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Abstract

Only very few users disclose their physical lo-
cations, which may be valuable and useful in
applications such as marketing and security
monitoring; in order to automatically detect
their locations, many approaches have been
proposed using various types of information,
including the tweets posted by the users. It is
not easy to infer the original locations from
textual data, because text tends to be noisy,
particularly in social media. Recently, deep
learning techniques have been shown to re-
duce the error rate of many machine learning
tasks, due to their ability to learn meaning-
ful representations of input data. We investi-
gate the potential of building a deep-learning
architecture to infer the location of Twitter
users based merely on their tweets. We find
that stacked denoising auto-encoders are well
suited for this task, with results comparable to
state-of-the-art models.

1 Introduction

Many real-world applications require the knowledge
of the actual locations of users. For example, on-
line advertisers would like to target potential buyers
in particular regions. There are easy ways to ob-
tain user locations, for example, social media ser-
vice providers allow users to provide their locations,
mostly through GPS locating or by manual specifi-
cation. However, only a small proportion of users
actually provide location information. The propor-
tion of users who specify their locations in their pro-
files is reported to be 14.3% by Abrol et al. (2012);

self-reported locations also tend to be unreliable be-
cause users can practically type anything they want,
such as In your backyard or Wonderland. When it
comes to per-tweet GPS tagging, only 1.2% of all
users use this functionality (Dredze et al., 2013).
In view of such extreme sparsity, researchers have
developed various ways of inferring users’ loca-
tions using information such as interactions between
users, locations declared by users in their social me-
dia profiles, users’ time zones, the text they generate,
etc. The relation between geographical location and
language has been studied since the 19th century as
a sub-field of sociolinguistics known as dialectology
(Petyt, 1980; Chambers, 1998).

In this work, our concern is how to estimate users’
locations from the textual data that they generate on
social media, and in particular to infer Twitter users’
location using the messages they post on their Twit-
ter accounts. For each user, we put together all the
tweets written by that user, in order to predict his/her
physical location. We focus on predicting users’ lo-
cations with a deep learning architecture built with
denoising auto-encoders proposed first by Vincent
et al. (2008), since this approach was not yet applied
to this task. The contribution of our work consists
in designing models for solving the task and in find-
ing the right parameter values to make the proposed
models achieve good results. The first model pre-
dicts the U.S. region where the user is located and
his/her U.S. state, while the second model predicts
the longitude and latitude of the user’s location.
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2 Related Work

2.1 Location Prediction Using Twitter Data
Many methods have been proposed to predict users’
locations based on social network structure (Back-
strom et al., 2010), (Jurgens, 2013), (Rout et al.,
2013). Here we focus on the methods that predict
users’ locations based on the social media texts they
generate. One of the very first is by Cheng et al.
(2010), who first learned the location distribution
for each word, then inferred the location of users at
U.S. city level according to the words in their tweets.
Specifically, they estimated the posterior probability
of a user being from a city c given his/her tweets t
by computing:

P(c|t) = ∏
w∈t

P(c|w)×P(w) (1)

where w is a word contained in this user’s tweets.
To improve the initial results, they also used sev-
eral smoothing techniques such as Laplace smooth-
ing and so-called data-driven geographic smooth-
ing and model-based smoothing. Their best model
managed to make accurate predictions (less than
100 miles away from the actual location) 51% of
the time, and the average error distance is 535.564
miles. It is worth noting that the size of the dataset
in their work is large, containing 4,124,960 tweets
from 130,689 users.

Eisenstein et al. (2010) adopted a topic model ap-
proach. They treated tweets as documents gener-
ated by two latent variables, i.e., topic and region,
and train a system they call geographic topic model,
which could predict authors’ locations based on text
alone. Like Cheng et al. (2010), their model also re-
lied on learning regional word distributions. The av-
erage distance from the model’s prediction to the ac-
tual location is 900 kilometres. By comparison, their
dataset is much smaller, containing 380,000 tweets
from 9,500 users. This dataset is made available and
has been used by a number of works.

