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Abstract 

In this paper we focus on modeling 
friendships between humans as a way of 
working towards technology that can initiate 
and sustain a lifelong relationship with users. 
We do this by predicting friendship status in a 
dyad using a set of automatically harvested 
verbal and nonverbal features from videos of 
the interaction of students in a peer tutoring 
study. We propose a new computational 
model used to model friendship status in our 
data, based on a group sparse model (GSM) 
with L2,1 norm which is designed to 
accommodate the sparse and noisy properties 
of the multi-channel features. Our GSM model 
achieved the best overall performance 
compared to a non-sparse linear model (NLM) 
and a regular sparse linear model (SLM), as 
well as outperforming human raters. Dyadic 
features, such as number and length of 
conversational turns and mutual gaze, in 
addition to low level features such as F0 and 
gaze at task, were found to be good predictors 
of friendship status. 

1 Introduction and Related Work 

While significant advances have been made in 
detecting the speech and nonverbal social signals 
emitted by individuals (see Vinciarelli, Pantic & 
Bourlard, 2009, for a review), and research has 
addressed the social roles and states of 
individuals in groups (see Gatica-Perez, 2009, 
for a review), considerably less computational 
work has focused on the automatic detection of 
speech or nonverbal correlates of specifically 
dyadic states, such as rapport. And yet rapport 
has been shown to have important effects on 
interactions as diverse as survey interviewing 
(Berg, 1989), sales (Brooks, 1989), and health 
(Harrigan et al., 1985).  If we are to build 
interactive systems that are successful, then, we 
believe that the ability to build rapport with a 
human user will be essential. 

Rapport can be instantaneous and can also 
build over time. Granovetter (1973) describes the 
strength of an interpersonal “tie” as a function of 
the time, emotional intensity, and reciprocity that 
accumulates between people. These ties mediate 
effects in myriad domains such as learning 
(Azmitia & Montgomery, 1993) and healthcare 
(Harrigan & Rosenthal, 1983).  

Accordingly, analysis of initial exchanges and 
those after many years of interaction suggests 
that the behavioral signals that indicate rapport 
change over time. For example, in Tickle-
Degnen and Rosenthal’s highly cited model 
(1990), rapport consists of mutual attention, 
positivity, and coordination. High levels of 
positivity between conversational partners are 
common in the initial phases of a relationship, 
but positivity has been shown to decline, without 
a loss in rapport, as the number of interactions 
increases. In fact, Ogan et al. (2012) gave 
evidence that the use of playful rudeness 
between friends during peer tutoring correlates to 
greater learning. This leads to an associated 
challenge of spoken dialogue system 
development: creating systems that can develop 
social ties, and increase rapport with the user 
over repeated interactions to maximize beneficial 
outcomes. 

While little work has addressed automatic 
detection, some prior work has addressed the 
problem of emitting signals to build rapport in 
dialogue and agent systems (Stronks et al., 2002; 
Bickmore & Picard, 2005; Gratch et al., 2006; 
Cassell et al., 2007; Bickmore et al., 2011), and 
we turn to this research for what cues might be 
important in rapport. The majority of this prior 
work, however, has addressed harmony – or 
instant rapport – rather than rapport over time. 
For those systems that have addressed friendship 
or the growth of rapport, most commonly the 
number of interactions has been used as a meter 
of relationship progression, instigating changes 
in the dialogue system as the social odometer 
scrolls onward (Cassell & Bickmore, 2003; 
Vardoulakis et al., 2012). Counting the times a 
dyad has interacted is a crude approximation of a 
relationship state, however; being able to detect 
the behavioral signals that people actually use to 
indicate relationship status would be superior. 

