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Abstract

We present a flexible method that re-
arranges the ranked output of compound
splitters (i.e., decomposers of one-word
compounds such as the German Kinder-
lied ‘children’s song’) using a distribu-
tional semantics model. In an experiment,
we show that our re-ranker improves the
quality of various compound splitters.

1 Introduction

Closed nominal compounds (i.e., one-word com-
pounds such as the German Eidotter ‘egg yolk’)
are one of the most productive word formation
types in Germanic languages such as German,
Dutch or Swedish, and constitute a major class of
multi-word expressions (MWEs). Baroni (2002)
presents a German corpus study showing that al-
most half of the corpus types are compounds,
while the token frequency of individual com-
pounds is low. This makes it hard to process
closed compounds with general-purpose statisti-
cal methods and necessitates automatic compound
analysis as a principal part of many natural lan-
guage processing tasks such as statistical machine
translation (SMT).

Therefore, previous work has tried to tackle the
task of compound splitting (e.g., decomposing Ei-
dotter to Ei ‘egg’ and Dotter ‘yolk’). Most com-
pound splitters follow a generate-and-rank pro-
cedure. Firstly, all possible candidate splits are
generated, e.g., Ei|dotter, Eid|otter, . . . , Eidott|er
(Koehn and Knight, 2003) or a knowledge-rich
morphological analyzer provides a set of plausi-
ble candidate splits (Fritzinger and Fraser, 2010).
In a second step, the list of candidate splits is
ranked according to statistical features such as
constituent frequency (Stymne, 2008; Macherey
et al., 2011; Weller and Heid, 2012) or frequency

of morphological operations (Ziering and Van der
Plas, 2016). By considering each constituent in
isolation, approaches limited to frequency neglect
the semantic compatibility between a compound
and its constituents. For example, while Eidot-
ter is usually understood as the yolk of an egg
(i.e., Ei|dotter), the low frequency of Dotter often
makes frequency-based splitters rank a less plau-
sible interpretation higher: Eid|otter ‘oath otter’.

We try to tackle this pitfall by enriching the
ranked output of various splitters with a semantic
compatibility score. Our method is inspired by re-
cent work on the prediction of compound compo-
sitionality using distributional semantics (Reddy
et al., 2011; Schulte im Walde et al., 2013). The
distributional measures that are used to predict the
compositionality of compounds are in fact mea-
suring the semantic similarity between the com-
pound and its constituents. Our assumption is that
they can therefore be used readily to rank the can-
didate constituents a splitter proposes and help to
promote more plausible candidate splits (e.g., Ei-
dotter is distributionally more similar to Dotter
than to Otter). Previously, Weller et al., (2014)
applied compositionality measures to compound
splitting as a pre-processing step in SMT. Their in-
tuition is that non-compositional compounds ben-
efit less from splitting prior to SMT. However, they
found no improvements in the extrinsic evaluation.
Neither did they find improvements from applying
distributional semantics directly to the unordered
list of candidate splits. We will show in an intrin-
sic evaluation that distributional semantics, when
combined with the initial ranked output of various
splitters does lead to a statistically significant im-
provement in compound splitting.

Other works that used semantic information
for compound splitting include Bretschneider and
Zillner (2015), who developed a splitting approach
relying on a semantic ontology of the medical do-
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main. They disambiguated candidate splits using
semantic relations from the ontology (e.g., Beck-
enbodenmuskel ‘pelvic floor muscle’ is binary
split to Beckenboden | muskel using the part of
relation). As back-off strategy, if the ontology
lookup fails, they used constituent frequency. We
do not restrict to a certain domain and related on-
tology but use distributional semantics in combi-
nation with frequency-based split features for the
disambiguation.

Daiber et al., (2015) developed a compound
splitter based on semantic analogy (e.g., book-
shop is to shop as bookshelf is to shelf ). From
word embeddings of compound and head word,
they learned prototypical vectors representing the
modification. During splitting, they determined
the most suitable modifier by comparing the anal-
ogy to the prototypes. While Daiber et al., (2015)
developed an autonomous splitter and focused
on semantic analogy, we present a re-ranker that
combines distributional similarity with additional
splitting features.

Very recently, Riedl and Biemann (2016) de-
veloped a semantic compound splitter that uses a
pre-compiled distributional thesaurus for search-
ing semantically similar substrings of a compound
subject to decomposition. While their stand-alone
method focuses on knowledge-lean split point de-
termination, our approach improves splitters in-
cluding the task of constituent normalization.

Our contributions are as follows. We are the
first to show that distributional semantics informa-
tion as an additional feature helps in determining
the best split among the candidate splits proposed
by various compound splitters in an intrinsic eval-
uation. Moreover, we present an architecture that
allows for the addition of distributional similarity
scores to any compound splitter by re-ranking a
system’s output.