Roller et al. (2012) used a variant of K-Nearest
Neighbours (kNN); they divided the geographic sur-
face of the Earth into grids and then constructed
a pseudo-document for each grid; a location for a
test document was chosen based on the most sim-
ilar pseudo-document. Another type of model is a
variant of Gaussian mixture models (GMMs) pro-
posed by Priedhorsky et al. (2014). Their approach

resembles that of Cheng et al. (2010) in constructing
location-sensitive n-grams; besides tweets, they also
used information such as users’ self-reported loca-
tions and time zones for prediction.

2.2 Deep Neural Networks

In this section, we present the artificial neural net-
work architectures that will appear in the subsequent
sections.

2.2.1 Feedforward Artificial Neural Networks
A feedforward neural network usually has an in-

put layer and an output layer. If the input layer is
directly connected to the output layer, such a model
is called a single-layer perceptron. A more pow-
erful model has several layers between the input
layer and the output layer; these intermediate lay-
ers are called hidden layers; this type of model is
known as a multi-layer perceptron (MLP). In a per-
ceptron, neurons are interconnected, i.e., each neu-
ron is connected to all neurons in the subsequent
layer. Neurons are also associated with activation
functions, which transform the output of each neu-
ron; the transformed outputs are the inputs of the
subsequent layer. Typical choices of activation func-
tions include the identity function, defined as y = x;
the hyperbolic tangent, defined as y = ex−e−x

ex+e−x and the
logistic sigmoid, defined as y = 1

1+e−x . To train a
MLP, the most commonly used technique is back-
propagation (Rumelhart et al., 1985). Specifically,
the errors in the output layer are back-propagated to
preceding layers and are used to update the weights
of each layer.

2.2.2 Deep Neural Network Architecture
An artificial neural network (ANN) with multiple

hidden layers, also called a Deep Neural Network
(DNN), try to mimic the deep architecture of the
brain and it is believed to perform better than shal-
low architectures such as logistic regression mod-
els and ANNs without hidden units. The effective
training of DNNs is, however, not achieved until the
work of Hinton et al. (2006) and Bengio and Lam-
blin (2007). In both cases, a procedure called un-
supervised pre-training is carried out before the fi-
nal supervised fine-tuning. The pre-training signif-
icantly decreases error rates of Deep Neural Net-
works on a number of ML tasks such as object
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recognition and speech recognition.
The details of DNN’s are beyond the scope of this

paper; interested readers can refer to the work of
Hinton et al. (2006), Bengio and Lamblin (2007),
Vincent et al. (2008) and the introduction by Bengio
et al. (2013).

2.3 Deep Neural Networks Applied to NLP
Data representation is important for machine learn-
ing (Domingos, 2012). Many statistical NLP tasks
use hand-crafted features to represent language units
such as words and documents; these features are
fed as the input to machine learning models. One
such example is emotion or sentiment classification
which uses external lexicons that contain words with
emotion or sentiment prior polarities (Ghazi et al.,
2014; Aman and Szpakowicz, 2008; Melville et al.,
2009; Li et al., 2009). Despite the usefulness of
these hand-crafted features, designing them is time-
consuming and requires expertise.

A number of researchers have implemented
DNNs in the NLP domain, achieving state-of-the-art
performance without having to manually design any
features. The most relevant to ours is the work of
Glorot et al. (2011), who developed a deep learning
architecture that consists of stacked denoising auto-
encoders (SDA) and apply it to sentiment classifi-
cation of Amazon reviews. Their stacked denois-
ing auto-encoders can capture meaningful represen-
tations from reviews and outperform state-of-the-
art methods; due to the unsupervised nature of the
pre-training step, this method also performs domain
adaptation well.

In the social media domain, Tang et al. (2013)
extracted representations from Microblog text data
with Deep Belief Networks (DBNs) and used the
learned representations for emotion classification,
outperforming representations based on Principal
Component Analysis and on Latent Dirichlet Allo-
cation.

