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Abstract

In this paper we explore the role of verb frequencies and the number of clusters in soft-clustering
approaches as a tool for automatic semantic classification. Relying on a large-scale setup includ-
ing 4,871 base verb types and 3,173 complex verb types, and focusing on synonymy as a task-
independent goal in semantic classification, we demonstrate that low-frequency German verbs are
clustered significantly worse than mid- or high-frequency German verbs, and that German complex
verbs are in general more difficult to cluster than German base verbs.

1 Introduction

Semantic classifications are of great interest to computational linguistics, specifically regarding the per-
vasive problem of data sparseness in the processing of natural language. Such classifications have been
used in applications such as word sense disambiguation (Dorr and Jones, 1996; Kohomban and Lee,
2005; McCarthy et al., 2007), parsing (Carroll et al., 1998; Carroll and Fang, 2004), machine transla-
tion (Prescher et al., 2000; Koehn and Hoang, 2007; Weller et al., 2014), and information extraction (Sur-
deanu et al., 2003; Venturi et al., 2009), among many others.

Aiming for not only a hard assignment of word types to semantic classes but potentially distin-
guishing between various word senses, soft-clustering approaches have been exploited as the main tool
for automatic semantic classification, e.g., Rooth et al. (1999); Schulte im Walde (2000); Korhonen
et al. (2003); Iosif and Potamianos (2007); Köper and Schulte im Walde (2016). Most recently, sense-
distinguishing classification approaches have also been defined for predict models by using multi-sense
embeddings, e.g., Biemann (2006); Lau et al. (2012); Neelakantan et al. (2014); Li and Jurafsky (2015).

In general, clustering efforts are motivated by specific tasks or applications, so it is difficult to provide
universal recommendations regarding the optimal clustering setup. This paper nevertheless addresses
clustering parameters that are presumably of general importance on the meta level: Focusing on syn-
onymy as a task-independent goal in semantic classification, we provide an extensive clustering setup
to explore the role of verb frequency ranges across various numbers of clusters. The contributions of
this paper are two-fold: We demonstrate that (1) low-frequency German verbs are clustered significantly
worse than mid- or high-frequency German verbs, and that (2) German complex verbs are in general
more difficult to cluster than German base verbs. While (1) the effect of clustering low-frequency tar-
get verbs has been investigated by a restricted number of earlier approaches, e.g. Schulte im Walde
(2000); Korhonen et al. (2003); Schulte im Walde (2006); Scarton et al. (2014), (2) might be considered
as general knowledge but has –as far as we are aware of– not explicitly been proven before.



2 Data and Algorithm

Using DECOW (Schäfer and Bildhauer, 2012; Schäfer, 2015) as one of the currently largest German web
corpora, we extracted all base verbs and particle verbs from version DECOW14. The corpus sentences
were morphologically annotated and parsed using SMOR (Faaß et al., 2010), MarMoT (Müller et al.,
2013) and the MATE dependency parser (Bohnet, 2010). Relying on the morphological annotation, and
after disregarding prefix verbs (i.e., non-separable complex verbs), we extracted a total of 4,871 base
verb types and 3,173 particle verb types.

As vector spaces for the verbs, we relied on word2vec (Mikolov et al., 2013) using a symmetrical
window of sizes 3 and 10. The underlying corpus was again DECOW14. We applied a min-frequency
threshold of 50, the dimensionality was set to 400, and we used 10 corpus iterations and 15 negative
samples. Other parameters were set to default.

For soft clustering, we used Non-negative matrix factorization (NMF), a factorisation approach with
an inherent (soft) clustering property (Ding et al., 2005). NMF has been applied successfully to other
NLP tasks before, such as document clustering (Xu et al., 2003), topic number estimation (Yokoi, 2013),
and preposition classification (Köper and Schulte im Walde, 2016). We applied the NMF algorithm from
the LAML (Linear Algebra and Machine Learning) Java library, version 1.6.2 (Qian, 2016).