In our own prior work (Cassell et al.,2007) we 
looked at particular hand-annotated nonverbal 
signals (such as nodding and mutual gaze) as 
operationalizations of rapport, and found that 
friends and non-friends indeed show differing 
distributions of each signal as a function of 
relationship state. In the current study, we move 
to the next step and automatically harvest a set of 
multimodal dyadic and time contingent features 
to identify those features that play a significant 
role in predicting friendship state. A major 
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challenge for predicting relational states such as 
these is to construct a compact feature space that 
captures only reliable rapport signals and also 
generalizes across different users. To provide 
strength to our model (as well as to fit the 
multimodal nature of embodied conversational 
agents), we look at both acoustic and visual 
features. Such an approach takes advantage of 
the fact that multimodal aspects of 
communication are not redundant, but often 
complementary (Cassell, 2000).  
    However, dyadic behaviors such as 
conversational turns, mutual/non-mutual smile, 
mutual/non-mutual gaze, and mutual/non-mutual 
lean forward provide an additional challenge in 
modeling; no matter how important, they appear 
relatively rarely in conversational data. Thus 
standard non-sparse linear models, normally 
trained on high frequency factors, might assign 
too much weight to low frequency (i.e., sparse) 
features. In order to address issues of this sort 
Yuan and Lin (2007) introduced the group 
lasso.   To address the sparse nature of our 
features in real-world data and the noise that 
occurs from different production sources, we 
propose an extension to this genre of technique 
in the form of a Group Sparse Model (GSM) 
which enforces sparsity with a L2,1 norm instead 
of the group lasso penalty (Chen, et  al., 2011), 
due to the relatively efficient optimization 
process of L2,1 norms (Liu, et al., 2009). Unlike 
a straightforward sparse linear model (SLM) 
(Yang et al., 2010), which treats each feature 
independently, GSMs group features which share 
the same production source in the optimization 
process. In the GSM linear model, the removal of 
the assumption of independence between 
features means that the penalty is on group rather 
than individual features. Thus the model has 
general robustness to noise, since grouping 
features from the same production source can 
increase the overall confidence of the feature 
group. 

Our contributions in this work, then, are three-
fold: we (1) designed and implemented a method 
for automatic dyadic feature extraction which is 
based on low level features, and which yields 
strong predictive power of friendship status, (2) 
propose a new Group Sparse Model (GSM) with 
L2,1 norm, that deals with the noisy and sparse 
nature of the feature sets, and (3) illuminate, 
from this model, the nature of verbal and 
nonverbal behavior between friends and non-
friends in a peer tutoring setting. 

The remainder of the paper is organized as 
follows. We first describe the data set and 
introduce the features used in our experiments. 
We then describe the performance of the three 

computational models we evaluated. Finally, we 
discuss the contributions of different features to 
friendship prediction and provide an error 
analysis of our proposed model.  

2 The Data Set 

 
 

Figure 1: Camera View 1 and Camera View 2 

We collected data from dyads of students 
engaged in a reciprocal peer tutoring task. We 
chose peer tutoring as it is a domain in which 
friendship has been shown to have a positive 
effect on student learning (see e.g. Ogan et al, 
2012). In addition, tutoring systems that rely on 
dialogue are common, and peer tutoring dialogue 
systems are increasingly common. Thus, being 
able to assess friendship state in this domain is a 
useful step on the path to creating a peer tutoring 
agent that can use rapport to increase learning 
gains.  
    Each dyad consisted of two American English 
speakers with a mean age of 13.3 years (range = 
12 – 15). We collected data from 12 dyads, of 
which 6 dyads were already friends. Dyads were 
either both girls or both boys, and each condition 
contained 3 boy dyads and 3 girl dyads.  

Each dyad came to the lab for 3 sessions, with 
an average interval between visits of 4.6 days 
(SD = 3.1), totaling 36 sessions across all dyads. 
Each session consisted of about 90 minutes of 
interaction recorded from three camera views (a 
frontal view of each participant and a side view 
of the two participants). With close talk 
microphones, we also recorded the participants’ 
speech in separate audio channels for the purpose 
of automatic dyadic acoustic feature extraction. 
The setting is shown in Figure 1. 

