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Abstract
Users of Statistical Machine Translation (SMT) sometimes turn to the Web to obtain data to
train their systems. One problem with this approach is the potential for “MT contamination”:
when large amounts of parallel data are collected automatically, there is a risk that a non-
negligible portion consists of machine-translated text. Theoretically, using this kind of data
to train SMT systems is likely to reinforce the errors committed by other systems, or even by
an earlier versions of the same system. In this paper, we study the effect of MT-contaminated
training data on SMT quality, by performing controlled simulations under a wide range of
conditions. Our experiments highlight situations in which MT contamination can be harmful,
and assess the potential of decontamination techniques.

1 Introduction

As Statistical Machine Translation (SMT) systems are becoming more widely used in indus-
try, we see and hear a growing amount of advice on “best practices” for SMT, most notably
regarding system training and data collection and preparation. One recurring theme is that of
“clean” data: how training data for SMT systems (which often comes in the form of translation
memories) should be exempt of any “dirt”, and how SMT users should go about “cleaning”
their data. The most visible proponents of this clean-data approach are probably organizations
such as TAUS1, Asia Online2 and PangeaMT3.

Multiple forms of “dirt” are said to affect SMT quality. Asia Online (2009) discuss a
number of examples: formatting codes and other kinds of markup, such as translation mem-
ory metadata; untranslated segments (i.e. translation units in which either the target segment is
empty, or a copy of the source segment); segments containing inconsistent or mangled charac-
ter encoding. “Badly” translated segments also fall into this category, although it is not quite
clear what it means for a segment to be “badly” translated. Some of the examples given by
the authors of the Asia Online study suggest that the presence of translator insertions can be
considered “bad”, as when, for example, the translator leaves a source-language term in paren-
theses for clarity. Non-literal translations are also frowned upon (e.g.: What is a project file?
→ Présentation des fichiers projet), differing usage of punctuation in the source and target
languages, etc. The notion of dirt can extend, in some cases, to out-of-domain data, or even in-
domain data containing terminology that is inconsistent with the current task. One translator’s

1https://www.taus.net
2http://www.asiaonline.net
3http://pangeamt.com
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treasure is another translator’s trash.4

The kinds of problems mentioned in Asia Online’s study are typical of SMT training data
extracted from translation memories. Increasingly, however, SMT users are turning to the Web
to complement their training sets (Resnik and Smith, 2003). There, other types of dirt can
be expected to surface. One example is misaligned text: pairs of segments or documents in
training data which are not translations of one another (Jiang et al., 2010; Goutte et al., 2012).
In this case, the problem does not come from the data itself, but rather from the early pro-
cessing steps by which the data is collected and organized for SMT training. While in typical
translation memory usage, document- and segment-level alignments are validated manually, in
Web-collected data, these steps need to be performed automatically. Goutte et al. (2012) esti-
mate that some of the Web-collected data used in WMT evaluations5 contain as much as 13%
misaligned pairs of segments. Their study nevertheless reveals that typical SMT systems are
relatively immune to this sort of dirt, and that even when as much as 30% of the training data is
misaligned, SMT quality remains essentially unaffected.

Another kind of dirt comes in the form of machine translated documents: in order to
make their online content available in multiple languages, some organizations are known to use
unedited MT output. For example, Microsoft is known to have used MT extensively for some
of their online technical documentation (Aikawa et al., 2007). More recently, EBay has started
using MT for localizing product descriptions (Wohlsen, 2014). When automatically harvesting
large amounts of bilingual documents from the Web, there is a growing risk that some unknown
proportion of these documents will actually be machine translated.

In general, the presence of machine-generated data in training data that is otherwise as-
sumed to have been produced by humans is seen as a bad thing. Using this kind of data to
build systems aimed at simulating human behavior is likely to reinforce the errors committed
by other systems, or even earlier versions of the same system. This is what motivates efforts
such as those of Google to “watermark” the output of their MT systems (Venugopal et al., 2011),
thus making it possible for them to recognize the output of their own systems, and to exclude it
from their training sets.

