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Abstract

This paper describes the TALP-UPC par-
ticipation in the WMT’13 Shared Task
on Quality Estimation (QE). Our partic-
ipation is reduced to task 1.2 on System
Selection. We used a broad set of fea-
tures (86 for German-to-English and 97
for English-to-Spanish) ranging from stan-
dard QE features to features based on
pseudo-references and semantic similarity.
We approached system selection by means
of pairwise ranking decisions. For that,
we learned Random Forest classifiers es-
pecially tailored for the problem. Evalua-
tion at development time showed consider-
ably good results in a cross-validation ex-
periment, with Kendall’s τ values around
0.30. The results on the test set dropped
significantly, raising different discussions
to be taken into account.

1 Introduction

In this paper we discuss the TALP-UPC1 partici-
pation in the WMT’13 Shared Task on Quality Es-
timation (QE). Our participation is circumscribed
to task 1.2, which deals with System Selection.
Concretely, we were required to rank up to five al-
ternative translations for the same source sentence
produced by multiple MT systems, in the absence
of any reference translation.

We used a broad set of features; mainly avail-
able through the last version of the ASIYA toolkit
for MT evaluation2 (Giménez and Màrquez,
2010). Concretely, we derived 86 features for
the German-to-English subtask and 97 features for
English-to-Spanish. These features cover different
approaches and include standard Quality Estima-
tion features, as provided by the above mentioned

1Center for Language and Speech Technologies and Ap-
plications (TALP), Technical University of Catalonia (UPC).

2http://asiya.lsi.upc.edu

ASIYA toolkit and Quest (Specia et al., 2010),
but also a variety of features based on pseudo-
references (Soricut and Echihabi, 2010), explicit
semantic analysis (Gabrilovich and Markovitch,
2007) and specialized language models. See sec-
tion 3 for details.

In order to model the ranking problem associ-
ated to the system selection task, we adapted it
to a classification task of pairwise decisions. We
trained Random Forest classifiers (and compared
them to SVM classifiers), expanding the work of
Formiga et al. (2013), from which a full ranking
can be derived and the best system per sentence
identified.

Evaluation at development time, using cross-
validation, showed considerably good and stable
results for both language pairs, with correlation
values around 0.30 (Kendall τ coefficient) classi-
fication accuracies around 52% (pairwise classifi-
cation) and 41% (best translation identification).
Unfortunately, the results on the test set were sig-
nificantly lower. Current research is devoted to ex-
plain the behavior of the system at testing time. On
the one hand, it seems clear that more research re-
garding the assignment of ties is needed in order
to have a robust model. On the other hand, the re-
lease of the gold standard annotations for the test
set will facilitate a deeper analysis and understand-
ing of the current results.

The rest of the paper is organized as follows.
Section 2 describes the ranking models studied for
the system selection problem. Section 3 describes
the features used for learning. Section 4 presents
the setting for parameter optimization and feature
selection and the results obtained. Finally, Sec-
tion 5 summarizes the lessons learned so far and
outlines some lines for further research.

2 Ranking Model

We considered two learning strategies to obtain the
best translation ranking model: SVM and Random
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Forests. Both strategies were based on predicting
pairwise quality ranking decisions by means of su-
pervised learning. These decision was motivated
from our previous work (Formiga et al., 2013)
were we learned that they were more consistent to
select the best system (according to human and au-
tomatic metrics) compared to absolute regression
approaches. In that work we used only the subset
of features 1, 2, 3 and 8 described in Section 3.
For this shared task we have introduced additional
similarity measures (subsets 4 to 7) that feature se-
mantic analysis and automatic alignments between
the source and the translations.

The rationale for transforming a ranking prob-
lem to a pairwise classification problem has been
described previously in several work (Joachims,
2002; Burges et al., 2005). The main idea is to en-
semble the features of both individuals and assign
a class {-1,1} which tries to predict the pairwise
relation among them. For linear based approach
this adaptation is as simple to compute the differ-
ence between features between all the pairs of the
training data.

