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Abstract
In this paper we describe the ASR system for German built
at the University of Edinburgh (UEDIN) for the 2013 IWSLT
evaluation campaign. For ASR, the major challenge to over-
come, was to find suitable acoustic training data. Due to the
lack of expertly transcribed acoustic speech data for Ger-
man, acoustic model training had to be performed on pub-
licly available data crawled from the internet. For evalua-
tion, lack of a manual segmentation into utterances was han-
dled in two different ways: by generating an automatic seg-
mentation, and by treating entire input files as a single seg-
ment. Demonstrating the latter method is superior in the cur-
rent task, we obtained a WER of 28.16% on the dev set and
36.21% on the test set.
Index Terms: Light supervision, Segmentation, Acoustic
Model Training

1. Introduction
In ASR, good acoustic models are an important prerequisite
for high recognition accuracies. The quality of these mod-
els is determined by both the quality and the quantity of
the data on which they were trained. Such data consists of
speech as well as accurate orthographic transcriptions. Since
the latter must be manually created by human transcribers,
which is a slow and expensive process, it can be difficult to
obtain training data in sufficiently large quantities. In lan-
guages or domains where resources are scarce, i.e., where no
large amounts of dedicated transcribed training is available,
acoustic models can still be obtained from untranscribed or
poorly transcribed data, using unsupervised or lightly super-
vised training methods [1, 2, 3, 4, 5]. Since German ASR
has historically received little attention at UEDIN, there are
very few resources available for it on site. Therefore, even
though German is by no means an under-resourced language,
we have been compelled to treat it as such, collecting large
amounts of publicly available data and processing it with the
lightly supervised training methods mentioned above. Al-
though this methodology is not strictly necessary for Ger-
man, it can in theory be applied to unlock other, truly under-
resourced languages, for which no alternative training meth-
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ods exist. The available resources used for acoustic model
training are discussed below in section 2. The lightly su-
pervised training is explained fully in section 4. Acoustic
model training is finalised by training a Deep Neural Net-
work (DNN) in a hybryd setup with a traditional context-
dependent tri-phone based Hidden Markov Model (HMM),
as explained below, in section 6.

Aside from acoustic modelling, the proposed system has
state-of-the-art language modelling. In a first phase, text
corpora are collected, containing in total almost 109 words.
Based on the cross-entropy with the evaluation domain, as
proposed in [6], the top 30 percentile of this data is selected
and 4-gram language models, as well as Recurrent Neural
Network Language Models (RNNLM) are trained on it [7].
Details of this setup can be found below, in section 5.

Since no manual segmentation for the evaluation set is
provided, it is necessary to produce a segmentation auto-
matically. Alternatively, ASR can be performed on entire
talks, treating them as a single segment. There is an inherent
trade-off between these approaches, since each has its own
advantages and disadvantages. A segmentation that is gen-
erated automatically may contain erroneous segment bound-
aries, which can easily lead to recognition errors. When seg-
mentation is avoided, on the other hand, recognition could
be performed on non-speech segments, generating unpre-
dictable erroneous outputs. In section 6, evaluation is per-
formed comparing both approaches.

2. Available Resources for Acoustic Modelling

The data on which an ASR system is trained determines to
a large extent its eventual performance. Several properties
of the training data are important. Firstly, its domain must
be matched as closely as possible to the domain of the eval-
uation set. Even when using techniques like fMLLR [8] to
adapt acoustic models to the test domain, any mismatch will
significantly reduce recognition accuracies. Also accurate or-
thographic transcriptions of the training data are necessary.
Even small amounts of transcription errors can significantly
reduce recognition performance, e.g. [9]. Lastly, the size of
the training set plays an important role. Although there is no
such thing as a direct linear relation between training set size
and recognition performance, having more training data does
usually lead to better results. Several tens of hours is believed
to be a minimum for acoustic model training, depending on



the size and complexity of the models being trained.