In practice, however, it is not clear that machine-generated translations are always harmful
in MT training data. In fact, in some situations, MT has been used specifically to compensate
for the lack of adequate bilingual training data. For example, Ueffing (2006) proposed a self-
training procedure, in which machine-translated versions of the test data itself was used as
an additional source of knowledge in a phrase-based SMT system. This approach, as well as
a number of variants, have shown to improve MT quality in different contexts (Bertoldi and
Federico, 2009; Schwenk and Senellart, 2009; Lambert et al., 2011). In a somewhat related
manner, (Madnani, 2010) and (Dyer et al., 2011) address SMT overfitting issues by adding
machine-generated reference translations to their SMT system’s tuning sets.

In the following pages, we focus on the effects of “accidental” MT contamination of MT
training data: our goal is to assess to what extent this sort of contamination is harmful in SMT
training, and what can be expected from cleaning procedures aimed specifically at eliminating
this type of dirt. Our approach is to simulate MT contamination in otherwise clean data, and
to measure the effect empirically on SMT systems trained with this data, using standard MT
quality metrics. We describe the details of our experimental approach, the experimental data
and the MT systems used in Section 2. The main results of our experiments are presented
in Section 3, while the potential of data decontamination procedures is assessed in Section 4.
Finally, we discuss the general implications of our findings in Section 5.

4Weed is possibly a better metaphor than dirt for many of these issues with SMT training data: “a wild plant growing
where it is not wanted and in competition with cultivated plants” (from the Oxford US English Dictionary).

5http://statmt.org/wmt12/translation-task.html
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2 Method

2.1 General Approach

The general objective of this study is to assess the impact of MT contamination in SMT train-
ing data. Our experimental approach is to inject machine-translated output into an otherwise
“clean” training set, then measure the effect on the quality of SMT systems trained with this
data. The question we are addressing is whether or not one should worry about MT contamina-
tion: How should one handle a given subset of the available training data, knowing that it may
contain an unknown proportion of MT output. Therefore all our experiments compare the per-
formance of “baseline” systems, trained exclusively with “clean” data, with that of “augmented”
systems, produced by adding auxiliary training data contaminated with MT. We consider sys-
tems augmented with varying amounts of auxiliary data, and containing varying degrees of MT
contamination.

Our experiments also consider varying baseline conditions, in terms of quantity of base-
line training data, text specialization and language pair. Because augmenting datasets from Web
documents is a strategy that is mostly used in small-data settings, it makes sense to focus on sce-
narios where the baseline systems are relatively “small”, trained with as little as 5000 segments
in some cases, and not more than 200K sentence pairs. We consider data-collection efforts that
aim at increasing training data by at least 50%, and as much as 8 times the size of the baseline
dataset.

In the scenarios we wish to simulate, auxiliary data is collected from the Web. However, we
wish to avoid biases resulting from differences between the baseline and auxiliary data’s domain
or genre. Therefore, in each scenario, experiments are performed using a single, relatively ho-
mogeneous pool of bilingual data, for which we have human-quality translations, and process
it in different ways so as to simulate the desired conditions. More specifically, we machine-
translate this data so as to obtain two different translations for each source sentence in the
training data: one human translation, and one machine translation. Different experimental con-
ditions can then be created that correspond to different mixes of human and machine-generated
translations.

The quality of the MT in the auxiliary training data should be an important factor in our
study: intuitively, we expect “bad” training MT to have a more profound adverse effect on MT
quality than “good” training MT. However, this is a factor that is particularly hard to control
for. As mentioned earlier, the scenario we are trying to simulate is one where auxiliary data is
harvested from the Web. Within this kind of data, MT may have been produced under widely
varying conditions. One reasonable assumption is that most of it has been produced using a
“generic” (non-specialized or non-domain-adapted) system of decent quality, such as Google
Translate. The problem with using Google Translate for our experiments is that we have no
control on its training data: if we are to perform experiments using existing bilingual resources
(corpora routinely used in research), we have no way of verifying that some or all of this data
is not already used by Google to train their system. There are at least two solutions to this
problem. One is to select the experimental data in such a way that we can guarantee it has not
been used by Google Translate. The second is to use an MT system other than Google Translate,
for which we have full control on the training data. For the experiments described here, we opt
for the latter strategy. We describe our experimental data and the MT systems used below.

2.2 Data

We describe here the three distinct data sets used in our experiments. More details can be found
in Table 1.
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Dataset Language Segments Source Tokens
Europarl English-French 2M 55.5M
EMEA French- English 837K 12.7M
GALE Chinese-English 547K 17.7M

Table 1: Experimental data

Europarl This is release v7 of the well-known Europarl corpus (Koehn, 2005), in English
and French. We arbitrarily set the source language to be English. We set aside 2000 randomly
picked pairs of segments for tuning purposes. The test set for this dataset is the Europarl test set
from the WMT 2008 shared task (Callison-Burch et al., 2008).

