Difference between revisions of "SimLex-999 (State of the art)"
Jump to navigation
Jump to search
Doboandris (talk | contribs) |
|||
Line 8: | Line 8: | ||
! Algorithm !! Reference for algorithm !! Reference for reported results !! Type !! Spearman's rho !! Pearson's r !! Notes | ! Algorithm !! Reference for algorithm !! Reference for reported results !! Type !! Spearman's rho !! Pearson's r !! Notes | ||
|- | |- | ||
− | | | + | | Re16 |
− | | | + | | Recski et al. (2016)<ref name=recski16>Recski, G., Iklódi, E., Pajkossy, K., & Kornai, A. (2016). [https://www.aclweb.org/anthology/W16-1622 Measuring semantic similarity of words using concept networks]. In: Proceedings of the 1st Workshop on Representation Learning for NLP, pp. 193-200.</ref> |
− | | | + | | Recski et al. (2016)<ref name=recski16/> |
− | | Distributional || 0. | + | | Hybrid || 0.76 || - |
+ | |- | ||
+ | | SVR4 | ||
+ | | Banjade et al. (2015)<ref name=lemontea/> | ||
+ | | Banjade et al. (2015)<ref name=lemontea/> | ||
+ | | Combined || 0.642 || 0.658 | ||
+ | |- | ||
+ | | Do19-hybrid | ||
+ | | Dobó (2019)<ref name=dobo19>Dobó, A. (2019). [http://doktori.bibl.u-szeged.hu/10120/1/AndrasDoboThesis2019.pdf A comprehensive analysis of the parameters in the creation and comparison of feature vectors in distributional semantic models for multiple languages]. University of Szeged.</ref> | ||
+ | | Dobó (2019)<ref name=dobo19/> | ||
+ | | Hybrid || 0.621 || 0.481 | ||
+ | |- | ||
+ | | Sp17 | ||
+ | | Speer et al. (2017)<ref name=speer17>Speer, R., Chin, J., and Havasi, C. (2017). [https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14972/14051 Conceptnet 5.5: An open multilingual graph of general knowledge]. AAAI-17, pp. 4444-4451.</ref> | ||
+ | | Dobó (2019)<ref name=dobo19/> | ||
+ | | Hybrid || 0.616 || 0.634 | ||
+ | |- | ||
+ | | joint(SP+,skip-gram) | ||
+ | | Schwartz et al. (2015)<ref name=spplus>Schwartz, R., Reichart, Roi, Rappoport, A. (2015). Symmetric Pattern Based Word Embeddings for Improved Word Similarity Prediction, CoNLL 2015.</ref> | ||
+ | | Schwartz et al. (2015)<ref name=spplus/> | ||
+ | | Distributional || 0.56 || - || Trained on word2vec corpus, best results for pure distributional model. | ||
+ | |- | ||
+ | | UMBC | ||
+ | | Han et al. (2013)<ref>Han, L., Kashyap, A., Finin, T., Mayfield, J., Weese, J.: UMBC EBIQUITY-CORE: Semantic textual similarity systems. In: Proceedings of the Second Joint Conference on Lexical and Computational Semantics, vol. 1, pp. 44–52 (2013)</ref> | ||
+ | | Banjade et al. (2015)<ref name=lemontea/> | ||
+ | | || 0.558 || 0.557 || without using POS information | ||
+ | |- | ||
+ | | SP+ | ||
+ | | Schwartz et al. (2015)<ref name=spplus>Schwartz, R., Reichart, Roi, Rappoport, A. (2015). Symmetric Pattern Based Word Embeddings for Improved Word Similarity Prediction, CoNLL 2015.</ref> | ||
+ | | Schwartz et al. (2015)<ref name=spplus/> | ||
+ | | Distributional || 0.52 || - | ||
+ | |- | ||
+ | | RNNenc | ||
+ | | Hill et al. (2014b)<ref name=rnnenc>Hill, F., Cho, K., Jean, S., Devin, C., & Bengio, Y. (2014b). Not All Neural Embeddings are Born Equal, 1–5.</ref> | ||
