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Abstract
We present Positive Diversity Tuning, a
newmethod for tuningmachine translation
models specifically for improved perfor-
mance during system combination. Sys-
tem combination gains are often limited
by the fact that the translations produced
by the different component systems are
too similar to each other. We propose a
method for reducing excess cross-system
similarity by optimizing a joint objective
that simultaneously rewards models for
producing translations that are similar to
reference translations, while also punish-
ing them for translations that are too sim-
ilar to those produced by other systems.
The formulation of the Positive Diversity
objective is easy to implement and allows
for its quick integration with most machine
translation tuning pipelines. We find that
individual systems tuned on the same data
to Positive Diversity can be even more
diverse than systems built using different
data sets, while still obtaining good BLEU
scores. When these individual systems are
used together for system combination, our
approach allows for significant gains of 0.8
BLEU even when the combination is per-
formed using a small number of otherwise
identical individual systems.

1 Introduction

The best performing machine translation sys-
tems are typically not individual decoders but
rather are ensembles of two ormore systemswhose
output is then merged using system combination
algorithms. Since combining multiple distinct
equally good translation systems reliably produces
gains over any one of the systems in isolation, it is
widely used in situations where high quality is es-
sential.

Exploiting system combination brings signifi-
cant cost: Macherey and Och (2007) showed that
successful system combination requires the con-
struction of multiple systems that are simultane-
ously diverse and well-performing. If the systems
are not distinct enough, they will bring very lit-
tle value during system combination. However,
if some of the systems produce diverse transla-
tions but achieve lower overall translation quality,
their contributions risk being ignored during sys-
tem combination.
Prior work has approached the need for diverse

systems by using different system architectures,
model components, system build parameters, de-
coder hyperparameters, as well as data selection
and weighting (Macherey and Och, 2007; DeNero
et al., 2010; Xiao et al., 2013). However, during
tuning, each individual system is still just trained to
maximize its own isolated performance on a tune
set, or at best an error-driven reweighting of the
tune set, without explicitly taking into account the
diversity of the resulting translations. Such tuning
does not encourage systems to rigorously explore
model variations that achieve both good translation
quality and diversity with respect to the other sys-
tems. It is reasonable to suspect that this results in
individual systems that under exploit the amount
of diversity possible, given the characteristics of
the individual systems.
For better system combination, we propose

building individual systems to attempt to simulta-
neously maximize the overall quality of the indi-
vidual systems and the amount of diversity across
systems. We operationalize this problem formu-
lation by devising a new heuristic measure called
Positive Diversity that estimates the potential use-
fulness of individual systems during system com-
bination. We find that optimizing systems toward
Positive Diversity leads to significant performance
gains during system combination even when the
combination is performed using a small number of
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otherwise identical individual translation systems.
The remainder of this paper is organized as fol-

lows. Section 2 and 3 briefly review the tuning
of individual machine translation systems and how
system combination merges the output of multiple
systems into an improved combined translation.
Section 4 introduces our Positive Diversity mea-
sure. Section 5 introduces an algorithm for training
a collection of translation systems toward Positive
Diversity. Experiments are presented in sections 6
and 7. Sections 8 and 9 conclude with discussions
of prior work and directions for future research.

2 Tuning Individual Translation Systems

Machine translation systems are tuned toward
somemeasure of the correctness of the translations
produced by the system according to one or more
manually translated references. As shown in equa-
tion (1), this can be written as finding parameter
valuesΘ that produce translations sysΘ that in turn
achieve a high score on some correctness measure:

argmax
Θ

Correctness(ref[],sysΘ) (1)