Huang and Yates (2010) showed that representa-
tion learning also helps domain adaptation of part-
of-speech tagging, which is challenging because
POS taggers trained on one domain have a hard time
dealing with unseen words in another domain. They
first learned a representation for each word, then fed
the learned word-level representations to the POS
tagger; when applied to out-of-domain text, it can

reduce the error by 29%.

3 Methods

3.1 Datasets

In order to compare the performance of our sys-
tem with that of other systems, we choose a pub-
licly available dataset from Eisenstein et al. (2010)
1, which has been used by several other researchers.
It includes about 380,000 tweets from 9,500 users
from the contiguous United States (i.e., the U.S. ex-
cluding Hawaii, Alaska and all off-shore territories).
The dataset also provides geographical coordinates
of each user. A similar but much larger dataset
that we use is from Roller et al. (2012) 2; it con-
tains 38 million tweets from 449,694 users, all from
North America. We regard each user’s set of tweets
as a training example (labelled with location), i.e.,
(x(i),y(i)) where x(i) represent all the tweets from the
i-th user and y(i) is the location of the i-th user. Meta-
data like user’s profile and time zone will not be used
in our work.

3.2 Our Models

We define our work as follows: first, a classification
task puts each user into one geographical region (see
Section 4 for details); next, a regression task predicts
the most likely location of each user in terms of ge-
ographical coordinates, i.e., a pair of real numbers
for latitude and longitude. We present one model for
each task.

3.2.1 Model 1
The first model consists of three layers of de-

noising auto-encoders. Each code layer of denois-
ing auto-encoders also serves as a hidden layer of a
multiple-layer feedforward neural network. In addi-
tion, the top code layer works as the input layer of
a logistic regression model whose output layer is a
softmax layer.

Softmax Function The softmax function is de-
fined as:

so f tmaxi(z) =
ezi

∑J
j=1 ez j

(2)

1http://www.ark.cs.cmu.edu/GeoTwitter
2https://github.com/utcompling/

textgrounder/wiki/RollerEtAl_EMNLP2012
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where the numerator zi is the ith possible input to the
softmax function and the denominator is the sum-
mation over all possible inputs. The softmax func-
tion produces a normalized probability distribution
over all possible output labels. This property makes
it suitable for multiclass classification tasks. Con-
sequently, a softmax layer has the same number of
neurons as the number of possible output labels; the
value of each neuron can be interpreted as the prob-
ability the corresponding label given the input. Usu-
ally, the label with the highest probability is returned
as the prediction made by the model.

In our model, mathematically, the probability of a
label i given the input and the weights is:

P(Y = i|xN ,W (N+1),b(N+1))

= so f tmaxi(W (N+1)xN +b(N+1))

=
eW (N+1)

i xN+b(N+1)
i

∑ j eW (N+1)
j xN+b(N+1)

j

(3)

where W (N+1) is the weight matrix of the logistic
regression layer and b(N+1) are its biases. N is the
number of hidden layers, in our case N = 3. xN is
the output of the code layer of the denoising auto-
encoder on top. To calculate the output of i-th hid-
den layer (i = 1 . . . N), we have:

xi = s(W (i)xi−1 +b(i)) (4)

where s is the activation function, W (i) and b(i) corre-
spond to the weight matrix and biases of the i-th hid-
den layer. x0 is the raw input generated from text3,
as specified in section 4. We return the label that
maximizes Equation (3) as the prediction, i.e.:

ipredict = argmax
i

P(Y = i|xN ,W (N+1),b(N+1)) (5)

We denote this model as SDA-1.