2.1. Globalphone

One of the suitable speech corpora accessible to us is
GlobalPhone [10]. It is a multi-lingual corpus, covering a se-
lection of the world’s most widely spoken languages, one of
which is German. For each language, it contains speech from
about 100 adult native speakers, reading a number of articles
taken from a local newspaper. For German, this adds up to
about 18 hours of speech. Only 14 hours of this can be used
as training data, since the rest is divided over a dev set and a
test set. In the context of this paper, the GlobalPhone corpus
is less suitable for acoustic model training, due to its small
size and its large domain mismatch with the IWSLT evalua-
tion data. However, the German lexicon that is included in
the corpus is invaluable to us, since it is the only lexicon we
have at our disposal. It contains 36994 unique words, with
39520 pronunciations, indicating that a relatively large num-
ber of words is listed with more than a single pronunciation
variant. Furthermore, a 3-gram language model for this data
is available to us. It is the same language model that was used
in [11], and is specifically tuned to the domain of news arti-
cles. Using this LM is not our only option though, since we
have the option to train our own, more tuned to the domain
of TED-talks, see section 5.

2.2. Europarl

The second set of data was obtained by crawling the website
of the European Parliament [12], which has committed it-
self to making its plenary sessions publicly available online,
along with their transcripts. These sessions contain speech in
a wide variety of languages, German among them. Although,
generally speaking, the transcriptions do not match the spo-
ken content of the speech perfectly, techniques for lightly
supervised acoustic model training may be employed to cir-
cumvent this. We will elaborate on this below in section 4.
In this work, we downloaded all parliamentary sessions of
the years 2008, 2009, and 2010. This is about 990 hours
of audio data. This data contains 23 audio streams in paral-
lel: one stream with the raw unaltered recordings, and one
additional stream for each of the 22 languages of the Eu-
ropean Union. In these audio streams, speech in any other
language than the target language is replaced with its on-
the-fly translation, done in real-time by professional inter-
preters. For each parliamentary speech, there is only a single
start and end time given, shared over all 22 parallel versions
of that speech. Since translations may take longer than the
original speech, or may be shifted in time, the audio seg-
ments delineated by these boundaries are usually 10–20 sec-
onds longer than the speech they contain, and tend to overlap
each other. Adding the lengths of all these segments together
therefore leads to an overestimate of the available data, but
can nonetheless be a useful indication. The total amount of
speech data we counted like this, is 733 hours. One must

be cautious in using all this data directly, however, since
it contains directly recorded speech from German-speaking
MEP’s, as well as interpreters’ speech. There are very dis-
tinct differences between these types of speech: e.g. whereas
MEP’s speak more spontaneously, often with an accent, in-
terpreters tend to speak clearly, with long pauses, and very
few corrections and repetitions. Since these types of speech
may not be equally well matched to the target domain, we
have treated them separately. We identified the speeches that
were originally spoken in German, by comparing the Ger-
man audio stream with the raw unaltered audio. Based on
the same rough count as before, this adds up to about 95
hours of speech. Since there is no lexicon available with this
data, we reuse the GlobalPhone lexicon, to which the out-
of-vocabulary words are added using Sequitor Grapheme-to-
Phoneme conversion [13].

3. Text Tokenisation
Although the GlobalPhone lexicon does contain 373 num-
bers, this list is far from exhaustive. Numbers in the eval-
uation data are therefore very likely to be OOV. To prevent
this from happening, we defined rewrite rules to convert any
number that is OOV into its constituent parts, most of which
do occur in the lexicon, or are easily added to it. For instance,
if “1,234” is encountered, it is rewritten as “1,000 2 100 4 und
30”. This way, with no more than 33 lexical entries, we are
able to handle any number between 1 and 9, 999 · 106. Spe-
cial exception rules are provided to deal with such things as
times, dates, years, and IP-addresses. Measures of distance,
length, and volume are fully expanded, as well as currencies,
e.g. ‘km’ is written as ‘kilometer’, ‘$’ is written as ‘dol-
lar’, etc. Because of time constraints, handling of abbrevia-
tions in our system is rudimentary. Basically, any word that
either consists of two or more capitalized letters, or of let-
ters separated by full stops is recognized as an abbreviation.
They are then written in a consistent form, namely as un-
capitalized letters separated by full stops, and then added to
the lexicon using grapheme-to-phoneme conversion. There
are several ways in which this methodology is suboptimal.
For one, it disregards the possibility of abbreviations being
pronounced as words, rather than sequences of separate let-
ters, e.g. the pronunciation of “NATO” as /nato/ rather than
/EnAteo/. More importantly, the GlobalPhone lexicon, on
which we trained the grapheme-to-phoneme conversion, con-
tains far too few examples to enable accurate pronunciation
predictions. As a result, abbreviations in training and eval-
uation data are expected to reduce the performance of our
system.