The correctness measure that systems are typi-
cally tuned toward is BLEU (Papineni et al., 2002),
which measures the fraction of the n-grams that
are both present in the reference translations and
the translations produced by a system. The BLEU
score is computed as the geometric mean of the
resulting n-gram precisions scaled by a brevity
penalty.
The most widely used machine translation

tuning algorithm, minimum error rate training
(MERT) (Och, 2003), attempts to maximize the
correctness objective directly. Popular alternatives
such as pairwise ranking objective (PRO) (Hop-
kins and May, 2011), MIRA (Chiang et al., 2008),
and RAMPION (Gimpel and Smith, 2012) use sur-
rogate optimization objectives that indirectly at-
tempt to maximize the correctness function by us-
ing it to select targets for training discriminative
classification models. In practice, either optimiz-
ing correctness directly or optimizing a surrogate
objective that uses correctness to choose optimiza-
tion targets results in roughly equivalent transla-
tion performance (Cherry and Foster, 2012).
Even when individual systems are being built

to be used in a larger combined system, they are
still usually tuned to maximize their isolated in-
dividual system performance rather than to maxi-

mize the potential usefulness of their contribution
during system combination.1 To our knowledge,
no effort has been made to explicitly tune toward
criteria that attempts to simultaneously maximize
the translation quality of individual systems and
their mutual diversity. This is unfortunate since the
most valuable component systems for system com-
bination should not only obtain good translation
performance, but also produce translations that are
different from those produced by other systems.

3 System Combination

Similar to speech recognition’s Recognizer Out-
put Voting Error Reduction (ROVER) algorithm
(Fiscus, 1997), machine translation system com-
bination typically operates by aligning the transla-
tions produced by two or more individual transla-
tion systems and then using the alignments to con-
struct a search space that allows new translations to
be pieced together by picking and choosing parts
of the material from the original translations (Ban-
galore et al., 2001; Matusov et al., 2006; Rosti et
al., 2007a; Rosti et al., 2007b; Karakos et al., 2008;
Heafield and Lavie, 2010a).2 The alignment of the
individual system translations can be performed
using alignment driven evaluation metrics such as
invWER, TERp, METEOR (Leusch et al., 2003;
Snover et al., 2009; Denkowski and Lavie, 2011).
The piecewise selection of material from the orig-
inal translations is performed using the combina-
tion model’s scoring features such as n-gram lan-
guage models, confidence models over the indi-
vidual systems, and consensus features that score a
combined translation using n-gramsmatches to the
individual system translations (Rosti et al., 2007b;
Zhao and He, 2009; Heafield and Lavie, 2010b).
Both system confidence model features and n-

gram consensus features score contributions based
in part on how confident the system combination
model is in each individual machine translation
system. This means that little or no gains will typ-
ically be seen when combining a good system with
poor performing systems even if the systems col-

1The exception being Xiao et al. (2013)’s work using
boosting for error-driven reweighting of the tuning set

2Other system combination techniques exist such as can-
didate selection systems, whereby the combination model at-
tempts to find the best single candidate produced by one of the
translation engines (Paul et al., 2005; Nomoto, 2004; Zwarts
and Dras, 2008), decoder chaining (Aikawa and Ruopp,
2009), re-decoding informed by the decoding paths taken
by other systems (Huang and Papineni, 2007), and decoding
model combination (DeNero et al., 2010).
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Input : systems [], tune(), source, refs [], α, EvalMetric (), SimMetric ()
Output: models []

// start with an empty set of translations from prior iterations
other_sys []← []

for i← 1 to len(systems []) do
// new Positive Diversity measure using prior translations
PDα,i()← new PD(α, EvalMetric(), SimMetric(), refs [], other_sys [])

// tune a new model to fit PDα,i

// e.g., using MERT, PRO, MIRA, RAMPION, etc.
models [i]← tune(systems [i], source, PDα,i())

// Save translations from tuned modeli for use during
// the diversity computation for subsequent systems
push(other_sys [], translate(systems [i], models [i], source))

end

return models []
Algorithm 1: Positive Diversity Tuning (PDT)

lectively produce very diverse translations.3
The requirement that the systems used for sys-

tem combination be both of high quality and di-
verse can be and often is met by building several
different systems using different system architec-
tures, model components or tuning data. However,
as will be shown in the next few sections, by ex-
plicitly optimizing an objective that targets both
translation quality and diversity, it is possible to
obtain meaningful system combination gains even
using a single system architecture with identical
model components and the same tuning set.