3.2.2 Model 2
In the second model, a multivariate linear regres-

sion layer replaces a logistic regression layer on
top. This produces two real numbers as output,
which can be interpreted as geographical coordi-
nates. Therefore the output corresponds to locations

3Explained in Section 3.3
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Figure 1: Illustration of the two proposed models
SDA-1 and SDA-2.

on the surface of Earth. Specifically, the output of
model 2 is:

yi = W (N+1)
i xN +b(N+1)

i (6)

where i ∈ {1,2}, W (N+1) is the weight matrix of the
linear regression layer and b(N+1) are its biases, xN

is the output of the code layer of the denoising auto-
encoder on top. The output of i-th hidden layer (i =
1 . . . N) is computed using Equation (4), which is the
same as Model 1. The tuple (y1,y2) is then the pair
of geographical coordinates produced by the model.
We denote this model as SDA-2. Figure 1 shows the
architecture of both models. They have with three
hidden layers. The models differ only in the out-
put layers. The neurons are fully interconnected. A
layer and its reconstruction and the next layer to-
gether correspond to a denoising auto-encoder. For
simplicity, we do not include the corrupted layers in
the diagram. Note that models SDA-1 and SDA-2
are not trained simultaneously, nor do they share pa-
rameters.

3.3 Input Features

To learn better representations, a basic representa-
tion is required to start with. For text data, a rea-
sonable starting representation is achieved with the
Bag-of-N-grams features (Glorot et al., 2011; Ben-
gio et al., 2013).

The input text of Twitter messages is preprocessed
and transformed into a set of Bag-of-N-grams fre-
quency feature vectors. We did not use binary fea-
ture vectors because we believe the frequency of n-
grams is relevant to the task at hand. For example,
a user who tweets Senators 10 times is more likely
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to be from Ottawa than another user who tweets it
just once. (The latter is more likely to be someone
from Montreal who tweets Senators simply because
the Canadiens happen to be defeated by the Sena-
tors that time.) Due to computational limitations, we
consider only the 5000 most frequent unigrams, bi-
grams and trigrams4. We tokenized the tweets using
the Twokenizer tool from Owoputi et al. (2013).

3.4 Statistical Noises for Denoising
Auto-encoders

An essential component of a DA is its statistical
noise. Following Glorot et al. (2011), the statisti-
cal noise we incorporate for the first layer of DA
is the masking noise, i.e., each active element has
a probability to become inactive. For the remaining
layers, we apply Gaussian noise to each of them, i.e.,
a number independently sampled from the Gaussian
distribution N (0, σ2) is added to each element of
the input vector to get the corrupted input vector.
Note that the Gaussian distribution has a 0 mean.
The standard deviation of the Gaussian distribution
σ decides the degree of corruption; we also use the
term corruption level to refer to σ .

3.5 Loss Functions

3.5.1 Pre-training
In terms of training criteria for unsupervised pre-

training, we use the squared error loss function:

`(x,r) = ||x− r||2 (7)

where x is the original input, r is the reconstruction.
The squared error loss function is a convex func-
tion, so we are guaranteed to find the global opti-
mum once we find the local optimum.

The pre-training is done by layers, i.e., we first
minimize the loss function for the first layer of de-
noising auto-encoder, then the second, then the third.
We define the decoder weight matrix as the transpo-
sition of the encoder weight matrix.

3.5.2 Fine-tuning
In the fine-tuning phase, the training criteria differ

for model 1 and model 2. It is a common practice

4Not all of these 5000 n-grams are necessarily good loca-
tion indicators, we don’t manually distinguish them; a machine
learning model after training should be able to do so.

to use the negative log-likelihood as the loss func-
tion of models that produce a probability distribu-
tion, which is the case for model 1. The equation for
the negative log-likelihood function is:

`(θ = {W,b},(x,y))
=− log(P(Y = y|x,W,b)) (8)

where θ = {W,b} are the parameters of the model,
x is the input and y is the ground truth label. To min-
imize the loss in Equation (8), the conditional prob-
ability P(Y = y|x,W,b) must be maximized, which
means the model must learn to make the correct pre-
diction with the highest confidence possible. Train-
ing a supervised classifier using the negative log-
likelihood loss function can be therefore interpreted
as maximizing the likelihood of the probability dis-
tribution of labels in the training set.