Each session began with a short period of time 
for participants to become acquainted. After that, 
using a standard reciprocal tutoring procedure 
(see Fantuzzo et al., 1989), participants tutored 
each other on procedural and conceptual aspects 
of an algebra topic in which both participants 
were relatively novice. Order of seating and 
assignment of tutoring roles (tutor or tutee) was 
determined in the first session by alphabetical 
order of participant name. Tutoring roles 
alternated from that point on, such that both 
participants had the opportunity to take on the 
role of “expert” during each session. After a 
period of individual study time to familiarize 
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themselves with the material, the first tutoring 
period began and lasted approximately 25 
minutes. This was followed by a 5 minute break, 
after which students’ tutoring roles were reversed 
for a second tutoring period of 25 minutes. 
Finally, each student answered a survey about 
the interaction.  

The current study examines only the tutoring 
sections of each session, which were divided into 
30-second clips or “thin slices” (Ambady et al., 
2006). In total, the data points used for modeling 
comprise 2259 clips from the 12 dyads. 

3 Multimodal Information  

In our analyses, low-level audio and visual 
features were automatically extracted using three 
off-the-shelf toolkits. Dyadic features, which are 
a second order derivative of the low level 
features, and which capture the interaction of two 
participants, are also automatically produced. 
Taken together, analysis of these features allows 
us to determine if the verbal and nonverbal 
behaviors of the participants index their 
friendship status in any significant way.  

3.1 Low Level Audio Features (LA)  

Type # of Features 

Prosodic Features 

  F0 72 

  Energy 38 

  Duration 154 

Voice Quality Features 

  Jitter 68 

  Shimmer 34 

  Voicing 38 

Spectral Features 

  MFCC 570 

Total 974 
 

Table 1: Acoustic Feature Groups 
 

For acoustic feature extraction, a large set of 
acoustic low-level descriptors (LLD) and 
derivatives of LLDs combined with appropriate 
statistical functionals, i.e., maxPos (the absolute 
position of the maximum value in frames), 
minPos (the absolute position of the minimum 
value in frames), amean (The arithmetic mean of 
the contour), etc., were extracted for each of the 
split channel recordings. The “INTERSPEECH 
2010 Paralinguistic Challenge Feature Set” in the 
openSMILE toolkit (Schuller et al., 2012) was 
used as our basic acoustic feature set. For 
spectral features, Mel Spectrum and LSP were 
excluded due to the possible overlap with 

MFCC. The set contained 974 features which 
resulted from a base of 32 low-level descriptors 
(LLD) with 32 corresponding delta coefficients, 
and 21 functionals applied to each of these 68 
LLD contours. In addition, 19 functionals were 
applied to the 4 pitch-based LLD and their four 
delta coefficient contours. Finally the number of 
pitch onsets (pseudo syllables) and the total 
duration of the input were included. The 
dimension of each feature group is shown in 
Table 1. 

3.2 Low Level Vision Features (LV) 

Type # of Features 

Face Position Feature 10 

38 Face Interest Points 114 

Gaze Features 3 

Face Direction  Features 4 

Mouth and Eye Openness 6 

Smile Intensity 1 

Discretized Smile 1 

Total 139 
 

Table 2: Vision Feature Groups 
 

Since participants were facing the camera 
directly most of the time, as seen in Fig 1, 
current technology for facial tracking can 
efficiently be applied to our dataset. OMRON’s 
OKAO Vision System was used in face 
detection, facial feature extraction, and basic face 
related features extrapolation. For each frame, 
the vision software returns a smile intensity (0-
100) and the gaze direction, using both 
horizontal and vertical angles expressed in 
degrees. Apart from gaze direction, the software 
also provides information about head orientation: 
horizontal, vertical, and roll (in or out). 38 
additional face interest points, position and 
confidence, were also extracted. These were 
normalized to pixel coordinates, which turned 
out to lead to quite noisy data, and hence to 
diminished utility of these 38 points (in the 
future we will consider normalizing to face 
coordinates). We also calculated the openness of 
the left eye, right eye, mouth, and the location of 
the face. Details are shown in Table 2. Similar to 
our audio feature extraction method, one static 
feature vector per 30 second video clip was 
produced. All the features were computed at the 
same rate as the original videos: 30 Hz. 
Altogether, 139 dimensions were extracted in 
each frame from each camera view. 