4 Positive Diversity

We propose Positive Diversity as a heuristic
measurement of the value of potential contribu-
tions from an individual system to system combi-
nation. As given in equation (2), PositiveDiversity
is defined as the correctness of the translations pro-
duced by a systemminus a penalty term that scores
how similar the systems translations are with those
produced by other systems:

PDα = α Correctness(ref[],sysΘ)−
(1 − α) Similarity(other_sys[],sysΘ)

(2)
The hyperparameter α explicitly trades-off the

preference for a well performing individual sys-
3The machine learning theory behind boosting suggests

that it should be possible to combine a very large number of
poor performing systems into a single good system. However,
for machine translation, using a very large number of individ-
ual systems brings with it difficult computational challenges.

tem with system combination diversity. Higher
α values result in a Positive Diversity metric that
mostly favors good quality translations. However,
even for large α values, if two translations are of
approximately the same quality, the Positive Di-
versity metric will prefer the one that is the most
diverse given the translations being produced by
other systems.
The Correctness() and Similarity()

measures are any function that can score transla-
tions from a single system against other transla-
tions. This includes traditionalmachine translation
evaluation metrics (e.g, BLEU, TER, METEOR)
as well as any other measure of textual similarity.
For the remainder of this paper, we use BLEU to

measure both correctness and the similarity of the
translations produced by the individual systems.
When tuning individual translation systems toward
Positive Diversity, our task is then to maximize
equation (3) rather than equation (1):

argmaxΘ α BLEU(ref[],sys)−
(1 − α) BLEU(other_sys[],sys)

(3)

Since this learning objective is simply the differ-
ence between two BLEU scores, it should be easy
to integrate into most existing machine translation
tuning pipelines that are already designed to op-
timize performance on translation evaluation met-
rics.
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PDT Individual System Diversity
System \ Iteration 1 2 3 4 5 6 7 8 9 10
α = 0.95 36.6 32.0 19.0 13.6 11.9 8.2 15.9 8.7 7.3 2.3
α = 0.97 32.9 21.7 17.7 10.4 2.7 7.4 2.3 7.3 2.1 2.9
α = 0.99 23.9 13.1 7.9 2.3 3.2 2.6 2.2 1.5 3.4 0.7

Table 1: Diversity scores for PDT individual systems onBOLT dev12 dev. Individual systems are tuned to
Positive Diversity on GALE dev10 web tune. A system’s diversity score is measured as its 1.0−BLEU
score on the translations produced by PDT systems from earlier iterations. Higher scores mean more
diversity.

Diversity of Baseline System vs. Individual PDT Systems Available at Iteration i

PDT Systems \ Iteration 0 1 2 3 4 5 6 7 8 9 10
α = 0.95 27.3 20.4 16.8 14.9 12.8 11.4 9.4 8.6 8.3 8.1 7.9
α = 0.97 28.4 21.3 15.8 14.7 13.3 13.0 12.5 12.2 10.3 10.0 9.7
α = 0.99 27.5 22.6 18.5 17.1 16.8 15.9 15.4 14.6 14.3 13.5 13.4

Table 2: Diversity scores of a baseline system tuned to BOLT dev12 tune, a different tuning set than what
was used for the PDT individual systems. The baseline system diversity is scored against all of the PDT
individual systems available at iteration i for a given α value and over translations of BOLT dev12 dev.

5 Tuning to Positive Diversity

To tune a collection of machine transla-
tion systems using Positive Diversity, we pro-
pose a staged process, whereby systems are
tuned one-by-one to maximize equation (2)
using the translations produced by previously
trained systems to compute the diversity term,
Similarity(other_sys[], sysΘ).
As shown in Algorithm 1, Positive Diversity

Tuning (PDT) takes as input: a list of machine
translation systems, systems[]; a tuning proce-
dure for training individual systems, tune(); a
tuning data set with source and reference trans-
lations, source and refs; a hyperparameter α
to adjust the trade-off between fitting the refer-
ence translations and diversity between the sys-
tems; and metrics to measure correctness and
cross-system similarity, Correctness() and
Similarity().
The list of systems can contain any translation

system that can be parameterized using tune().
This can be a heterogeneous collection of substan-
tially different systems (e.g., phrase-based, hier-
archical, syntactic, or tunable hybrid systems) or
even multiple copies of a single machine transla-
tion system. In all cases, systems later in the list
will be trained to produce translations that both fit
the references and are encouraged to be distinct
from the systems earlier in the list.
During each iteration, the system constructs a