On the other hand, model 2 produces for ev-
ery input a location ŷ( ˆlat, ˆlon), which is associated
with the actual location of this user, denoted by
y(lat, lon). Given latitudes and longitudes of two lo-
cations, their great-circle distance can be computed
by first calculating an intermediate value ∆σ with
the Haversine formula (Sinnott, 1984):

∆σ = arctan
√

(cosφ2 sin∆λ )2 +(cosφ1 sinφ2− sinφ1 cosφ2 cos∆λ )2

sinφ1 sinφ2 + cosφ1 cosφ2 cos∆λ


(9)

Next, calculate the actual distance:

d((φ1,λ1),(φ2,λ2)) = r∆σ (10)

where φ1, λ1 and φ2, λ2 are latitudes and longitudes
of two locations, ∆λ = λ1 − λ2, r is the radius of
the Earth. Because d is a continuously differentiable
function with respect to φ1 and λ1 (if we consider
(φ1, λ1) as the predicted location, then (φ2, λ2) is the
actual location), and minimizing d is exactly what
model 2 is designed to do, we define the loss func-
tion of model 2 as the great-circle distance between
the estimated location and the actual location:

`(θ = {W,b},(x,y))
= d(Wx+b,y) (11)

where θ = {W,b} are the parameters of the model,
x is the input and y is the actual location. 5

5Alternatively, we also tried the loss function defined as the
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Now that we have defined the loss functions
for both models, we can train them with back-
propagation (Rumelhart et al., 1985) and Stochastic
Gradient Descent (SGD).

4 Experiment

4.1 Metrics

We train the stacked denoising auto-encoders to pre-
dict the locations of users based on the tweets they
post. To evaluate SDA-1, we follow Eisenstein et al.
(2010) and define a classification task where each
user is classified as from one of the 48 contiguous
U.S. states or Washington D.C. The process of re-
trieving a human-readable address including street,
city, state and country from a pair of latitude and
longitude is known as reverse geocoding. We use
MapQuest API 6 to reverse geocode coordinates for
each user. We also define a task with only four
classes, the West, Midwest, Northeast and South re-
gions, as per the U.S. Census Bureau.7 The metric
for comparison is the classification accuracy defined
as the proportion of test examples that are correctly
classified. We also implement two baseline models,
namely a Naive Bayes classifier and an SVM clas-
sifier (with the RBF kernel); both of them take ex-
actly the same input as the stacked denoising auto-
encoders.

To evaluate SDA-2, the metric is simply the mean
error distance in kilometres from the actual location
to the predicted location. Note that this is the dis-
tance on the surface of the Earth, also known as the
great-circle distance. See Equations (9)-(10) for its
computation. In Section 5.2, we applied two addi-
tional metrics, which are the median error distance
and the percentage of predictions less than 100 miles
away from the true locations, to comply with previ-
ous work. Similarly, we implement a baseline model
which is simply a multivariate linear regression layer
on top of the input layer. This baseline model is
equivalent to SDA-2 without hidden layers. We de-
note this model as baseline-MLR. After we have ob-

average squared error of output numbers, which is equivalent to
the average Euclidean distance between the estimated location
and the true location; this alternative model did not perform
well.

6http://www.mapquest.com
7http://www.census.gov/geo/maps-data/

maps/pdfs/reference/us_regdiv.pdf

tained the performance of our models, they will be
compared against several existing models from pre-
vious work.

4.2 Early Stopping

We define our loss functions without regularizing the
weights; to prevent overfitting, we adopt the early-
stopping technique (Yao et al., 2007); i.e., training
stops when the model’s performance on the valida-
tion set no longer improves. Specifically, we adopt
the patience approach (Bengio, 2012), which is il-
lustrated in pseudocode:

initialization
patience=20, iteration=1;
while iteration <patience do

update parameters;
if the performance improves then

patience := max(patience, iteration*2);
end
iteration +=1

end
Algorithm 1: Early stopping.

4.3 Splitting the Data

To make the comparisons fair, we split the Eisen-
stein dataset in the same way as Eisenstein et al.
(2010) did, i.e., 60% for training, 20% for validation
and 20% for testing. The Roller dataset was pro-
vided split, i.e., 429,694 users for training, 10,000
users for validation and the rest 10,000 users for test-
ing; this is the split we adopted.