3.3 Dyadic Features (DF) 

All of the features discussed above are low-level 
acoustic and visual features, extracted with 
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respect to individual participants. While 
individual behavior may index friendship state, 
we posit that patterns of interaction will be more 
effective. For example, prior research (Baker et 
al., 2008) suggests that the number and length of 
conversational turns (Cassell et al., 2007), 
presence of mutual smiles and non-mutual smiles 
(Prepin et al., 2012), mutual gaze and non-
mutual gaze (Nakano et al., 2010), as well as 
posture shifting (Cassell, et al., 2001; Tickle-
Degnen & Rosenthal, 1990), are important 
features to investigate in dyadic data. While 
other features such as gestures and mutual pitch 
shift may also play a role in indexing relationship 
state, these are not yet a part of the dyadic 
features we address here.  

3.3.1 Number and Average Length of 
Conversational Turns   

We recorded individual audio channels for each 
participant, which makes the automatic 
extraction of conversational turns possible. First, 
we extracted intervals of silence with toolbox 
SoX which produced speech chunks, and then 
identified the speaker by comparing the speech 
energy (loudness) in each audio channel, as 
speech from each speaker is carried by the 
other’s microphone. After that we combined the 
speech chunks and speaker ID to approximate 
conversational turns. The approximation quality 
is not perfect, given the variability of the audio 
recording, but noise can be mediated during 
model building. 

3.3.2 Mutual Smile and Non Mutual Smile  

Prepin et al. (2012) describe the role of mutual 
smiles (smiles that occur during the same time 
period) in “stance alignment” and make the point 
that interactional alignment of this behavior 
reflects synchronization of internal states. Such 
synchrony predicts mutual understanding and 
increased quality of interaction, and as such is a 
fundamental quality in the formation of 
adolescent friendships (Youniss, 1982). Cappella 
& Pelachaud (2002) likewise describe 
“mutuality” as the precondition for how smiles 
function in contingent ways in a dyad. Smiles are 
clearly therefore important to assess in data such 
as ours. We defined a maximum window of 500 
milliseconds between the end of one participant’s 
smile and the beginning of the next for smiles to 
be considered mutual.  

3.3.3 Mutual Gaze and Non-mutual Gaze 

Nakano & Ishii (2010) describe eye gaze as a 
clue to engagement, and integrate mutual gaze 
into their conversational agents. There is no 
feature for direct gaze at partner provided in the 

OKAO vision toolkit. Mutual gaze was therefore 
approximated by annotating a gaze “in front,” 
achieved by combining the information from 
three directions of gaze: vertical, horizontal, and 
depth. Gaze “in front”, or at the partner, was 
recorded only if the participant gaze had less 
than a 15 degree angle from straight forward in 
all of these three directions. A maximum window 
of 500 milliseconds for gaze to be considered 
mutual was also employed here.  

3.3.4 Mutual Lean Forward and Non-Mutual 
Lean Forward 

Forward leaning has been shown to be a 
significant predictor of the ability to establish 
rapport in a dyad (Harrigan et al., 1985). In fact, 
friends who lean in are seen as more socially 
competent, while strangers are seen as less 
socially competent when they lean in (Burgoon 
& Hale, 1988). For our study, lean forward was 
approximated by detecting the smooth trend of 
face enlargement within the video frame. In 
order to improve precision of the feature, the 
segments with high confidence in face detection 
were processed. Furthermore, posture shifting, 
i.e., forward leaning, is not as quickly executed 
as changes in gaze or smile. We therefore used a 
1 second sample window for lean forward, rather 
than a 500 millisecond window.  

3.3.5 Mutual Gaze followed by Mutual Smile 

Mutual gaze followed by mutual smile is also 
approximated using a similar approach as above. 
It is a relatively dense feature compared to all the 
other possible combinations of nonverbal 
behaviors, thus it is the only combination that is 
included in the feature set in this paper. The 
window within which mutual gaze is considered 
to be followed by mutual smile is set to be within 
2 seconds. 