EMEA This is release 0.3 of the EMEA dataset, from the OPUS Corpus (Tiedemann, 2009)
in English and French. In this case, we chose French to be the source language. This is a par-
allel corpus made out of PDF documents from the European Medicines Agency. While highly
technical, it is very repetitive by nature. The data is organized into individual documents. We re-
spected these natural divisions when subsampling the data: we randomly picked 60 documents
from the complete dataset, and assigned 30 for tuning and 30 for testing. We took at most 100
segments from each document, to avoid having a few documents overwhelm the tuning or test
sets. This procedure yielded 2185 and 1832 tuning and test segments respectively.

GALE This is a collection of Chinese-English corpora from the DARPA GALE initiative,
the larger part coming from the FBIS corpus. For tuning and test, we used the NIST 04 (1788
segments) and NIST 05 (1082 segments) Chinese-English test sets respectively. Four reference
translations are provided for each of these sets.

2.3 MT Contamination
In our experimental setup, MT systems play two different roles: they are first used as “contami-
nators”, i.e. to produce machine-translated target-language versions of training segments; then,
they are used as “machine learners” in the rest of the study.

To generate MT contamination in the GALE dataset, we used an older version of SYS-
TRAN’s Chinese-English machine translation system (Yang et al., 2003). This is a rule-based
system, customized for the domains of science and technology. It uses a rule-based word-
segmenter and a bilingual lexicon with about 1.2M entries, containing words, expressions and
rules.

For the English-French datasets (Europarl and EMEA), MT contamination was generated
using SMT systems based on Portage (Larkin et al., 2010), the NRC’s phrase-based SMT tech-
nology. English-French and French-English systems were trained using a very large corpus of
Canadian government data harvested from the Web (domain gc.ca), containing over 500M
words in each language. Phrase extraction was done by aligning the corpus at the word level
using both HMM and IBM2 models, using the union of phrases extracted from these separate
alignments for the phrase table, with a maximum phrase length of 7 tokens. The following
feature functions are used in the log-linear model: 5-gram language model with Kneser-Ney
smoothing (Kneser and Ney, 1995); lexical estimates of the forward and backward probabilities
obtained either by relative frequencies or using the method of (Zens and Ney, 2004); lexical-
ized distortion (Tillmann, 2004; Koehn et al., 2005); and word count. The parameters of the
log-linear model were tuned by optimizing BLEU on the development set using the batch vari-
ant of MIRA (Cherry and Foster, 2012). Decoding uses the cube-pruning algorithm of (Huang
and Chiang, 2007) with a 7-word distortion limit.

Table 2 shows the performance of these contaminator systems on the test sets used in our

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1:  MT Researchers      Vancouver, BC       © The Authors 72



Dataset Test Segments Tokens BLEU WER
Europarl 2000 59 936 26.05 65.66
EMEA 1832 32 601 31.31 56.90
GALE 1082 33 064 19.65 76.03

Table 2: MT Contaminator Performance

Baseline +8× aux.
Corpus segments tokens segments tokens
Europarl 222K 6.2M 2.0M 55.5M
EMEA 93K 1.5M 835K 12.6M
GALE 60.6K 2.0M 545K 17.7M

Table 3: Sizes of training datasets: “Baseline” contains clean (uncontaminated) data only; in
addition, “+8× aux.” data also contains contaminated data totalling 8 times the size of the
baseline data.

experiments. Using these MT systems, we built sets of training data containing varying degrees
of MT contamination, ranging from 0.00 (uncontaminated – or clean – data) to 1.00 (data in
which all the target language text is in fact MT output).

As much as possible, when generating contaminated training data, we tried to mimick a
realistic situation, in which whole documents, rather than individual segments, are either clean
or dirty. This is important, because MT systems, just like human translators, are known to trans-
late terms relatively consistently within documents (Carpuat and Simard, 2012); and because
all occurrences of a rare term tend to “bunch up” (Church and Gale, 1995), an MT system is
likely to learn its translation from a small number of documents, sometimes a single one. In the
case of the EMEA data, since we had access to the document structure, simulating this effect
was straightforward. For GALE and Europarl data, we had to settle for an approximation: the
original order of segments was preserved, and data was arbitrarily segmented into blocks of 50
contiguous sentences (in other words: we assumed 50-sentence documents).