4.4 Tuning Hyper-parameters

One of the drawbacks of DNNs is a large number
of hyper-parameters to specify (Bengio, 2012). The
activation function we adopt is the sigmoid func-
tion y = 1

1+e−x , which is a typical choice as the non-
linear activation function. For the size (the number
of neurons) of each hidden layer, usually a larger
size indicates better performance but higher com-
putational cost. Since we do not have access to
extensive computational power, we set this hyper-
parameter to 5000, which is equal to the size of the
input layer. As for the corruption level, the mask-
ing noise probability for the first layer is 0.3; the

206



Gaussian noise standard deviation for other layers
is 0.25. These two values are chosen because they
appear to work well in our experiments based on
the validation dataset. The Mini-batch size chosen
for stochastic gradient descent is 32, which is a rea-
sonable default suggested by Bengio (2012). For
the learning rates, we explore different configura-
tions in the set {0.00001, 0.0001, 0.001, 0.01, 0.1}
for both pre-learning learning rate and fine-tuning
learning rate. Lastly, the pre-training stops after 25
epochs, which usually guarantees the convergence.
Fine-tuning stops after 1000 epochs; because of the
early stopping technique described in Section 4.2,
this number is rarely reached.

4.5 Implementation
Theano (Bergstra et al., 2010) is a scientific com-
puting library written in Python. It is mainly de-
signed for numerical computation. A main feature
of Theano is its symbolic representation of mathe-
matical formulas, which allows it to automatically
differentiate functions. We train our model with
stochastic gradient descent which requires the com-
putation of gradients, either manually or automati-
cally. Since Theano does automatic differentiation,
we no longer have to manually differentiate com-
plex functions like Equation (9). We implemented
SDA-1, SDA-28 and the baseline multivariate linear
regression model with Theano.

Scikit-learn (Pedregosa et al., 2011) is a machine
learning package written in Python. It includes most
standard machine learning algorithms. The two
baseline models compared against SDA-1 (Naive
Bayes and SVM) are implemented using the Scikit-
learn package.

5 Results

5.1 Evaluation on the Eisenstein Dataset
The SDA-1 model yields an accuracy of 61.1% and
34.8%, for region classification and state classifi-
cation, respectively. The results of all models are
shown in Table 1. Among all previous works that
use the same dataset, only Eisenstein et al. (2010)
report the classification accuracy of their models;
to present a comprehensive comparison, all mod-
els from their work, not just the best one, are listed.

8Our code is available at https://github.com/rex911/usrloc

Student’s t-tests suggest that the differences between
SDA-1 and the baseline models are statistically sig-
nificant at a 99% level of confidence9.

It can be seen that our SDA-1 model performs best
in both classification tasks. It is surprising to find
that the shallow architectures that we implemented,
namely SVM and Naive Bayes, perform reasonably
well. They both outperform all models in (Eisen-
stein et al., 2010) in terms of state-wise classifica-
tion. A possible explanation is that the features we
use (frequencies of n-grams with n = 1, 2, 3) are
more indicative than theirs (unigram term frequen-
cies).

Classif. Acc. (%)
Model Region State

(4-way) (49-way)
Geo topic model 58 24

Eisenstein Mixture of unigrams 53 19
et al. Supervised LDA 39 4
(2010) Text regression 41 4

kNN 37 2

Our models
SDA-1 61.1 34.8
Baseline-Naive Bayes 54.8 30.1
Baseline-SVM 56.4 27.5

Table 1: Classification accuracy for SDA-1 and
other models

Table 2 shows the mean error distance for various
models trained on the same dataset. The difference
between SDA-2 and the baseline model is statisti-
cally significant at a level of confidence of 99.9% 10.
Our model has the second best results and performs
better than four models from previous work. In ad-
dition, the fact that SDA-2 outperforms the baseline
model by a large margin shows the advantages of a
deep architecture and its ability to capture meaning-
ful and useful abstractions from input data.