We used two different learners to perform that
task. First, we trained a Support Vector Machine
ranker by means of pairwise comparison using
the SVMlight toolkit (Joachims, 1999), but with
the “-z p” parameter, which can provide system
rankings for all the members of different groups.
The learner algorithm was run according to the
following parameters: RBF-kernel, expanding the
working set by 9 variables at each iteration, for a
maximum of 50,000 iterations and with a cache
size of 100 for kernel evaluations. The trade-off
parameter was empirically set to 0.001. This im-
plementation ignores the ties for the training step
as it only focuses in better than/ worse than rela-
tions.

Secondly, we used Random Forests (Breiman,
2001), the rationale was the same as ranking-to-
pairwise implementation from SVMlight. How-
ever, SVMlight considers two different data pre-
processing methods depending on the kernel of
the classifier: LINEAR and RBF-Kernel. We
used the same data-preprocessing algorithm from
SVMlight in order to train a Random Forest clas-
sifier with ties (three classes: {0,-1,1}) based
upon the pairwise relations. We used the Random
Forests implementation of scikit-learn toolkit (Pe-
dregosa et al., 2011) with 50 estimators.

Once the classes are given by the Random For-

est, we build a graph by means of the adjacency
matrix of the pairwise decision. Once the adja-
cency matrix has been built, we assign the final
ranking through a dominance scheme similar to
Pighin et al. (2012). In that case, however, there
are not topological problems as the pairwise rela-
tions are complete across all the edges.

3 Features Sets

We considered a broad set of features: 97 and
86 features for English-to-Spanish (en-es) and
German-to-English (de-en), respectively. We
grouped them into the following categories: base-
line QE metrics, comparison against pseudo-
references, source-translation, and adapted lan-
guage models. We describe them below. Unless
noted otherwise, the features apply to both lan-
guage pairs.

3.1 Baseline Features
The baseline features are composed of well-known
quality estimation metrics:

1. Quest Baseline (QQE)
Seventeen baseline features from Specia et
al. (2010). This set includes token counts
(and their ratio), LM probabilities for source
and target sentences, percentage of n-grams
in different quartiles of a reference corpus,
number of punctuation marks, and fertility
ratios. We used these features in the en-es
partition only.

2. ASIYA’s QE-based features (AQE)
Twenty-six QE features provided by
ASIYA (Gonzàlez et al., 2012), comprising
bilingual dictionary ambiguity and overlap;
ratios concerning chunks, named-entities and
PoS; source and candidate LM perplexities
and inverse perplexities over lexical forms,
chunks and PoS; and out-of-vocabulary word
indicators.

3.2 Pseudo-Reference-based Features
Soricut and Echihabi (2010) introduced the con-
cept of pseudo-reference-based features (PR) for
translation ranking estimation. The principle is
that, in the lack of human-produced references,
automatic ones are still good for differentiating
good from bad translations. One or more sec-
ondary MT systems are required to generate trans-
lations starting from the same input, which are
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taken as pseudo-references. The similarity to-
wards the pseudo-references can be calculated
with any evaluation measure or text similarity
function, which gives us all feature variants in this
group. We consider the following PR-based fea-
tures:

3. Derived from ASIYA’s metrics (APR)
Twenty-three PR features, including GTM-l
(l∈{1,2,3}) to reward different length match-
ing (Melamed et al., 2003), four variants of
ROUGE (-L, -S*, -SU* and -W) (Lin and
Och, 2004), WER (Nießen et al., 2000),
PER (Tillmann et al., 1997), TER, and
TERbase (i.e., without stemming, synonymy
look-up, nor paraphrase support) (Snover et
al., 2009), and all the shallow and full pars-
ing measures (i.e., constituency and depen-
dency parsing, PoS, chunking and lemmas)
that ASIYA provides either for Spanish or En-
glish as target languages.

4. Lexical similarity (NGM)
Cosine and Jaccard coefficient similarity
measures for both token and character
n-grams considering n ∈ [2, 5] (i.e., sixteen
features). Additionally, one Jaccard-based
similarity measure for “pseudo-prefixes”
(considering only up to four initial characters
for every token).

5. Based on semantic information (SEM)
Twelve features calculated with named
entity- and semantic role-based evaluation
measures (again, provided by ASIYA). Sen-
tences are automatically annotated using
SwiRL (Surdeanu and Turmo, 2005) and
BIOS (Surdeanu et al., 2005). We used these
features in the de-en subtask only.