4. Lightly Supervised Acoustic Model
Training

To perform acoustic model training and evaluation, the
acoustic data is preprocessed as follows. First, it is con-
verted towards mono-channel 16kHz WAVE-files. MFCC-



coefficients are determined within 25 ms frames which are
shifted in increments of 10 ms. Cepstral Mean Normalisa-
tion is then applied to the resulting 13-dimensional feature
vectors. For each frame, the features within a context win-
dow of 9 frames, 4 to the left, 4 to the right, are stacked and
projected down to 39 dimensions using LDA-MLLT.

4.1. Training an Initial Model on GlobalPhone

We train an initial GMM-HMM acoustic model from scratch
on the GlobalPhone corpus. This model contains 3000
context-dependent states and 48000 Gaussians. It was evalu-
ated on three different evaluation sets: the GlobalPhone dev
set, where it resulted in a WER of 12.68%, the GlobalPhone
eval set, on which it gave a WER of 19.92%, and the IWSLT
dev set, on which it yielded a WER of 56.18%. The lan-
guage model used in each of these evaluations was the
GlobalPhone-specific one, introduced in section 2.1.

4.2. Further Training on Europarl

Acoustic model training on Europarl data cannot be done
straightforwardly, since the transcriptions we have of it do
not match the acoustics perfectly. There is a variety of light
supervision techniques, however, with which this problem
may be circumvented, e.g. [14, 1]. Here, we used the
greedy matching approach described in [5]. We first bias the
GlobalPhone LM towards the Europarl domain by interpolat-
ing it with a small LM trained on the imperfect transcriptions.
This LM, in combination with the acoustic model trained
above in section 4.1, is then used to make a recognition of the
Europarl training data. By comparing the recognition result
with the imperfect transcription, and greedily collecting the
longest sequences that occur in both, a new in-domain train-
ing set is constructed. From this, a new acoustic model with
the same number of states and Gaussians is trained and the
whole process is repeated. This iterative process is illustrated
in figures 1 and 2. With each iteration, the accuracy of the
ASR transcription is expected to rise, and hence more train-
ing data is collected for the iteration after that. Also, with
each iteration, the models are expected to get more tuned to-
wards the Europarl domain. In this work, we first apply this
technique for 10 iterations on the subset with 95 hours of
direct MEP recordings, discussed in section 2.2, and evalu-
ated on the IWSLT dev set in each iteration. The result is
shown in the leftmost columns of table 1. The initial WER
of 46.36% is obtained with the GlobalPhone acoustic model.
The reason why this result is different from the 56.18% re-
ported in section 4.1 is that another LM was used in these
evaluations, namely the one that is biased towards Europarl
data. Looking at the WER’s, we can see that the quality of
the acoustic models doesn’t improve with each new iteration.
If anything, the opposite is true, although the statistical sig-
nificance of these differences may be questionable. This lack
of improvement is probably caused by a slight domain mis-
match between Europarl and the TED talks in the IWSLT

MEP All
iter hours WER(%) hours WER(%)
init NA 46.36 46.98 41.12
1 45.91 41.13 67.15 40.22
2 46.64 41.20 70.28 40.09
3 46.69 41.36 70.80 39.95
4 46.80 41.25 70.83 40.01
5 46.89 41.10 70.92 40.27
6 47.00 41.36 70.93 40.28
7 47.07 41.55 70.99 40.26
8 47.01 41.49 70.95 40.12
9 47.00 41.28 70.89 40.50
10 46.98 41.12 70.94 40.35

Table 1: The data set sizes and WER rates obtained on the
IWSLT dev set in each iteration of lightly supervised training.

Figure 1: The longest word sequences occurring both in the
approximate transcription and in the ASR output are identi-
fied.

dev set. An interesting experiment would be to evaluate the
models in each iteration on an evaluation set in the Europarl
domain. Unfortunately, no such evaluation set is available
to us. When doing the same experiment on the entire Eu-
roparl corpus, MEP speech and interpreters’ speech put to-
gether, the results become as shown in the rightmost columns
of table 1. The acoustic model obtained in iteration 10 of
the previous experiment is used here as the initial acoustic
model. Although the WER drops about 1% absolute with
the inclusion of the interpreters’ speech, the results are oth-
erwise comparable to those of the previous experiment. The
drop in WER is very likely due to the increase of the training
set from 46.98 hours to 67.18 hours. The best performance,
a WER of 39.95%, is achieved in the third iteration. There-
fore, the training set obtained in that iteration is used for all
acoustic model training in further experiments, see section 6.