new Positive Diversity measure PDα,i using the
translations produced during prior iterations of
training. This PDα,i measure is then given to
tune() as the the training criteria for modeli

of systemi. The function tune() is any al-
gorithm that allows a translation system’s perfor-
mance to be fit to an evaluation metric. This
includes both minimum error rate training algo-
rithms (MERT) that attempt to directly optimize a
system’s performance on a metric, as well as other
techniques such as Pairwaise Ranking Objective
(PRO),MIRA, and RAMPION that optimize a sur-
rogate loss based on the preferences of an evalua-
tion metric.
After training a model for each system, the re-

sulting model-system pairs can be combined using
any arbitrary system combination strategy.

6 Experiments

Experiments are performed using a single
phrase-based Chinese-to-English translation sys-
tem, built with the Stanford Phrasal machine trans-
lation toolkit (Cer et al., 2010). The system was
built using all of the parallel data available for
Phase 2 of the DARPA BOLT program. The Chi-
nese data was segmented to the Chinese Tree-
Bank (CTB) standard using a maximum match
word segmenter, trained on the output of a CRF
segmenter (Xiang et al., 2013). The bitext was
word aligned using the Berkeley aligner (Liang et
al., 2006). Standard phrase-pair extraction heuris-
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BLEU scores from individual systems
tuned during iteration i of PDT

PDT System 0 1 2 3 4 5 6 7 8 9 10
α = 0.95 16.2 16.0 15.7 15.9 16.1 16.1 15.9 15.4 16.1 15.9 16.2
α = 0.97 16.4 15.8 15.8 15.9 16.0 16.2 16.1 16.2 16.2 16.4 16.1
α = 0.99 16.3 16.1 16.2 15.9 16.3 16.4 16.4 16.3 16.4 16.5 16.3

Table 3: BLEU scores on BOLT dev12 dev achieved by the individual PDT systems tuned on GALE
dev10 web tune. Scores report individual system performance before system combination.

tics were used to extract a phrase-table over word
alignments symmetrized using grow-diag (Koehn
et al., 2003). We made use of a hierarchical re-
ordering model (Galley and Manning, 2008) as
well as a 5-gram languagemodel trained on the tar-
get side of the bi-text and smoothed usingmodified
Kneeser-Ney (Chen and Goodman, 1996).
Individual PDT systems were tuned on the

GALE dev10 web tune set using online-PRO
(Green et al., 2013; Hopkins and May, 2011)
to the Positive Diversity Tuning criterion.4 The
Multi-EngineMachine Translation (MEMT) pack-
age was used for system combination (Heafield
and Lavie, 2010a). We used BOLT dev12 dev as
a development test set to explore different α pa-
rameterizations of the Positive Diversity criteria.

7 Results

Table 1 illustrates the amount of diversity
achieved by individual PDT systems on the BOLT
dev12 dev evaluation set for α values 0.95, 0.97,
and 0.99.5 Using different tuning sets is one of the
common strategies for producing diverse compo-
nent systems for system combination. Thus, as a
baseline, Table 2 gives the diversity of a system
tuned to BLEU using a different tuning set, BOLT
dev12 tune, with respect to the PDT systems avail-
able at each iteration. As in Table 1, the diver-
sity computation is performed using translations of
BOLT dev12 dev.
Like the cross-system diversity term in the for-

mulation of Positive Diversity using BLEU in

4Preliminary experiments performed using MERT to train
the individual systems produced similar results to those seen
here. However, we switched to online-PRO since it dramat-
ically reduced the amount time required to train each indi-
vidual system. We expect similar results when using other
tuning algorithms for the individual systems, such as MIRA
or RAMPION.