+ | | Hill et al. (2014b)<ref name=rnnenc/> | ||
+ | | Distributional, multilingual || 0.52 || - | ||
|- | |- | ||
− | | | + | | Sa18 |
− | | | + | | Salle et al. (2018)<ref name=salle18>Salle A., Idiart M., and Villavicencio A. (2018). [https://github.com/alexandres/lexvec/blob/master/README.md LexVec]</ref> |
− | | | + | | Dobó (2019)<ref name=dobo19/> |
− | | Distributional || 0. | + | | Distributional || 0.417 || 0.426 |
|- | |- | ||
| Word2vec | | Word2vec | ||
Line 22: | Line 57: | ||
| Hill et al. (2014a)<ref name=simlex>Hill, F., Reichart, R., & Korhonen, A. (2014a). SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation. Computation and Language.</ref> | | Hill et al. (2014a)<ref name=simlex>Hill, F., Reichart, R., & Korhonen, A. (2014a). SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation. Computation and Language.</ref> | ||
| Distributional || 0.414 || - || Trained on Wikipedia | | Distributional || 0.414 || - || Trained on Wikipedia | ||
+ | |- | ||
+ | | Pe14 | ||
+ | | Pennington et al. (2014)<ref name=pennington14>Pennington, J., Socher, R., and Manning, C. (2014). [https://www.aclweb.org/anthology/D14-1162 Glove: Global vectors for word representation]. EMNLP 2014, pp. 1532-1543.</ref> | ||
+ | | Dobó (2019)<ref name=dobo19/> | ||
+ | | Distributional || 0.406 || 0.433 | ||
|- | |- | ||
| Lesk | | Lesk | ||
Line 28: | Line 68: | ||
| || 0.404 || 0.347 | | || 0.404 || 0.347 | ||
|- | |- | ||
− | | | + | | Do19-corpus |
− | + | | Dobó (2019)<ref name=dobo19/> | |
− | + | | Dobó (2019)<ref name=dobo19/> | |
− | + | | Distributional || 0.393 || 0.401 | |
− | |||
− | | | ||
− | |||
− | | | ||
− | | | ||
|- | |- | ||
| ESA | | ESA | ||
Line 43: | Line 78: | ||
| || 0.271 || 0.145 | | || 0.271 || 0.145 | ||
|- | |- | ||
− | | | + | | Neural language model |
− | | | + | | Collobert & Weston (2008)<ref>R. Collobert and J. Weston. 2008. A unified architecture for natural language pro- cessing: Deep neural networks with multitask learning. In International Conference on Machine Learn- ing, ICML.</ref> |
− | | Hill et al. ( | + | | Hill et al. (2014a)<ref name=simlex/> |
− | | Distributional | + | | Distributional || 0.268 || - || Trained on Wikipedia |
|- | |- | ||
− | | | + | | Neural language model with global context |
− | | | + | | Huang et al. (2012)<ref>Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. 2012. Improving word representations via global context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, pages 873–882. Association for Computational Linguistics.</ref> |
− | + | | Hill et al. (2014a)<ref name=simlex/> | |
− | + | | Distributional || 0.098 || - || Trained on Wikipedia | |
− | |||
− | |||
− | |||
− | | | ||
− | | Distributional || 0. | ||
|} | |} | ||
Revision as of 16:00, 12 August 2019
SimLex-999 aims at a cleaner benchmark of similarity (but not relatedness). Pairs of words were chosen to represent different ranges of similarity and with either high or low association. Subjects were instructed to differentiate between similarity and relatedness and rate regarding the former only.
See also: Similarity (State of the art), Similar-Associated-Both Test Collection (State of the art).