Figure 2: Illustration of the iterative process, in which train-
ing data is collected to obtain acoustic models, which are in
turn used to collect a better set of training data.

name # words (·106)
europarl_v7 47.37
europarl_crawl 2.86
news_crawl_2007 31.47
news_crawl_2008 107.86
news_crawl_2009 101.56
news_crawl_2010 45.89
news_crawl_2011 252.85
news_crawl_2012 319.73
news_comment 4.45
total 914.05

Table 2: The text resources used for LM training.

5. Language Modelling

For language model training, we used the resources listed
in table 2. All of these were obtained through links on the
IWSLT website, except ‘europarl_crawl’, which consists of
the imperfect transcriptions of the Europarl data from sec-
tion 2.2. All text was first depunctuated and tokenised as
described in section 3. From each of these texts, 30% is se-
lected that best matches the domain of the IWSLT dev set,
according to the cross-entropy criterion proposed in [6]. Lan-
guage models are trained on this subset only, disregarding the
remaining 70%.

5.1. N-gram Language Models

After winnowing them down to 30%, each of the text corpora
is used to train a 3-gram LM, using the MITLM language
modelling toolkit [15]. In this training, modified Kneser-
Ney smoothing [16] is used with parameters optimised on
the IWSLT dev set. These language models are then lin-
early interpolated with interpolation weights optimised in the
same way. The 1-grams in the resulting interpolated model
are then written out in decreasing order, according to their
smoothed 1-gram probability. Choosing the top-N words
from this list allows us to optimally define a dictionary of
size N for further LM training. We then repeated the previ-
ous procedure, training 3-gram LM’s on the whittled down
text corpora, with a limited vocabulary of N words, and lin-
early interpolating them. Finally the same was done with

N OOV rate(%) 3-gram ppl. 4-gram ppl.
100000 4.18 252.63 246.36
150000 3.32 278.24 263.37
200000 2.78 283.25 275.97
250000 2.52 289.73 282.43
300000 2.37 294.24 286.86
350000 2.29 297.03 289.74
400000 2.17 300.30 292.97

Table 3: The perplexities and OOV rates of the 3-gram and
4-gram LM’s on the IWSLT dev set

4-grams. The OOV rate and perplexity on the dev set for a
range of values for N is shown in table 3. As expected, the
4-gram models achieve lower perplexities than 3-gram mod-
els. Based on these results, we choose the 4-gram LM with
vocabulary size 300000 for the evaluations in section 6, since
this yields a good trade-off between word coverage and per-
plexity. Any of these 300000 words that do not occur either
in GlobalPhone or in the crawled Europarl data is added to
the lexicon. Using a LM of such size for LVCSR (Large Vo-
cabulary Continuous Speech Recognition) is very demanding
in terms of memory and processing power. Therefore, we
make a reduced version of this LM, pruning it with a proba-
bility threshold of 10−7. The pruned LM is much smaller in
size than the original, but this comes at the price of a higher
perplexity, which rises from 286.86 to 413.62. Due to its
smaller size, it can easily be used to generate word lattices on
the evaluation data, which are rescored afterwards using the
full unpruned LM. To demonstrate the extent to which they
may affect the WER in practice, we perform an ASR evalua-
tion on the IWSLT dev set using the pruned LM, before and
after rescoring with the unpruned LM. The acoustic model
in this experiment is the optimal model as established in sec-
tion 4.2. The pruned LM yields in this evaluation a WER
of 37.02%, a slight improvement over 39.95%, obtained in
section 4.2, with a different LM. Rescoring with the full LM
brings the WER further down to 33.69%.

5.2. Recurrent Neural Net Language Models

From a concatenation of all the whittled down text corpora
of section 5.1, we train a Recurrent Neural Net Language
Model, using the RNNLM toolkit [7]. Due to computational
limitations, the vocabulary size for this model is reduced to
50000. The number of nodes in the hidden layer is set to
30. From the final rescored word lattices in section 5.1, N-
best lists are generated, with N=100. For each of these 100
recognition hypotheses, the RNNLM is used to calculate a
LM score SRNNLM , which is interpolated with the original
4-gram LM score, resulting in the modified score S′.

S′ = (1− α) · Sngram + α · SRNNLM (1)

This modified score is used to re-rank the N-best list, often
changing which hypothesis is considered as the ‘best’. The



interpolation factor α was optimised on the dev set, yield-
ing a value of 0.25. Applying this RNNLM rescoring on the
word lattices of section 5.1, yields an improvement in WER
from 33.69% to 33.17%.