5.2 Evaluation on the Roller Dataset
Table 3 compares the results from various models on
the Roller dataset. The model by Han et al. (2014),
which included extensive feature engineering, out-
performed other models. In addition it achieves the

9We are unable to conduct t-tests on the Eisenstein models,
because of the unavailability of the details of the results pro-
duced by these models.

10We are unable to conduct t-tests on the other models, be-
cause of the unavailability of the details of the results produced
by these models.
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Model Mean Error Distance(km)
Eisenstein et al. (2011) 845

SDA-2 855.9
Priedhorsky et al. (2014) 870

Roller et al. (2012) 897
Eisenstein et al. (2010) 900

Wing and Baldridge (2011) 967
Baseline-MLR 1268

Table 2: Mean error distance of predictions for
SDA-2 and models from previous work.

best results by utilizing about 90% of all 214,000
features; when using the top 3% (6420) features, the
Accuracy was 10% 11. The SDA-2 model, despite
the computational limitation, achieved better results
than that of Roller et al. (2012) using just 5,000 fea-
tures.

Model Mean Median Acc.
error (km) error (km) %

Roller et al. (2012) 860 463 34.6
Han et al. (2014) NA 260 45
Han et al. (2014)

using top 3%
features (6420) NA NA 10

SDA-2 733 377 24.2

Table 3: Results from SDA-2 and the best models
of previous work; NA indicates Not Available

6 Conclusion and Future Work

The experimental results show that our SDA-1
model outperformed other empirical models; our
SDA-2 model’s performance is reasonable. We
demonstrate that a DNN is capable of learning rep-
resentations from raw input data that helps the in-
ference of location of users without having to de-
sign any hand-engineered features. The results also
show that deep learning models have the potential
of being applied to solve real business problems that
require location detection, in addition to their re-
cent success in natural language processing tasks
and to their well-established success in computer vi-
sion and speech recognition.

We should point out the comparisons in Section
5 are approximate because our models use unigram,

11Only this metric was reported by the author in the top 3%
features configuration

bigram and trigrams, while some of the models with
compared with use only unigram; instead, our mod-
els use a smaller number of features, especially com-
pared to the model of Han et al. (2014).

We believe a better model can yet be built. For
example, our exploration for hyper-parameters is by
no means exhaustive, especially for the mini-batch
size and the corruption levels, due to the very high
running time required. It would be interesting to find
out the optimal set of hyper-parameters. More com-
putational capacity also allows the construction of a
more powerful DNN. For example, in our models,
the hidden layers have a size of 5000, which is equal
to the size of input layer; however, a hidden layer
larger than the input layer learns better representa-
tions (Bengio et al., 2013).

The datasets we use does not have a balanced dis-
tribution. Users are densely distributed in the West
Coast and most part of the East, whereas very few
are located in the middle. Such label imbalance has
a negative effect on statistical classifiers, and ad-
versely affects regression models because many tar-
get values will never be sampled.

In future work, we plan to collect a dataset uni-
formly distributed geographically, and the locations
do not have to be limited to the contiguous United
States. Alternatively, one may notice that the distri-
bution of users is similar to that of the U.S. popula-
tion, therefore it is possible to use the U.S. census
data to offset such a skewed distribution of users. It
could also benefit to choose the 5000 features more
carefully, instead of simply selecting the most fre-
quent ones. In addition, the input of our system
consists only of tweets, because we are mostly in-
terested in recovering users’ location from the lan-
guage they produce; however, real applications re-
quire a higher accuracy. To achieve this, we could
also incorporate information such as users’ profiles,
self-declared locations, time zones and interactions
with other users. Another type of stacked denoising
auto-encoder is one that only does unsupervised pre-
training, then the output of the code layer is regarded
as input into other classifiers such as SVM (Glorot
et al., 2011). It would be interesting to compare the
performance of this architecture and that of an SDA
with supervised fine-tuning, with respect to our task.
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