4 Computational Model  

We formulate friendship prediction as a set of 
binary classifications. In order to have the least 
variance and make sure no participant appeared 
in both the training and testing set, a leave-one-
out cross-validation setting was adopted in all of 
our experiments. Each session had approximately 
180 30-second video clips, totaling 2259 data 
points. Z-score normalization by dyad was used 
to scale all the features into the same range. 
Early fusion, which is simple concatenation of 
feature vectors, was adopted throughout our 
experiments to combine different features. We 
evaluated our group sparse model (GSM), along 
with a non-sparse linear model (NLM) and 
sparse linear model (SLM). 
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4.1 Non-sparse Linear Model (NLM) 

We began with a standard non-sparse linear 
model (NLM), which is a Support Vector 
Machine (SVM) (Cortes & Vapnik, 1995) with a 
linear kernel. The libsvm (Fan et al., 2008) 
package was used in our experiment, and the 
parameter, the slack value of SVM that controls 
the scale of the soft margin, was obtained by 
cross validation.  

4.2 Sparse Linear Model (SLM)  

In order to prevent over-fitting on rare dyadic 
features, a sparse sensitive model SLM was 
introduced. As well as preventing over-fitting, 
through weight shrinkage the sparse model can 
also exclude redundant features. In our 
experiment, an L2,1 norm sparse model with 
linear kernel (Yang et al., 2012) was selected as 
our baseline sparse model. 

4.3 Group Sparse Model (GSM) 

Based on the SLM, we propose a group-sparse 
model (GSM) with the novel use of an L2,1 
norm. Instead of assuming every feature is 
uncorrelated to other features, the GSM groups 
some of the features together and utilizes their 
correlated information to mediate the noise of the 
data. For an arbitrary matrix        , its 
          is defined as  

         ∑ √∑    
  

   
 
     

Suppose that we have n training data indicated 
by            and sampled from c classes. In 
our setting, c = 2, friends or non-friends.     
{   }          is the corresponding label. 
The total scatter matrix    and between class 
scatter matrix    are defined as follows.  

         ∑                   
     

         ∑                        
     

where µ is the mean of all samples,    is the 
mean of samples in the i-th class.    is the 
number of samples in the i-th class,   
            . 

                         

G is the scaled label matrix. A well-known 
method to utilize discriminate information is to 
find a low dimensional subspace in which     is 
maximized while    is minimized (Fukunaga et 
al., 1990). So the object function could be easily 
written as follows  

    (  (    
  ) )             

           

The optimization of the above object function 
was introduced in Yang et al. (2012). It is an 
adaptation of iterative singular value 
decomposition. In GSM, a block-wise constraint 
is imposed on the diagonal matrix (D) which is 
the intermediate result of the iterative single 
value decomposition. 

      (
 

       
     

 

       
  ) 

W in the equation is the weight function,    is 
the i

th
 feature group in W, and there are a total 

number of G sub diagonal matrices 
corresponding to G groups of features. 
     For acoustic features, Steidl et al., (2012) 
designed a grouping schema which consists of 
Prosodic Features, Voice Quality Features and 
Spectral features which we adopted. For visual 
features, based on our observation of the highly 
unstable performance of the 38 feature points of 
the face, we introduced group bondage for the 
entire group to prevent single face features over-
fitting the classifier. Detailed group information 
is shown in Table 1 and Table 2. 

5 Human Baseline 

 
Figure 2: Boxplot of human rating accuracy with 

respect to gender. 

In order to establish a baseline of the difficulty 
of predicting friendship, we conducted an 
experiment with humans, rating whether two 
people in a video were friends or not, after 
watching a 30-second video/audio clip taken 
from the first session of tutoring (in which the 
behaviors of strangers are most likely to be 
distinct from friends). We recruited 14 people 
and screened out participants with prior 
theoretical knowledge of nonverbal behavior, 
gesture, friendship, and rapport, or who rated all 
12 clips in under 8 minutes, leaving 10 
participants, half male, with an average age of 23 
(SD 4.8). Each participant was asked to watch 
one 30-second clip per dyad, taken from 3 
minutes after tutoring began. The mean accuracy 
of their friendship prediction was 0.717 (SD 
0.119), which is significantly lower than our best 
GSM model (trained on all three sessions) 
applied to those same 12 clips, with a 
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performance of 0.837 (t(11) = -2.1381 p.<.05). 
When we split the ratings by gender, we found 
females on average were more accurate than 
males (see Figure 2). According to Hall et al., 
(1979) females are generally better decoders of 
nonverbal behaviors, which may lead to better 
judgment of friendship. 