6. ASR System Setup
At this point, we have all the resources to build a finalised
system: a large set of transcribed speech for acoustic model
training, determined in section 2.2, and a large LM, opti-
mised as described in section 5. The lay-out of our system
is depicted in figure 3. All experiments performed with this

Figure 3: A schematic overview of the adopted system.

system, including the evaluations above and those that fol-
low, have been performed using the KALDI Speech Recog-
nition Toolkit [17]. For acoustic modelling, we first train
up a GMM-HMM with 3000 context dependent states and
48000 Gaussians, using Speaker Adaptive Training (SAT),
where fMLLR is used as the adaptation technique. In prin-
ciple, it would be possible to assign multiple speeches to
a single speaker, since the speaker’s identity is given on
the Europarl website. This only applies, however, to di-
rectly recorded speeches, i.e. untranslated ones. When the
speaker is an interpreter, there is no trivial way to ascer-
tain his/her identity. Therefore, we have made the simpli-
fying assumption that each speech in the training data comes
from a unique speaker. A feed-forward deep neural network
is then trained in a DNN-HMM hybryd configuration, simi-
lar to the one used in [18]. This DNN has 6 hidden layers,
each containing 2048 nodes. The softmax output layer of
this network produces posterior probabilities over the 3000
context-dependent states of the HMM. The input at each time
t consists of a stacking of the features in the context window
[t− 5, t− 4, . . . t, . . . t+ 4, t+ 5]. Except for the addition of
speaker adaptation, the features in each frame are produced
as explained in section 4. Since the IWSLT test set is pro-
vided without segmentation into utterances, one can either
generate a segmentation automatically, or perform recogni-
tion on entire TED-talks without segmentation. For the auto-
matic segmentation, we use a voice activity detection system
trained on 70 hours of English conversational speech from
the AMI Meetings Corpus [19]. Speech and silence frames
are modelled with diagonal covariance GMMs. A minimum
duration constraint of 50ms is applied to each segment. For
the segmentationless recognition, we use the same technique

dev2012 tst2013 tst2013\E06
manual segment 27.02 35.27 29.18
auto segment 7 39.28 33.58
no segment 28.16 36.21 30.24

Table 4: The resulting WER’s in % for several different eval-
uation sets, both when they are manually segmented, auto-
matically segmented, or recognised in full (not segmented).

as in [5], where we split an entire talk into overlapping seg-
ments, perform ASR on them, and dynamically merge the
results into a single long recognition. In this case, segments
are 40 seconds long and have an overlap of 20 seconds with
each other. The results are listed in table 4. For the de-
velopment set, no automatic segmentation was performed,
since the manual segmentation was available for the official
evaluation. There is one talk in the IWSLT test set, namely
“E06_Nach-und-doch-so-Fern-Thomas-Mo”, that is of very
low quality. It has been recorded with a far-range micro-
phone across a reverberant room, and contains quite a bit of
non-speaker noise, e.g. coughing, rustling of paper and cloth-
ing, etc. Our system has not been designed to deal with such
conditions, nor has it been tuned to them in any way, since
the development set does not contain similar recordings. We
therefore argue that this file unfairly skews the average test
results. In tabel 4, the column “tst2013\E06” lists the results
when this file is excluded from the evaluation. These error
rates are more in line with those obtained on the dev set. The
results in this table suggest that for TED talks, in the absence
of a manual segmentation, a recognition performed on the
whole talk is preferrable to using an automatically generated
segmentation. We suspect, however, that this conclusion is
fairly domain-specific. An automatic segmentation is essen-
tial for files with more music, jingles, applause, laughter, and
other non-speaker noise.

7. Conclusion

We have presented the various components in the German
ASR system, how they were set up, trained, and combined,
to obtain accurate recognitions on the various data sets of
the IWSLT evaluation task. Worthy of note is the acous-
tic model training, which was done almost entirely on pub-
licly available data, without expert human transcriptions, us-
ing a lightly supervised training technique. Final evaluation
on the unsegmented test set was performed in two different
ways. Once with an automatically generated segmentation,
and once without segmentation at all. It was found that, even
though an oracle segmentation leads to optimal recognition
results, avoiding segmentation altogether is preferrable to us-
ing an automatically generated one, when an oracle segmen-
tation is not available.
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