Algorithm | Reference for algorithm | Reference for reported results | Type | Spearman's rho | Pearson's r | Notes |
---|---|---|---|---|---|---|
Re16 | Recski et al. (2016)[1] | Recski et al. (2016)[1] | Hybrid | 0.76 | - | |
SVR4 | Banjade et al. (2015)[2] | Banjade et al. (2015)[2] | Combined | 0.642 | 0.658 | |
Do19-hybrid | Dobó (2019)[3] | Dobó (2019)[3] | Hybrid | 0.621 | 0.481 | |
Sp17 | Speer et al. (2017)[4] | Dobó (2019)[3] | Hybrid | 0.616 | 0.634 | |
joint(SP+,skip-gram) | Schwartz et al. (2015)[5] | Schwartz et al. (2015)[5] | Distributional | 0.56 | - | Trained on word2vec corpus, best results for pure distributional model. |
UMBC | Han et al. (2013)[6] | Banjade et al. (2015)[2] | 0.558 | 0.557 | without using POS information | |
SP+ | Schwartz et al. (2015)[5] | Schwartz et al. (2015)[5] | Distributional | 0.52 | - | |
RNNenc | Hill et al. (2014b)[7] | Hill et al. (2014b)[7] | Distributional, multilingual | 0.52 | - | |
Sa18 | Salle et al. (2018)[8] | Dobó (2019)[3] | Distributional | 0.417 | 0.426 | |
Word2vec | Mikolov et al. (2013)[9] | Hill et al. (2014a)[10] | Distributional | 0.414 | - | Trained on Wikipedia |
Pe14 | Pennington et al. (2014)[11] | Dobó (2019)[3] | Distributional | 0.406 | 0.433 | |
Lesk | Banjade et al. (2015)[2] | 0.404 | 0.347 | |||
Do19-corpus | Dobó (2019)[3] | Dobó (2019)[3] | Distributional | 0.393 | 0.401 | |
ESA | Banjade et al. (2015)[2] | 0.271 | 0.145 | |||
Neural language model | Collobert & Weston (2008)[12] | Hill et al. (2014a)[10] | Distributional | 0.268 | - | Trained on Wikipedia |
Neural language model with global context | Huang et al. (2012)[13] | Hill et al. (2014a)[10] | Distributional | 0.098 | - | Trained on Wikipedia |
References
- ↑ 1.0 1.1 Recski, G., Iklódi, E., Pajkossy, K., & Kornai, A. (2016). Measuring semantic similarity of words using concept networks. In: Proceedings of the 1st Workshop on Representation Learning for NLP, pp. 193-200.
- ↑ 2.0 2.1 2.2 2.3 2.4 Banjade, R., Maharjan, N., Niraula, N., Rus, V., & Gautam, D. (2015). Lemon and Tea Are Not Similar: Measuring Word-to-Word Similarity by Combining Different Methods. Computational Linguistics and Intelligent Text Processing, 9041, 335–346. doi:10.1007/978-3-319-18111-0_25
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Dobó, A. (2019). A comprehensive analysis of the parameters in the creation and comparison of feature vectors in distributional semantic models for multiple languages. University of Szeged.
- ↑ Speer, R., Chin, J., and Havasi, C. (2017). Conceptnet 5.5: An open multilingual graph of general knowledge. AAAI-17, pp. 4444-4451.
- ↑ 5.0 5.1 5.2 5.3 Schwartz, R., Reichart, Roi, Rappoport, A. (2015). Symmetric Pattern Based Word Embeddings for Improved Word Similarity Prediction, CoNLL 2015.
- ↑ Han, L., Kashyap, A., Finin, T., Mayfield, J., Weese, J.: UMBC EBIQUITY-CORE: Semantic textual similarity systems. In: Proceedings of the Second Joint Conference on Lexical and Computational Semantics, vol. 1, pp. 44–52 (2013)
- ↑ 7.0 7.1 Hill, F., Cho, K., Jean, S., Devin, C., & Bengio, Y. (2014b). Not All Neural Embeddings are Born Equal, 1–5.
- ↑ Salle A., Idiart M., and Villavicencio A. (2018). LexVec
- ↑ Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. In Proceedings of International Conference of Learning Representations, Scottsdale, Arizona, USA.
- ↑ 10.0 10.1 10.2 Hill, F., Reichart, R., & Korhonen, A. (2014a). SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation. Computation and Language.
- ↑ Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word representation. EMNLP 2014, pp. 1532-1543.
- ↑ R. Collobert and J. Weston. 2008. A unified architecture for natural language pro- cessing: Deep neural networks with multitask learning. In International Conference on Machine Learn- ing, ICML.
- ↑ Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. 2012. Improving word representations via global context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, pages 873–882. Association for Computational Linguistics.