6 Results: Models  

 
 Human NLM SLM GSM 

LV  0.743 0.768 0.792* 

LA  0.674 0.664 0.682* 

LV+DF  0.752 0.769 0.801* 

LA+DF  0.679 0.681 0.683 

LV+LA  0.744 0.780 0.803* 

LV+LA+DF  0.717 0.749 0.782 0.814# 
 

Table 3: The classification accuracy of the three 
algorithms on different features sets. Feature sets 
were combined with early fusion (+). Values marked 
* are significantly better (p<.05, pairwise t-test) than 
other results in the same row. Values marked # are 
significantly better (p<.001, pairwise t-test) than other 
results in the same column. 

Our group sparse model (GSM) along with the 
non-sparse linear model (NLM) and sparse linear 
model (SLM) were evaluated on different 
combinations of three sets of features: low-level 
vision features (LV), low-level audio features 
(LA) and dyadic features (DF), and their 
performance is presented in Table 3. We did not 
evaluate dyadic features (DF) alone due to their 
sparse nature. 
     In particular, we found that adding the 
automatically extracted DF to LV and LA with 
early fusion improved the performance (t(2258)= 
-3.12,p<.001) of the GSM model. When using 
fewer modalities, our newly proposed GSM 
outperformed NLM and SLM (t(2258)=-1.65, 
p<0.05). However, when the number of feature 
sets increased, there was no statistical difference 
in performance between GSM and the other two 
models. We suspect that when features are 
abundant, the information that the features 
provide reaches a ceiling. The advantage of the 
GSM was gained by mediating the noise and 
sparseness of the data, which resulted in better 
weight assignment for each feature. Alternatively, 
when features are abundant, even NLM can have 
a comparative weight assignment by performing 
a greedy high dimensional feature space search. 
Thus there is limited room for further 
improvement by better weight assignment among 
the group features which GSM assumes. 
    When we looked at the top features selected 
by NLM using the vision modality alone, two 
(out of 38) face features, which had an unstable 
nature, appeared high in rank, which suggests the 

possibility of NLM over-fitting the noise of these 
features. Surprisingly, when more modalities are 
added, NLM stops picking single face features as 
top informative features. In GSM, none of the 38 
face features are listed in the top ranked features 
for any of the modalities, which demonstrates its 
ability in noise mediation. 

In real world applications, data sets which 
produce ideal, abundant, and accurate features 
are rarely encountered. We often end up with 
data that are poor in video quality, e.g. with no 
split channels for each participant or no frontal 
face view. Our newly proposed GSM may 
therefore be more robust when features are noisy 
or certain modalities are not available.  

7 Results: Contributions of Features 

Feature Name Weight 

Number of Conversational Turns & 

Average Length of Turns 
0.041 

Gaze Down -0.036 

Mutual Gaze 0.014 

F0 0.013 

Non-mutual Gaze -0.013 

Voicing 0.014 

MFCC -0.007 

Non-mutual Smile 0.004 

Non-mutual Lean Forward 0.004 

Mutual Gaze followed by Mutual 

Smile 
0.001 

 
Table 4:  The top 10 informative features and their 
weights as trained by GSM. Positive weight is 
associated with friends while negative weight is 
associated with non-friends. 

After building the model and ranking the 
features, we looked into the weights learned for 
each feature. This weight comprises not only the 
magnitude, which tells us if the feature is 
important, but also the polarity. A detailed list of 
the most informative features and their weights is 
shown in Table 4.  

