involves controlling for over-
generation in rhymes. Other reduction patterns not
currently covered by the system include phenomena
such as synaloepha—omission of vowels at word
boundaries when one word ends and the next one
begins with a vowel.

Also, we intend to include a catalogue of melodies
in the system. These are traditional melodies that
usually go along with a specific meter. Some 3,000
melodies are catalogued (Dorronsoro, 1995). We are
also using the components described in this article in
another project whose aim is to construct a robot ca-
pable to find, generate and sing verses automatically.

38



Acknowledgments

This research has been partially funded by the Span-
ish Ministry of Education and Science (OpenMT-
2, TIN2009-14675-C03) and partially funded by the
Basque Government (Research Groups, IT344-10).

We would like to acknowledge Aitzol Astigarraga
for his help in the development of this project. He
has been instrumental in our work, and we intend to
continue working with him. Also we must mention
the Association of Friends of Bertsolaritza, whose
verse corpora has been used to test and develop these
tools and to develop new ones.

References

Alegria, I., Artola, X., Sarasola, K., and Urkia,
M. (1996). Automatic morphological analysis
of Basque. Literary and Linguistic Computing,
11(4):193–203.

Amuriza, X. (1981). Hiztegi errimatua [Rhyme Dic-
tionary]. Alfabetatze Euskalduntze Koordinakun-
dea.

Arrieta, B., Alegria, I., and Arregi, X. (2001). An
assistant tool for verse-making in Basque based
on two-level morphology. Literary and linguistic
computing, 16(1):29–43.

Beesley, K. R. and Karttunen, L. (2003). Finite state
morphology. CSLI.

Dorronsoro, J. (1995). Bertso doinutegia [Verse
melodies repository]. Euskal Herriko Bertsolari
Elkartea.

Hulden, M. (2006). Finite-state syllabification.
Finite-State Methods and Natural Language Pro-
cessing, pages 86–96.

Koskenniemi, K. (1983). Two-level morphology:
A general computational model for word-form
production and generation. Publications of the
Department of General Linguistics, University of
Helsinki. Helsinki: University of Helsinki.

39