2 Re-ranking based on distributional
semantics

2.1 Initial split ranking
Our method is applicable to any compound split-
ter that produces a ranked output of split options1

with their corresponding ranking score.
For example, the target compound Fischerzeug-

nis ‘fish product’ is processed by a compound
splitter yielding the output as given in Table 1.

1Following Weller et al., (2014), we focus on true com-
pounds and ignore non-split options.

The top-ranked candidate split is the result from
a falsely triggered normalization rule (i.e., +er is
not a valid linking element for Fisch).

Ranking score Candidate split Correct?

14264
Fisch + Zeugnis

7
‘fish certificate’

9390
Fisch + Erzeugnis

3
‘fish product’

5387
Fischer + Zeugnis

7
‘fisherman certificate’

Table 1: Initial split ranking

2.2 Determination of distributional similarity

For each candidate split of a target compound
(e.g., Fisch | erzeugnis given Fischerzeugnis), the
cosine similarity between the target compound
and each candidate constituent is determined as
a standard measure that is used for computing
the distributional similarity (DS). In a follow-
ing step, these cosine values are used to pre-
dict the degree of semantic relatedness between
the target compound and the candidate modi-
fier (MOD) or head (HEAD), respectively. As
proposed by Weller et al., (2014), a possible
combination of the candidate constituents’ co-
sine values is the geometric mean (GEO). For
example, let cos(

−−−−−−−−−→
Fischerzeugnis,

−−−→
Fisch) be 0.455

and cos(
−−−−−−−−−→
Fischerzeugnis,

−−−−−−→
Erzeugnis) be 0.10. The

GEO DS score for the lexemes derived from
Fisch|erzeugnis is

√
0.455 · 0.10 ≈ 0.22.

2.3 Combination and re-ranking

In the next step, we multiply the DS scores with
the initial split ranking scores and finally re-rank
the splits according to the resulting product. Ta-
ble 2 shows the result from re-ranking the output
presented in Table 1 with GEO DS scores.

Re-ranking score Candidate split Correct?
9390 · 0.22 Fisch + Erzeugnis

3≈ 2034 ‘fish product’
14264 · 0.05 Fisch + Zeugnis

7≈ 709 ‘fish certificate’
5387 · 0.01 Fischer + Zeugnis

7≈ 70 ‘fisherman certificate’

Table 2: Split re-ranking with GEO DS scores
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3 Experiments

3.1 Data
We use the German Wikipedia2 corpus comprising
665M words. We tokenize, lemmatize and PoS-
tag using TreeTagger (Schmid, 1995). While we
are aware of the fact that there are German cor-
pora larger than Wikipedia which can boost the
perfomance of distributional semantics methods,
we decided to use the same corpora as used in pre-
vious work for the inspected compound splitters
(Ziering and Van der Plas, 2016). By controlling
for corpus size, we can contrast the differences in
splitting performance with respect to information
type (i.e., distributional similarity vs. frequency
information) irrespective of corpus size.

3.2 Distributional model
In analogy to the distributional model of Weller et
al., (2014), we adopt a setting whose parameters
are tuned on a development set and prove best for
compositionality (Schulte im Walde et al., 2013).
It employs corpus-based co-occurrence informa-
tion extracted from a window of 20 words to the
left and 20 to the right of a target word. We restrict
to the 20K most frequent nominal co-occurrents.

3.3 Distributional similarity modes
Inspired by Weller et al., (2014), the distributional
similarity mode (DS MODE) refers to the selected
cosine values, determined with our distributional
model. We compare the distributional similarity of
both individual constituents (i.e., modifier (MOD)
and head (HEAD)) with the geometric mean of
them (GEO). Moreover, we used standard arith-
metic operations (Widdows, 2008; Mitchell and
Lapata, 2010) and combine the vectors of modifier
and head by vector addition (ADD), and multipli-
cation (MULT) as shown to be beneficial in Schulte
im Walde et al., (2013).

3.4 Rankings in comparison
We compare the performance of the initial rank-
ing (INITIAL) of a compound splitter, based on
all individual features, with the splitting perfor-
mance after re-ranking by multiplying the selected
DS value with the initial ranking score (RRALL).
Our baseline (RRDS) is inspired by the aggressive
splitting mode (DIST) of Weller et al., (2014): we
re-rank the unordered list of candidate splits pro-
posed by a splitter according to the DS scores only.

2de.wikipedia.org

3.5 Inspected compound splitters
We inspect three different types of German com-
pound splitters, ranging from knowledge-lean to
knowledge-rich. Ziering and Van der Plas
(2016) developed a corpus-based approach, where
morphological operations are learned automati-
cally from word inflection. Weller and Heid
(2012) used a frequency-based approach with a
list of PoS-tagged lemmas and an extensive hand-
crafted set of normalization rules. Fritzinger and
Fraser (2010) combined the splitting output of
the morphological analyzer SMOR (Schmid et al.,
2004) with corpus frequencies.