Contamination was always produced by translating training data in the same direction as
the system which it was used to train; for example, when building MT systems to translate from
Chinese to English, we used training data containing Chinese source segments paired with their
English machine translation. We speculate that this sort of contamination is more likely to have
an adverse effect on MT performance than the opposite, and so our setup corresponds to a worst
case scenario.6

3 Results

We built multiple MT systems for each dataset, starting with a baseline system trained exclu-
sively with clean data, then gradually adding contaminated auxiliary data. Table 3 gives the
sizes of the smallest and largest training sets for each test domain.

The “machine-learners” used in all experiments were also built using the Portage SMT
toolkit, and a setup similar to that of the English-French contaminator MT systems (Section
2.3). The main difference is that here, we used 4-gram language models instead of 5-gram,
which are more appropriate with smaller amounts of training data.

Figure 1 shows learning curves for the MT systems trained with these datasets. The size
of the auxiliary data is expressed relative to the size of the baseline training data: 0 means “no

6Note that this is in line with Lambert et al. (2011)’s suggestion that, when using MT as complementary training
data, it is better to use target-language corpora machine-translated into the source-language, rather than the opposite.
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auxiliary data” (baseline conditions), 0.5 means “auxiliary data is half the size of baseline data”,
etc.

With clean data (black curves), system performance increases more-or-less monotonically
as more training data is used, as is usually the case with SMT systems. Depending on the text
domain and the initial state of the system, this increase can be quite modest (Europarl) or sur-
prisingly large (EMEA). But in all cases, the behavior is essentially the same. As the degree
of MT contamination increases, however, the gains in performance diminish. This reduction
is barely visible – and in some cases not statistically significant – with 5% contamination (red
curves), but becomes more apparent as the level of contamination increases. In the case of Eu-
roparl and EMEA, when the auxiliary training data entirely consists of MT output (100% con-
tamination level – light blue curves), the performance of the resulting system actually decreases
with auxiliary data, regardless of the actual amount of data. For Europarl, the contamination
threshold at which adding auxiliary training data becomes harmful seems to be somewhere
around 0.5: at this level, the performance of the system remains stable as more data is added.
For EMEA, this threshold appears to be above 0.5.

In the case of the GALE data, the performance of the system always improves, regardless
of the degree of contamination. In this scenario, MT contamination was produced using a
rule-based system (SYSTRAN). Complementarity effects between rule-based and statistical
systems have been observed in the past, although in the very different context of automatic
post-editing (Simard et al., 2007; Dugast et al., 2007), which could explain this difference in
behavior. However, another important difference between the Europarl and EMEA scenarios
on the one hand, and the GALE scenario on the other hand, is that in the latter, the performance
of the baseline system (without auxiliary data; 14.02 BLEU) lies clearly below that of the MT
contaminators themselves on the same data (19.65 BLEU; see Table 2). We conjecture that, as
long as the quality of the translation in the training data is better than that of the system under
training, performance can only increase.

To verify this hypothesis, we compare the learning behavior of systems augmented with
100% contaminated auxiliary data, under different baseline conditions. Figure 2 shows learning
curves for systems trained with Europarl and EMEA data7; each curve corresponds to a different
baseline system.

In the case of Europarl data, the smallest baseline system was trained with only 12.5K
clean sentence pairs: at 22.4 BLEU, its performance is below that of the MT contaminators
(26.1 BLEU – dotted line). That system always benefits from more auxiliary data, eventually
surpassing the MT contaminators. At the opposite end of the spectrum, a Europarl baseline sys-
tem trained with 200K segments of clean data, with 29.5 BLEU, can only lose from the addition
of 100% contaminated data. Intermediate systems behave in between these two extremes. An
interesting case is the 50K baseline Europarl system, which initially loses 1 BLEU from dou-
bling its training set with contaminated data, but eventually regains it, as more contaminated
data is added. It is worth noting that all systems eventually perform better than the MT con-
taminators, which is likely explained by the presence of clean in-domain data in the training set
(baseline system training data).