The strongest feature is number and length of 
conversational turns which is grouped in the 
table and should be interpreted as meaning that 
friends have more and shorter conversational 
turns. This is consistent with previous research 
on direction giving (Cassell et al., 2007), and 
mirrors the fact that friends are more likely to 
interrupt one another. 

We expected that unfamiliar participants, 
seated about two feet across from one another, 
would maintain a low level of eye contact 
(Argyle & Dean, 1965). In fact we found that 
non-friends tend to gaze down more often. In 
this context, non-friends spend more time 
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looking down at their study materials. In turn, 
mutual gaze is higher among friends. 

Among the audio features, F0, which captures 
pitch related information such as range and 
mean, has been shown to differ between 
conversational and non-conversational speech 
(Bolinger, 1986). Here, friends show that more 
conversational style in their speech, despite the 
tutoring nature of the interaction.  

In order to further examine the lessons to be 
learned from this GSM model about verbal and 
nonverbal behavior in friends and strangers, we 
also ran a repeated measures ANOVA, including 
both gender and friendship status as factors. 
There were no significant effects for gender, 
however, and so that factor was collapsed for 
further analysis. The four features described 
above were all significantly different between 
friends and strangers (although gaze down was 
simply a trend, at p<.08). 

The following features were also important to 
the model, but did not show significance in the 
ANOVA, perhaps because of their sparse nature 
in our data. MFCC (Mel-Frequency Cepstral 
Coefficients) was associated with strangers and 
the similar audio feature of voicing was 
associated with friends. Both of these features 
have been described as approximating speech 
style – voicing, for example, may indicate more 
backchannels, such as “uh huh” and “hmm” 
(Ward, 2006). 
     In Nakano et al. (2003), listener gaze at the 
speaker is interpreted as evidence of non-
understanding. We found similar results whereby 
non-friends were more likely to engage in non-
mutual gaze – looking at one another when the 
other person was not looking back.  Mutual smile 
did not distinguish between friends and non-
friends, while non-mutual smile, on the other 
hand, provided indicative strength, in spite of its 
sparse nature, for friendship. This may relate to 
our prior work (Ogan et al., 2012) which found 
significant teasing and other behavior whereby 
friends appear comfortable enjoying themselves 
at the expense of the other.  
    Mutual lean forward lacked predictive power 
in our model, while non-mutual lean forward 
was more salient between friends. We often 
found, for example, that friends maintained very 
different postures, with a tutor leaning back 
much of the time, leaning forward only to answer 
a direct question from the tutee. Non-friends, on 
the other hand, tended to remain fixed on the 
study material. This may have been a display of 
formality, where a casual attitude would have 
been perceived as either impolite or 
inappropriate. In either relationship state, the 
tutee tended to sit hunched over the worksheet, 

and since we did not enter tutor state into the 
model, this may have washed out some tutor-
specific results.  
     For the time contingent feature, mutual gaze 
followed by mutual smile is informative and 
predictive of friends. 

8 Error Analysis and Discussion 

Dyad  

ID 
LA+DF LV+DF LA+LV+DF 

     1 0.732 0.809 0.819 

     2* 0.703 0.793 0.804 

     3* 0.574 0.771 0.778 

     4* 0.713 0.708 0.762 

     5 0.653 0.879 0.880 

     6 0.728 0.827 0.835 

     7 0.624 0.873 0.882 

     8* 0.712 0.861 0.852 

     9* 0.698 0.820 0.830 

    10 0.606 0.834 0.854 

    11* 0.700 0.682 0.743 

    12 0.749 0.780 0.785 
 
Table 5: The average accuracy of classification in 
each dyad using the group sparse model (GSM) with 
different combination of feature sets. Dyads marked 
with * are friends 

We performed an error analysis to understand the 
contexts under which our model failed to 
accurately predict friendship states, and here we 
discuss the implications of these examples for 
our work. Table 5 shows the average accuracy of 
each dyad using audio, visual, and dyadic 
features to predict friendship. Dyads 2, 3, 4, 8, 9 
and 11 are friend dyads, and the rest are 
strangers.  