6. Explicit semantic analysis (ESA)
Two versions of explicit semantic analy-
sis (Gabrilovich and Markovitch, 2007), a
semantic similarity measure, built on top of
Wikipedia (we used the opening paragraphs
of 100k Wikipedia articles as in 2010).

3.3 Source-Translation Extra Features
Source-translation features include explicit com-
parisons between the source sentence and its trans-
lation. They are meant to measure how adequate
the translation is, that is, to what extent the trans-
lation expresses the same meaning as the source.

Note that a considerable amount of the features
described in the baseline group (QQE and AQE)
fall in this category. In this subsection we include
some extra features we devised to capture source–
translation dependencies.

7. Alignment-based features (ALG / ALGPR)
One measure calculated over the aligned
words between a candidate translation and
the source (ALG); and two measures based on
the comparison between these alignments for
two different translations (e.g., candidate and
pseudo-reference) and the source (ALGPR).3

8. Length model (LeM)
A measure to estimate the quality likeli-
hood of a candidate sentence by considering
the “expected length” of a proper translation
from the source. The measure was introduced
by (Pouliquen et al., 2003) to identify docu-
ment translations. We estimated its param-
eters over standard MT corpora, including
Europarl, Newswire, Newscommentary and
UN.

3.4 Adapted Language-Model Features

We interpolated different language models com-
prising the WMT’12 Monolingual corpora (EPPS,
News, UN and Gigafrench for English). The in-
terpolation weights were computed as to minimize
the perplexity according to the WMT Translation
Task test data (2008-2010)4. The features are as
follow:

9. Language Model Features (LM)
Two log-probabilities of the translation can-
didate with respect to the above described in-
terpolated language models over word forms
and PoS labels.

4 Experiments and Results

In this section we describe the experiments car-
ried out to select the best feature set, learner, and
learner configuration. Additionally, we present
the final performance within the task. The set-
up experiments were addressed doing two separate
10-fold cross validations on the training data and
averaging the final results. We evaluated the re-
sults through three indicators: Kendall’s τ with no

3Alignments were computed with the Berkeley aligner
https://code.google.com/p/berkeleyaligner/

4http://www.statmt.org/wmt13/translation-task.html
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penalization for the ties, accuracy in determining
the pairwise relationship between candidate trans-
lations, and global accuracy in selecting the best
candidate for each source sentence.

First, we compared our SVM learner against
Random Forests with the two variants of data
preprocessing (LINEAR and RBF). In terms of
Kendall’s τ , we found that the Random Forests
(RF) were clearly better compared to SVM imple-
mentation. Concretely, depending on the final fea-
ture set, we found that RF achieved a τ between
0.23 and 0.29 while SVM achieved a τ between
0.23 and 0.25. With respect to the accuracy mea-
sures we did not find noticeable differences be-
tween methods as their results moved from 49% to
52%. However, considering the accuracy in terms
of selecting only the best system there was a dif-
ference of two points (42.2% vs. 40.0%) between
methods, being RF again the best system. Regard-
ing the pairwise preprocessing the results between
RBF and LINEAR based preprocessing were com-
parable, being RBF slightly better than LINEAR.
Hence, we selected Random Forests with RBF
pairwise preprocessing as our final learner.

de-en τ with ties Accuracy
Ignored Penalized All Best

AQE+LeM+ALGPR+LM 33.70 15.72 52.56 41.57
AQE+SEM+LM 32.49 14.61 52.72 40.92
AQE+LeM+ALGPR+ESA+LM 32.08 13.81 52.71 41.37
AQE+ALG+ESA+SEM+LM 32.06 13.96 52.20 40.64
AQE+ALG+LM 31.97 14.29 52.00 40.83
AQE+LeM+ALGPR+SEM+LM 31.93 13.57 52.52 40.98
AQE+ESA+SEM+LM 31.79 13.68 52.50 40.76
AQE+LeM+ALGPR+ESA+SEM+LM 31.72 14.01 52.65 40.83
AQE+ALG+SEM+LM 31.17 12.86 52.18 40.51
AQE+ALG+SEM 30.72 12.58 51.75 39.66
AQE+LeM+ALGPR+ESA+SEM 30.47 11.79 51.85 39.58
AQE+ESA+LM 30.31 12.23 52.60 40.69
AQE+ALG+ESA+LM 30.26 12.40 52.03 40.99
AQE+LeM+ALGPR 30.24 11.83 51.96 40.42
AQE+LeM+ALGPR+SEM 30.23 11.84 52.10 40.32
AQE+LeM+ALGPR+ESA 29.89 11.87 51.83 40.07
AQE+ALG+ESA 29.81 11.30 51.37 39.47
AQE+SEM 29.80 12.06 51.75 39.52
AQE+NGM+APR+ESA+SEM+LM 29.34 10.58 51.33 38.55
AQE+ESA+SEM 29.31 11.46 51.66 39.24
AQE+ESA 29.13 11.12 51.82 39.90
AQE+ALG+ESA+SEM 28.35 10.32 51.37 38.98
AQE+NGM+APR+ESA+SEM 27.55 9.22 51.01 38.12

