Difference between revisions of "Named entity recognizers"
Jump to navigation
Jump to search
(place into alphabetical order) |
|||
Line 2: | Line 2: | ||
<!-- Please keep this list in alphabetical order --> | <!-- Please keep this list in alphabetical order --> | ||
*[http://balie.sourceforge.net/ Balie] Baseline implementation of named entity recognition. | *[http://balie.sourceforge.net/ Balie] Baseline implementation of named entity recognition. | ||
+ | *[http://gate.ac.uk/ GATE] includes the ANNIE gazeteer-based NER subsystem. | ||
*[http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ GENiA]- part-of-speech tagging, shallow parsing, and named entity recognition for biomedical text. C++, BSD license. | *[http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ GENiA]- part-of-speech tagging, shallow parsing, and named entity recognition for biomedical text. C++, BSD license. | ||
* [http://www.aueb.gr/users/ion/software/GREEK_NERC_v2.tar.gz Greek named entity recognizer (version 2)] It currently identifies temporal expressions, person names, and organization names; see [http://www.aueb.gr/users/ion/publications.html here] for publications describing the recognizer. | * [http://www.aueb.gr/users/ion/software/GREEK_NERC_v2.tar.gz Greek named entity recognizer (version 2)] It currently identifies temporal expressions, person names, and organization names; see [http://www.aueb.gr/users/ion/publications.html here] for publications describing the recognizer. |
Revision as of 22:14, 18 November 2009
Software - Named entity recognizers
- Balie Baseline implementation of named entity recognition.
- GATE includes the ANNIE gazeteer-based NER subsystem.
- GENiA- part-of-speech tagging, shallow parsing, and named entity recognition for biomedical text. C++, BSD license.
- Greek named entity recognizer (version 2) It currently identifies temporal expressions, person names, and organization names; see here for publications describing the recognizer.
- LingPipe
- Stanford NER Conditional Random Fields based NER. Also incorporates distributional similarity based features extracted from the English Gigaword corpus.
- UIUC NER Java-based UIUC NER tagger. Uses gazetteers extracted from Wikipedia, word-class model built from unlabeled text and extensively uses non-local features. Achieves 90.8F1 score on the CoNLL03 shared task data and is robust on other datasets. Try the LBJ-NER-Demo
- Older version of UIUC NER - identifies/classifies entities as Person, Location, Organization and Misc (this last category relates to languages and nationalities); fast and robust; try the demo