3 Clustering Experiments

3.1 Clustering Setup

In all clustering experiments, we clustered the German verbs using Non-negative Matrix Factorization
with k-Means initialisation. We distinguished the following parameters.

• Verb set: We clustered (i) either the base verbs, or (ii) the particle verbs, or (iii) both base and
particle verbs, to explore differences for simplex vs. complex verbs.

• Frequency ranges: The verbs were sorted by their corpus frequencies, and then split into three
equally sized bins, to distinguish between low-, mid- and high-frequency verbs. We clustered only
verbs from the same frequency range (LOW, MID, HIGH), or all verbs at the same time.

• Verb vector spaces: We applied two different vector spaces, relying on window sizes of 3 vs. 10.

• Number of clusters: We used 50, 100, and 250 clusters.

• Number of iterations: We let the clustering algorithm perform a maximum of 500 iterations (or
less if it converged successfully).

Due to the combination of all parameters used, a total of 24 clusterings can be obtained for each of the
three verb sets. For one parameter combination, the clustering algorithm failed to produce an output:
base verbs, all frequencies, vectors relying on a window size of 3, and splitting into 250 clusters. The
Java library used did not provide any reasons or explanations in the event of failure.

3.2 Clustering Evaluations

As mentioned in the introduction, clustering efforts are motivated by specific tasks or applications, so it
is difficult to provide universal recommendations regarding the optimal clustering setup. However, we
consider synonymy in cluster analyses as a meta-level goal for clustering approaches, because synonymy
represents the strongest type of semantic relatedness. We therefore focus on the ability of the cluster
analyses to detect synonymy as a task-independent goal in semantic classification, cf. Section 3.2.1.
As a more task-specific evaluation for semantic classification we also assess the ability of the cluster
analyses to predict the degree of compositionality of the particle verbs, cf. Section 3.2.2. Considering a
strong compositionality of a particle verb regarding its base verb as a case of near-synonymy, the second



evaluation targets a semantic relatedness between the complex and the simplex verbs that is not too
different to the synonymy evaluation, yet more task-oriented.

3.2.1 Evaluation: Synonymy

We assess the cluster analyses on their ability to contain pairs of synonymous verbs in the same clusters.
As basis for the evaluation, we use synonyms provided by the German online synonym dictionary Du-
den1. The dictionary contained 2,158 of our particle verbs (with an average of 19 synonyms), and 3,303
of our base verbs (with an average of 13 synonyms). Some examples are listed below:

aussehen ausblicken, ausschauen, ausspähen, beobachten, entgegensehen, erwarten, spähen, umher-
blicken, ausgucken, luchsen, ähneln, anmuten, erscheinen, scheinen, vorkommen, wirken, sehen, suchen,
umsehen

zugestehen akzeptieren, bewilligen, billigen, einwilligen, erlauben, genehmigen, gestatten, gewähren,
zubilligen, zuerkennen, konzedieren, legitimieren, sanktionieren, tolerieren, zugutehalten, absegnen, un-
terschreiben, abnicken, stattgeben

erklären aufzeigen, auseinanderlegen, auseinandersetzen, ausführen, darlegen, definieren, entwick-
eln, erläutern, erörtern, konkretisieren, veranschaulichen, verdeutlichen, zeigen, exemplifizieren, ex-
plizieren, klarlegen, klarmachen, verdeutschen, verklickern, verkasematuckeln, auslegen, begründen,
belegen, deuten, kommentieren, motivieren, rechtfertigen, fundieren, interpretieren, legitimieren, sub-
stanziieren, aufklären, einweihen, informieren, unterrichten, anbringen, anmelden, ausdrücken, äußern,
aussprechen, bekennen, bekunden, eröffnen, formulieren, melden, mitteilen, sagen, verlautbaren, vor-
bringen, kundgeben, kundtun, offenbaren, unterbreiten, verkünden, verkündigen, artikulieren, dokumen-
tieren, verbalisieren, angeben, ausweisen, bescheinigen, bezeichnen, deklarieren, kennzeichnen, einset-
zen, einstehen, eintreten, zustimmen, starkmachen, enthüllen, offenbaren, outen

siegen bezwingen, gewinnen, schlagen, triumphieren

Across the clusters within a cluster analysis, we check for all pairs of verbs whether they represent
synonyms according to our gold standard or not, and compute precision, recall and the harmonic f-score.