Table 1: Set-up results for de-en

For the feature selection process, we considered
the most relevant combinations of feature groups.
Table 1 shows the set-up results for the de-en sub-
task and Table 2 shows the results for the en-es
subtask.

In terms of τ we observed similar results be-
tween the two language pairs. However accura-
cies for the de-en subtask were one point above
the ones for en-es. Regarding the features used, we
found that the best feature combination to use was
composed of: i) a baseline QE feature set (Asiya

or Quest) but not both of them, ii) Length Model,
iii) Pseudo-reference aligned based features and
the use of iv) adapted language models. However,
within the de-en subtask, we found that substitut-
ing Length Model and Aligned Pseudo-references
by the features based on Semantic Roles (SEM)
could bring marginally better accuracy. We also
noticed that the learner was sensitive to the fea-
tures used so selecting the appropriate set of fea-
tures was crucial to achieve a good performance.

en-es τ with ties Accuracy
Ignored Penalized All Best

QQE+LeM+ALGPR+LM 33.81 15.87 51.66 41.01
AQE+LeM+ALGPR+LM 33.75 16.44 51.56 41.52
QQE+AQE+LM 32.71 14.59 51.18 41.02
QQE+AQE+LM+ESA 32.69 15.30 51.48 41.30
QQE+AQE+LeM+ALGPR+LM+ESA 32.63 13.64 51.39 40.48
QQE+AQE+LeM+ALGPR+LM 32.41 14.06 51.43 40.49
QQE+LeM+ALGPR+LM+ESA 31.66 13.39 51.37 41.05
QQE+AQE+ALG+LM 31.46 13.62 51.28 41.29
AQE+LeM+ALGPR+LM+ESA 31.29 14.10 51.55 41.43
QQE+AQE+ALG+LM+ESA 31.25 13.58 51.64 41.66
QQE+AQE+NGM+APR+LM+ESA 30.58 12.48 50.93 40.66
QQE+AQE+NGM+APR+LM 29.94 12.54 50.95 40.25
QQE+AQE 28.98 10.92 49.97 39.65
QQE+AQE+LeM+ALGPR 28.94 10.48 49.99 39.71
QQE+AQE+NGM+ESA+LM 28.85 11.88 50.90 40.22
AQE+LeM+ALGPR 28.81 10.11 50.06 40.01
QQE+AQE+ESA 28.68 10.31 49.96 39.27
AQE+ESA 28.67 10.81 50.35 39.18
AQE 28.65 10.68 49.76 38.90
QQE+AQE+ALG 28.47 9.63 49.67 39.66
QQE+AQE+NGM+APR+ESA 28.43 9.75 49.67 38.74
QQE+AQE+NGM 27.23 9.10 49.44 38.98
QQE+AQE+ALG+ESA 27.08 7.93 50.26 39.71
QQE+AQE+LeM+ALGPR+ESA 27.03 8.65 50.35 40.49
AQE+LeM+ALGPR+ESA 26.96 8.26 50.30 39.47
QQE+AQE+NGM+ESA 26.59 7.56 49.52 38.62
QQE+AQE+NGM+APR 25.39 6.97 49.90 39.53

Table 2: Setup results for en-es

de-en τ (ties penalized,
ID non-symmetric between [-1,1])

Best 0.31
UPC AQE+SEM+LM 0.11
UPC AQE+LeM+ALGPR+LM 0.10
Baseline Random-ranks-with-ties -0.12
Worst -0.49

Table 3: Official results for the de-en subtask (ties
penalized)

en-es τ (ties penalized,
ID non-symmetric between [-1,1])

Best 0.15
UPC QQE+LeM+ALGPR+LM -0.03
UPC AQE+LeM+ALGPR+LM -0.06
Baseline Random-ranks-with-ties -0.23
Worst -0.63

Table 4: Official results for the en-es subtask (ties
penalized)

In Tables 3, 4, 5 and 6 we present the official re-
sults for the WMT’13 Quality Estimation Task, in
all evaluation variants. In each table we compare
to the best/worst performing systems and also to
the official baseline.