3.6 Evaluation setup
While Weller at al., (2014) did not observe a
difference in SMT performance between ranking
candidate splits according to frequency and com-
positionality, we use an intrinsic evaluation mea-
sure actually revealing significant differences. We
follow the evaluation approach of Ziering and
Van der Plas (2016), who defined splitting ac-
curacy3 in terms of determining the correct split
point (SPAcc) and correctly normalizing the re-
sulting constituents (NormAcc), and use the Ger-
maNet4 gold standard developed by Henrich and
Hinrichs (2011). We remove hyphenated com-
pounds, which should be trivial splitting cases that
do not need improvement by re-ranking. The final
set comprises 51,230 compounds.

System Test set size Coverage
ZvdP 2016 51,194 99.9%
WH 2012 49.999 97.6%
FF 2010 47,940 93.6%

Table 3: Coverage of compound splitters

Some of the compound splitters described in
Section 3.5 can only process a subset of the gold
standard. For example, the approach of Fritzinger
and Fraser (2010) is limited to a hand-crafted lex-
icon (i.e., it misses compounds with unknown
constituents such as Barbiepuppe ‘Barbie doll’).
Moreover, it uses the analyzer SMOR, which con-
siders some gold standard compounds as cases of
derivation which are not subject to decomposi-
tion (e.g., Unterbesetzung ‘understaffing’ is pri-
marily derived from the verb unterbesetzen ‘to un-
derstaff’). Besides, for some compounds, there are

3Accuracy refers to the top-ranked candidate split.
4sfs.uni-tuebingen.de/GermaNet

52



Accuracy SPAcc NormAcc
DS MODE MOD HEAD GEO MULT ADD MOD HEAD GEO MULT ADD

ZIERING AND VAN DER PLAS (2016)
INITIAL 97.5% 87.4%
RRDS 93.6% 94.6% 95.4% 92.7% 92.0% 75.9% 84.7% 77.8% 69.6% 61.2%
RRALL 97.5% 97.9%† 98.0%† 97.8%† 98.0%† 88.6%† 87.7%† 89.0%† 88.5%† 88.7%†

WELLER AND HEID (2012)
INITIAL 98.1% 90.4%
RRDS 96.9% 97.0% 97.7% 96.9% 95.8% 86.5% 89.3% 87.1% 81.8% 75.3%
RRALL 98.2%† 98.2%† 98.3%† 98.2%† 98.3%† 91.3%† 90.5%† 91.1%† 90.9%† 90.9%†

FRITZINGER AND FRASER (2010)
INITIAL 98.4% 94.9%
RRDS 97.9% 97.9% 98.4% 98.3% 98.2% 94.3% 94.3% 94.7% 94.5% 94.3%
RRALL 98.4% 98.3% 98.5% 98.4% 98.4% 94.8% 94.7% 95.0% 94.8% 94.7%

Table 4: Results of split re-ranking; † indicates significantly better than INITIAL

no binary splits in a system’s ranking. These com-
pounds are excluded from the respective splitter’s
test set. Table 3 shows the test set sizes and cover-
age of the inspected compound splitters.

4 Results and discussion

In the following section, we show results on split-
ting performance of various compound splitters
before and after adding our re-ranking method. As
shown in Table 3, the systems are evaluated on dif-
ferent test sets. It is not our goal to compare dif-
ferent splitting methods against each other, but to
show the universal applicability of our re-ranker
for different types of splitters.

4.1 General trends
Table 4 shows the performance numbers for all
inspected compound splitters and all DS modes.
A first result is that the INITIAL accuracy (both
SPAcc and NormAcc) is always outperformed by
re-ranking with DS scores as additional feature
(RRALL) for at least one DS MODE.

The baseline of using pure DS scores (RRDS)
worsens the INITIAL performance. This is in line
with previous work (Weller et al., 2014) and shows
that isolated semantic information does not suffice
but needs to be introduced as an additional fea-
ture. In an error analysis, we observed that the
corpus frequency, which is missing for RRDS, is a
crucial feature for compound splitting and helps
to demote analyses based on typographical errors
or unlikely modifier normalization. For example,
while RRALL analyzes the compound Haarwasser

‘hair tonic’ with the correct and highly frequent
modifier Haar ‘hair’, RRDS selects the morphologi-
cally plausible but yet unlikely and infrequent ver-
bal modifier haaren ‘to molt’, which happens to
have the higher cosine similarity to Haarwasser.