5Due to time constraints, wewere not able to try additional
α values. Given that our results suggest the lowest α value
from the ones we tried works best (i.e., α = 0.95), it would
be worth trying additional smaller α values such as 0.90

equation (3), we measure the diversity of trans-
lations produced by an individual system as the
negative BLEU score of the translations with re-
spect to the translations from systems built during
prior iterations. For clarity of presentation, these
diversity scores are reported as 1.0−BLEU. Using
1.0−BLEU to score cross-system diversity, means
that the reported numbers can be roughly inter-
preted as the fraction of n-grams from the individ-
ual systems built during iteration i that have not
been previously produced by other systems built
during any iteration < i.6

In our experiments, we find that for α ≤ 0.97,
during the first three iterations of PDT, there is
more diversity among the PDT systems tuned on a
single data set (GALE dev10 web tune) than there
is between systems tuned on different datasets
(BOLT dev12 tune vs. GALE dev10 wb tune). This
is significant since using different tuning sets is a
common strategy for increasing diversity during
system combination. These results suggest PDT
is better at producing additional diversity than us-
ing different tuning sets. The PDT systems also
achieve good coverage of the n-grams present in
the baseline system that was tuned using different
data. At iteration 10 and using α = 0.95, the base-
line systems receive a diversity score of only 7.9%
when measured against the PDT systems.7

As PDT progresses, it becomes more difficult to
tune systems to produce high quality translations
that are substantially different from those already
being produced by other systems. This is seen in
the per iteration diversity scores, whereby during
iteration 5, the individual PDT translation systems
have a 1.0−BLEU diversity score with prior sys-
tems ranging from 11.9%, when using an α value

6This intuitive interpretation assumes a brevity penalty
that is approximately 1.0.

7For this diversity score, the brevity penalty is 1.0, mean-
ing the diversity score is based purely on the n-grams present
in the baseline system that are not present in translations pro-
duced by one or more of the PDT systems
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Figure 1: System combination BLEU score achieved using Positive Diversity Tuning with the α values
0.95, 0.97, and 0.99. Four iterations of PDT with α = 0.95 results in a 0.8 BLEU gain over the initial
BLEU tuned system. We only examine combinations of up to 6 systems (i.e., iterations 0-5), as the time
required to tune MEMT increases dramatically as additional systems are added.

of 0.95, to 3.2% when using an α value of 0.99.
A diversity score of 3.2% when using α = 0.99
suggests that by iteration 5, very high α values
put insufficient pressure on learning to find mod-
els that produce diverse translations. When using
an α of 0.95, a sizable amount of diversity still ex-
ists across the systems translations all the way to
iteration 7. By iteration 10, only a small amount
of additional diversity is contributed by each addi-
tional system for all of the alpha values (< 3%).8

Table 3 shows the BLEU scores obtained on the
BOLT dev12 dev evaluation set by the individual
systems tuned during each iteration of PDT. The
0th iteration for each α value has an empty set of
translations for the diversity term. This means the
resulting systems are effectively tuned to just max-
imize BLEU. Differences in system performance
during this iteration are only due to differences in
the random seeds used during training. Starting at
iteration 1, the individual systems are optimized to
produce translations that both score well on BLEU

8We speculate that if heterogeneous translation systems
were used with PDT, it could be possible to run with higher α
values and still obtain diverse translations after a large number
of PDT iterations

and are diverse from the systems produced dur-
ing prior iterations. It is interesting to note that
the systems trained during these subsequent itera-
tions obtain BLEU scores that are usually competi-
tive with those obtained by the iteration 0 systems.
Taken together with the diversity scores in Table
1, this strongly suggests that PDT is succeeding
at increasing diversity while still producing high
quality individual translation systems.
Figure 1 graphs the system combination BLEU

score achieved by using varying numbers of Pos-
itive Diversity Tuned translation systems and dif-
ferent α values to trade-off translation quality with
translation diversity. After running 4 iterations of
PDT, the best configuration, α = 0.95, achieves a
BLEU score that is 0.8 BLEU higher than the cor-
responding BLEU trained iteration 0 system.9

From the graph, it appears that PDT perfor-
mance initially increases as additional systems are
added to the system combination and then later
plateaus or even drops after too many systems are
included. The combinations using PDT systems

9Recall that the iteration 0 system is effectively just tuned
to maximize BLEU since we have an empty set of translations
from other systems that are used to compute diversity
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built with higher α values reach the point of di-
minishing returns faster than combinations using
systems built with lower alpha values. For in-
stance, α = 0.99 plateaus on iteration 2, while
α = 0.95 peaks on iteration 4. It might be pos-
sible to identify the point at which additional sys-
tems will likely not be useful by using the diversity
scores in Table 1. Scoring about 10% or less on
the 1−BLEUdiversitymeasure, with respect to the
other systems being used within the system combi-
nation, seems to suggest the individual system will
not be very helpful to add into the combination.