We can observe that in general the results on
the test sets drop significantly, compared to our
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de-en τ (ties ignored, Non-ties

ID symmetric /
between [-1,1]) (882 dec.)

Best 0.31 882
UPC AQE+SEM+LM 0.27 768
UPC AQE+LeM+ALGPR+LM 0.24 788
Baseline Random-ranks-with-ties 0.08 718
Worst -0.03 558

Table 5: Official results for the de-en subtask (ties
ignored)

en-es τ (ties ignored, Non-ties

ID symmetric /
between [-1,1]) (882 dec.)

Best 0.23 192
UPC QQE+LeM+ALGPR+LM 0.11 554
UPC AQE+LeM+ALGPR+LM 0.08 554
Baseline Random-ranks-with-ties 0.03 507
Worst -0.11 633

Table 6: Official results for the en-es subtask (ties
ignored)

set-up experiments. Restricting to the evaluation
setting in which ties are not penalized (i.e., cor-
responding to our setting during system and pa-
rameter tuning), we can see that the results corre-
sponding to de-en (Table 5) are comparable to our
set-up results and close to the best performing sys-
tem. However, in the en-es language pair the final
results are comparatively much lower (Table 6).
We find this behavior strange. In this respect, we
analyzed the inter-annotator agreement within the
gold standard. Concretely we computed the Co-
hen’s κ for all overlapping annotations concerning
at least 4 systems for both language pairs. The re-
sults of our analysis are presented in Table 7 and
therefore it confirms our hypothesis that en-es an-
notations had more noise providing an explanation
for the accuracy decrease of our QE models and
setting the subtask into a more challenging sce-
nario. However, further research will be needed to
analyze other factors such as oracles and improve-
ment on automatic metrics prediction and reliabil-
ity compared to linguistic expert annotators.

Another remaining issue for our research con-
cerns investigating better ways to deal with ties,
as their penalization lowered our results dramati-
cally. In this direction we plan to work further on

# of Lang Cohen’s # of
systems κ elements

4 en-es 0.210 560
de-en 0.369 640

5 en-es 0.211 130
de-en 0.375 145

Table 7: Golden standard test set agreement coef-
ficients measured by Cohen’s κ

the adjacency matrix reconstruction heuristics and
presenting the features to the learner in a struc-
tured form.

5 Conclusions

This paper described the TALP-UPC participation
in the WMT’13 Shared Task. We approached the
Quality Estimation task based on system selection,
where different systems have to be ranked accord-
ing to their quality. We derive a full ranking and
identify the best system per sentence on the basis
of Random Forest classifiers.

After the model set-up, we observed consid-
erably good and robust results for both transla-
tion directions, German-to-English and English-
to-Spanish: Kendall’s τ around 0.30 as well as
accuracies around 52% on pairwise classification
and 41% on best translation identification. How-
ever, the results over the official test set were
significantly lower. We have found that the low
inter-annotator agreement between users on that
set might provide an explanation to the poor per-
formance of our QE models.

Our current efforts are centered on explaining
the behavior of our QE models when facing the of-
ficial test sets. We are following two directions: i)
studying the ties’ impact to come out with a more
robust model and ii) revise the English-to-Spanish
gold standard annotations in terms of correlation
with automatic metrics to facilitate a deeper un-
derstanding of the results.
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Lluı́s Formiga, Lluı́s Màrquez, and Jaume Pujantell.
2013. Real-life translation quality estimation for mt
system selection. In Proceedings of 14th Machine
Translation Summit (MT Summit), Nice, France,
September. EAMT.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing Semantic Relatedness Using Wikipedia-
based Explicit Semantic Analysis. In Proceedings
of the 20th International Joint Conference on Artifi-
cial Intelligence, pages 1606–1611, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.
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