As NMF clustering provides a membership score x ≥ 0 for each verb and each cluster, we assume
that the higher the membership score of a verb for a certain cluster, the more likely the verb is to be part
of it. Before running the synonym evaluation, we thus apply an inclusion threshold in order to decide
for each verb whether it is considered to be in a cluster or not. Since there is no maximum membership
score, and since the values lie on different scales depending on the clustering parameters, determining
the ideal membership threshold for each of the clusterings is not straightforward. We therefore employ a
brute-force solution: after finding the largest membership score tmax for a specific cluster analysis, the
synonym evaluation is applied to all non-negative thresholds in the set tmax − k · 0.001, k ∈ N0. For
example, if the largest membership value in a clustering is 0.8916, the synonym evaluation is applied to
all thresholds in the set {0.8916, 0.8906, 0.8896, ..., 0.0036, 0.0026, 0.0016, 0.0006}.

For a given threshold value, the synonym evaluation counts all verb pairs given by the clustering.
Two verbs are considered a pair if they share one or more clusters. Since verbs are included in more
clusters as the threshold is lowered, we add an abort condition: as soon as 50% of all possible verb pairs
are present in the clustering, the threshold is not lowered any further.

See Figure 1 for a small-scale example, listing all symmetric verb pairs for the gold standard and
the clustering, marking the correct pairs among the clustering pairs, and calculating precision, recall and
f-score. Since the clusterings in our experiments cover thousands of verbs, the actual number of verb
pairs in our clusterings is large. This results in f-scores on a very low magnitude, which is not important
for our evaluation, however, as the scores are used to compare clustering parameter variations, rather
than providing impressive evaluation scores.

1www.duden.de



Figure 1: Small-scale example of verb pair evaluation.

As an alternative to the brute-force search for the best inclusion threshold, we also apply a method
for assigning verbs to their top n clusters, with 1 ≤ n ≤ N

2 and N representing the total number of
clusters. In this variant, verbs are added to the n clusters with the highest membership scores. For
example, suppose that in a clustering of verbs into 6 clusters, verb v1 has the membership values 0.7, 0.4,
0.45, 0.2, 0.5, and 0.8 for clusters 1 to 6 respectively. For n = 1, the verb will be included only in cluster
6, for n = 2, it will be considered part of clusters 6 and 1, and for n = 3, it belongs to clusters 6, 1, and
5. This variant is referred to as top-n evaluation, whereas the previously described method is referred to
as threshold evaluation.

3.2.2 Evaluation: Compositionality

In this evaluation, we predict the degree of compositionality of the complex particle verbs, i.e., the degree
of relatedness between the particle verbs and their corresponding base verbs (such as abnehmen – nehmen
’take over – take’, and anfangen – fangen ’begin – catch’). We assume that if a particle verb and its base
verb tend to co-occur in the same cluster within a cluster analysis, then the particle verb is semantically
transparent, rather than opaque. The predictions are evaluated against an existing dataset of human rat-
ings on German particle verb compositionality (Bott et al., 2016). The gold standard contains a total of
400 particle verbs across 11 particle types and 3 frequency bands.



Similarly to the evaluation metric described in the previous section, the compositionality evaluation
is also applied to all thresholds in the set tmax − k · 0.001, k ∈ N0, with tmax being the largest inclusion
value found in the clustering, as well as to all top-n cluster assignments with 1 ≤ n ≤ N

2 . For each pair
of particle verb and base verb, e.g., abnehmen – nehmen, we then compare the assignment of the two
verbs to the same vs. different clusters in two different ways.