8 Related Work

While the idea of encouraging diversity in indi-
vidual systems that will be used for system combi-
nation has been proven effective in speech recogni-
tion and document summarization (Hinton, 2002;
Breslin and Gales, 2007; Carbonell and Goldstein,
1998; Goldstein et al., 2000), there has only been
a modest amount of prior work exploring such
approaches for machine translation. Prior work
within machine translation has investigated adapt-
ing machine learning techniques for building en-
sembles of classifiers to translation system tuning,
encouraging diversity by varying both the hyper-
parameters and the data used to build the individual
systems, and chaining together individual transla-
tion systems.
Xiao et al. (2013) explores using boosting to

train an ensemble of machine translation systems.
Following the standard Adaboost algorithm, each
system was trained in sequence on an error-driven
reweighting of the tuning set that focuses learning
on the material that is the most problematic for the
current ensemble. They found that using a single
system to tune a large number of decoding mod-
els to different Adaboost guided weightings of the
tuning data results in significant gains during sys-
tem combination.
Macherey and Och (2007) investigated system

combination using automatic generation of diverse
individual systems. They programmatically gener-
ated variations of systems using different build and
decoder hyperparameters such as choice of word-
alignment algorithm, distortion limit, variations of
model feature function weights, and the set of lan-
guage models used. Then, in a process similar to
forward feature selection, they constructed a com-
bined system by iteratively adding the individual
automatically generated system that produced the

largest increase in quality when used in conjunc-
tion with the systems already selected for the com-
bined system. They also explored producing varia-
tion by using different samplings of the the training
data. The individual and combined systems pro-
duced by sampling the training data were inferior
to systems that used all of the available data. How-
ever, the experiments facilitated insightful analysis
on what properties an individual system must have
in order to be useful during system combination.
They found that in order to be useful within a com-
bination, individual systems need to produce trans-
lations of similar quality to other individual sys-
tems within the system combination while also be-
ing as uncorrelated as possible from the other sys-
tems. The Positive Diversity Tuning method in-
troduced in our work is an explicit attempt to build
individual translation systems that meet this crite-
ria, while being less computationally demanding
than the diversity generating techniques explored
by Macherey and Och (2007).
Aikawa and Ruopp (2009) investigated build-

ing machine translations systems specifically for
use in sequential combination with other systems.
They constructed chains of systems whereby the
output of one decoder is feed as input to the next
decoder in the pipeline. The downstream systems
are built and tuned to correct errors produced by
the preceding system. In this approach, the down-
stream decoder acts as a machine learning based
post editing system.

9 Conclusion

We have presented Positive Diversity as a new
way of jointly measuring the quality and diversity
of the contribution of individual machine transla-
tion systems to system combination. This method
heuristically assesses the value of individual trans-
lation systems by measuring their similarity to the
reference translations as well as their dissimilarity
from the other systems being combined. We op-
erationalize this metric by reusing existing tech-
niques from machine translation evaluation to as-
sess translation quality and the degree of similar-
ity between systems. We also give a straightfor-
ward algorithm for training a collection of individ-
ual systems to optimize Positive Diversity. Our
experimental results suggest that tuning to Positive
Diversity leads to improved cross-system diversity
and system combination performance even when
combining otherwise identical machine translation

326



systems.
The Positive Diversity Tuning method explored

in this work can be used to tune individual systems
for any ensemble in which individual models can
be fit to multiple extrinsic loss functions. Since
Hall et al. (2011) demonstrated the general purpose
application of multiple extrinsic loss functions to
training structured prediction models, Positive Di-
versity Tuning could be broadly useful within nat-
ural language processing and for other machine
learning tasks.
In future work within machine translation, it

may prove fruitful to examine more sophisticated
measures of dissimilarity. For example, one could
imagine a metric that punishes instances of simi-
lar material in proportion to some measure of the
expected diversity of the material. It might also be
useful to explore joint rather than sequential train-
ing of the individual translation systems.
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