Another type of compound analysis that bene-
fits from corpus frequency is binary splitting of
left-branched tripartite compounds (i.e., bracket-
ing). For example, the compound Blinddarmop-
eration ‘appendix operation’ (lit.: ‘blind intes-
tine operation’) is frequency-based correctly split
into Blinddarm | operation ‘[appendix] operation’,
whereas RRDS prefers the right-branched splitting
into Blind | darmoperation ‘blind [intestine op-
eration]’. Since the rightmost constituent Oper-
ation ‘surgery/operation’ is more ambiguous, it
has a smaller cosine similarity to the entire com-
pound than the right-branched compound Darm-
operation ‘intestinal operation’. In contrast, the
high corpus frequency of the non-compositional
Blinddarm ‘appendix’ and the head Operation,
make a frequency-based splitter choose the cor-
rect structure. However, bracketing also bene-
fits from cosine similarity. For example, using
re-ranking by RRALL, the wrong compound split
Arbeits|platzmangel ‘labor [lack of space]’ is cor-
rected to Arbeitsplatz|mangel ‘job scarcity’. As
conclusion, we argue that the combination of cor-
pus frequency and semantic plausibility (in terms
of cosine similarity) is working best for splitting.

Comparing the accuracy types, we see that
the determination of the correct split point is
the easier task and achieves a SPAcc of 98.5%
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(GEO@RRALL for Fritzinger and Fraser’s (2010)
splitter). However, there is only a small benefit
for SPAcc when adding semantic support. In con-
trast, constituent normalization (measured as Nor-
mAcc) can be improved by +1.6% (GEO@RRALL

for Ziering and Van der Plas’ (2016) splitter).
Comparing the DS modes, we see that for

NormAcc, the more demanding task that leads to
the largest differences in performance between the
different modes, the MOD mode outperforms the
HEAD mode (for RRALL). However, the modes that
combine head and modifier scores mostly outper-
form those based on heads or modifiers in iso-
lation. This is in line with tendencies found in
previous work on compositionality of compounds
(Schulte im Walde et al., 2013). In addition, we
find that for NormAcc, the GEO mode outperforms
the modes based on vector arithmetic, whereas for
SPAcc, the performance of GEO and the vector ad-
dition (ADD) is comparable.

4.2 Individual splitter improvement

Ziering and Van der Plas (2016) automati-
cally learned constituent transformations taking
place during compounding (e.g., s-suffixation)
from word inflection. Based on corpus frequency
and transformation plausibility, they produced a
ranked list of candidate splits. However, mis-
leading inflections can rank false splits high. For
example, +ge, as in the participle aufgewachsen
‘grown up’ (aufwachsen ‘grow up’), leads to
the falsely top-ranked candidate split Fu(ge)nk |
elle ‘radio ulna’ instead of Fugen | kelle ‘filling
trowel’. Re-ranking with RRALL promotes the cor-
rect candidate split. We achieve significant5 im-
provements for almost all DS MODEs.

Weller and Heid (2012) extended a frequency-
based approach (Koehn and Knight, 2003) with a
hand-crafted set of morphological rules. Even re-
stricted to only valid constituent transformations,
some rules are falsely triggered and lead to wrong
splits. For example, the er-suffix (as in Kinder |
buch ‘children’s book’) is used for the compound
Text | erkennung ‘text recognition’ and results in
the false split Text(er) | kennung ‘text ID’. Our re-
ranking method (RRALL) again helps to promote the
correct candidate split. In all DS MODES, the per-
formance is improved significantly.

For the system of Fritzinger and Fraser
(2010), the GEO mode improves the INITIAL split-

5Approximate randomization test (Yeh, 2000), p < 0.05

ting accuracy (+0.1%), but we do not achieve sta-
tistically significant results. The main reason for
this is due to the lexicon-based morphological an-
alyzer SMOR. While having the smallest cover-
age on the gold standard, utilizing a hand-crafted
lexicon results in only correctly triggered transfor-
mation rules. This leads to a smaller list of candi-
date splits. In fact, the average number of analyses
provided by Fritzinger and Fraser (2010) is much
smaller than for Ziering and Van der Plas (2016)
as shown in Table 5.

System Avg # candidate splits
ZvdP 2016 4.31
WH 2012 2.25
FF 2010 1.11

Table 5: Average number of candidate splits

As a consequence, re-ranking has only a lim-
ited impact on the splitting performance. We can
conclude that a knowledge-rich morphological re-
source can mitigate the need for semantic support,
however, at the expense of coverage.

5 Conclusion

We presented a flexible method for re-arranging
the ranked output of a compound splitter, by
adding a feature for the semantic compatibility
between compound and potential constituents de-
rived from a distributional semantics model. We
showed that the addition of distributional similar-
ity significantly improves different types of com-
pound splitters.
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