Dyad 3 (friends) showed very low accuracy in 
audio and dyadic features alone, which might be 
explained by the fact that in one early session for 
this dyad, most of the 30-second clips contain 
very sparse numbers of low-level audio features 
(LA). An examination of the audio recording 
reveals that one of the participants was more 
aggressive than in the other sessions. The student 
told his friend, “Just be quiet—I am trying to 
work,” and “Shh, you don’t understand, so I 
basically have to teach you how to work that, but 
I'm trying to work.” At this point in the 
interaction, his partner stopped participating in 
the task and said virtually nothing for the rest of 
the session. This lack of speech led to a lower 
number of turns – a pattern with a closer 
resemblance to strangers than friends. 

It seems that such rude behavior would be 
more likely between friends than strangers, 
meaning that ultimately our model will need to 
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be sensitive to this kind of variance. With more 
pairs of friends, different styles of friendship can 
be further distinguished. However, this specific 
phenomenon signals that in the future, lexical 
information which could be obtained by 
automatic speech recognition could further 
improve performance. 

Dyad 11 also showed low relative accuracy in 
predication, particularly when the model used 
vision features. We found that one of the 
participants often tilted her head, which partially 
blocked the frontal camera view of the other 
participant, thus resulting in less confidence in 
automatically extracted visual features. In the 
future we will set our cameras in a better position 
in order to reach higher feature extraction 
accuracy.  

When we combined all our features, the 
prediction accuracy of Dyad 3 and 11 improved, 
further demonstrating that multimodal 
information improves friendship modeling. 

9 Conclusion and Future Work 

As a first step towards predicting the state of 
friendship between two interlocutors, we 
analyzed a set of automatically harvested low-
level and dyadic features from dialogues in a 
peer-tutoring task. Both low level features and 
dyadic features were shown to be useful in 
discriminating between those who are friends 
and those who are not.  
     To perform the analysis, we introduced a new 
computational group sparse model (GSM) in 
order to accommodate the sparse and noisy 
properties of multi-channel features. GSM 
outperformed a baseline of human raters who 
make these types of social judgments in 
everyday interactions. GSM also statistically 
outperformed a non-sparse linear model (NLM) 
and a sparse linear model (SLM) when the 
analysis used only a single set of low level 
features or single set of low level features 
combined with dyadic features. When all 
features were used, the distinctions between 
models decreased, since in a huge multimodal 
feature space, even a naïve model could greedy 
search for a good weight assignment. Thus our 
newly proposed model did not significantly 
outperform the others in this scenario. And in 
general, more features produced more accurate 
prediction. 
    Based on the outcomes of the GSM model, we 
investigated differences between verbal and 
nonverbal behavior cues as a function of 
different friendship states. While much research 
on rapport detection and building in ECAs has 
focused on low level features, we found that 
dyadic features provided some of the most 

distinguishing differences between friends and 
non-friends. For example, mutual gaze and non-
mutual gaze were both indicative, as friends are 
comfortable looking directly at one another while 
non-friends may have used direct gaze only to 
signal non-understanding. This comfort between 
friends was also notable in other salient dyadic 
features; i.e., while non-friends often work in 
concert looking down at the task, friends were 
relaxed such that one partner could lean back, 
interrupt to take more conversational turns, and 
smile at the other without needing to reciprocate 
the smile each time. 

In future work we will look at temporal 
contingency more closely, examining whether 
participants’ actions are contingent on the 
behavior of their partner. We will also examine 
whether the behavior of friends and strangers 
changes over multiple sessions. In this context, 
we include one suggestive graph, which shows 
that strangers increase their mutual gaze over 
sessions but friends decrease it. We are currently 
collecting further sessions for each dyad so as to 
be able to further analyze the nature of these 
relationships over time. 

 
Figure 3: Weight of the mutual gaze in each 

session, by friendship status 

 
To date we have found that the inclusion of 

automatically extracted dyadic features can lead 
to better prediction of friendship state. Both 
verbal and nonverbal behaviors were discovered 
that distinguish between different friendship 
status and that suggest how to design embodied 
dialogue systems that intend to spend a lifetime 
on the job. 
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