• Pointwise Mutual Information (PMI):

We calculate log p(PV,BV )
p(PV )p(BV ) , with p(PV,BV ) the proportion of clusters containing both the parti-

cle verb PV and the base verb BV , and p(PV ) and p(BV ) the proportions of clusters containing
the particle and base verbs individually. The proportions are relative to the total number of clus-
ters, so p(PV,BV ) = 0.2 means that 20% of the clusters contain both PV and BV . A high PMI
means that a pair tends to occur in the same clusters rather than in different ones.

• Cosine similarity between average cluster centroid vectors:

For each cluster, we calculate the centroid vector as the average over all verb vectors in that cluster.
In addition, we calculate average cluster centroid vectors for all verbs, as the average over all
centroid vectors a verb has been assigned to. Then, each two verbs are compared by calculating
the cosine of the angle between the respective average cluster centroid vectors. A high cosine
similarity means that a pair tends to occur in the same clusters, or that the clusters in which the
two verbs occur have similar centroids.

In the final evaluation step, we compute the correlation between the PV–BV similarity predictions relying
on PMI/cosine in comparison to the gold standard ratings, using Spearman’s Rank-Order Correlation
Coefficient ρ (Siegel and Castellan, 1988).

4 Results

In the following, we present the results of our clustering experiments and evaluations. Please (a) re-
member that the f-score values for the synonym evaluation are in a very low range because they assess
a comparably large number of verb pairs across 4,871 base verbs and 3,173 particle verbs within the
cluster analyses; and (b) note that the compositionality evaluation is carried out on a subset of only 400
particle verbs for which the gold standard contains compositionality ratings.

Figure 2 presents the synonymy evaluation f-score values when clustering all particle and base verbs
in 50, 100 and 250 clusters. With an increasing threshold (x-axis), a smaller number of verbs is included
in the clusters. The resulting quality of the cluster analyses differs across the different numbers of clus-
ters, as one would have expected. For 50 and 100 clusters, the correlation decreases with an increasing
threshold along the x-axis, so a more general inclusion is better, but for 250 clusters, the clusters are
better when they contain less verbs. As the different scales on the y-axis across the three plots show,
overall a smaller number of clusters with generous assignment is best.

Table 1 zooms into the differences of clustering low-, mid, high-frequency or all verbs, regarding
base verbs (BVs), particle verbs (PVs) and both BVs and PVs. For each cell, we show the best result
across thresholds/top-n and vector spaces. For low- and mid-frequency verbs, we did not assess the
compositionality evaluation because less than 10% of the particle verbs and corresponding base verbs
from the gold standard were found in the clustering, regardless of the inclusion threshold or the top-n
value used.

The results in the table demonstrate the following differences:

• The results for high-frequency verbs are generally better than for low- and mid-frequency verbs,
demonstrating that target frequency (and, most probably, less sparse data) matters.



Figure 2: Synonymy f-score results for all verbs and 50/100/250 clusters.
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• The results for base verbs are generally better than for particle verbs (only applicable to the syn-
onym evaluation), demonstrating that particle verbs are harder to assess semantically than base
verbs, presumably because they are more ambiguous.

• Confirming insights from Figure 2, the results for clusterings with 50 clusters are generally better
than for clusterings with 100 or 250 clusters.

• For predicting particle verb compositionality, PMI generally works better than the cosine.

• (not shown in the table:) There is no strong tendency for one of the vector spaces (i.e., using a
window of 3 vs. 10 words) outperforming the other.

5 Conclusion

We provided an extensive clustering setup and focused on synonymy as a task-independent goal in se-
mantic classification, in order to explore the role of verb frequency ranges across various numbers of
clusters. We demonstrated that (1) low-frequency German verbs are clustered significantly worse than
mid- or high-frequency German verbs, and that (2) German complex verbs are in general more difficult
to cluster than German base verbs. While (1) the effect of clustering low-frequency target verbs has been
investigated by a restricted number of earlier approaches, (2) might be considered as general knowledge
but has –as far as we are aware of– not explicitly been proven before.
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