A somewhat similar pattern can be observed with EMEA systems. Interestingly in this
case, with large amounts of auxiliary training data, all systems converge to almost identical
performances, very close to that of the MT contaminator’s. In essence, this suggests that all of
these systems eventually mimick the behavior of the MT contaminators. This result is in line
with those of Dugast et al. (2008), who “relearn” a rule-based MT system with an SMT system
by using the former system to generate training data for the latter.

7The GALE dataset is too small to produce reliable learning curves with baseline systems performing above the MT
contaminator level.
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Figure 1: BLEU and WER scores of trained MT system as a function of auxiliary training data
size (expressed as a factor of baseline data size); each curve corresponds to a different level of
MT contamination in auxiliary data.
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Figure 2: Learning Curves (BLEU score as a function of total amount of training data: baseline
+ auxiliary) for Europarl and EMEA domains, using 100% contaminated auxiliary data; each
curve corresponds to a different amount of (clean) baseline training data. Dotted line is BLEU
score of corresponding MT contaminator system on test data.

4 Decontaminating Training Data

Because “dirty” data takes many different forms, data-cleaning procedures are varied. In the
case of extra-textual objects or encoding issues, it typically takes the form of in-segment filtering
or case-by-case normalization; for misalignment, re-alignment may be necessary; for “bad”
translations, re-translation is sometimes considered (Asia Online, 2009). In all cases, filtering
out whole segments or even complete documents is usually the simplest solution. And in the
case of MT contamination, filtering out dubious portions of the dataset is possibly the only
reasonable option.

However, detecting MT is not an easy task, especially when it may be hiding inside large
quantities of data, and if it comes from an arbitrary number of different MT systems. Somers
et al. (2006) explore different ways of detecting inappropriate uses of online MT systems by lan-
guage students in translation assignments, a task which is related to that of detecting MT. But
their approach is based on comparing human production with MT output, an approach which
would be difficult to apply in our case. As mentioned in the introduction, watermarking has
also been considered for detecting MT-contaminated data (Venugopal et al., 2011). Unfortu-
nately, this is not a general solution to MT detection because it only allows one producer of MT
(e.g. Google) to recognize output from its own systems. In fact, Venugopal et al. suggest that
no generally-applicable automatic method exists to distinguish between human- and machine-
generated translations. Kurokawa et al. (2009) propose a method to determine whether a given
version of a text is the original or a translation; a similar approach could arguably be used for
our problem, given suitable training data. To our knowledge, this has not been done, and no
such dataset is available.

But what if we knew how to detect MT? What if it was possible to reliably detect contami-
nated segments or documents, and filter them out of the auxiliary training data? To examine the
potential of such methods, we trained systems with artificially decontaminated datasets. Figure
3 compares the behavior of these systems with those obtained with the corresponding contam-
inated datasets. Each curve plots the BLEU (WER) gain of a system for a given amount of
auxiliary data, as a function of the degree of contamination: solid lines correspond to “raw”
(contaminated) data, while dashed lines correspond to the same data after decontamination. Be-
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cause these are “oracle decontaminations”, the results can be interpreted as an empirical upper
bound on the MT quality that could be obtained from an actual “MT detector”.

As can be seen in these plots, when the contamination level of the auxiliary data is 0
(left edge of the graphs), filtering has no effect, and thus both systems produce indentical re-
sults. When all auxiliary data is MT (right edge of the graphs), filtering eliminates all auxiliary
data, and filtered systems display a gain of 0 (black horizontal line); in the case of EMEA and
Europarl, the corresponding unfiltered systems display negative gains (i.e. losses), while the
GALE systems retain positive gains, as observed earlier. In between these two extremes, the
effect of decontamination is generally positive (although there are exceptions). Performance
varies as a function of contamination level: the greater the contamination, the greater the effect
of decontamination; and as a function of the size of the auxiliary dataset: the greater the amount
of data, the greater the effect of decontamination. Yet, it is striking that in most “realistic”
scenarios (MT contamination below 20%) the net effect of decontamination is negligible. This
suggests that, if the goal is to improve the general quality of the output MT, it is probably not
worth investing heavily in developing an MT detector for the specific purpose of cleaning up
SMT training data.

5 Discussion

Should one worry about MT contamination when collecting auxiliary training data for SMT
systems? It is difficult to answer this question based solely on the results of the experiments
reported in the previous sections. One problem is that we have no idea what the actual level of
MT contamination is on the Web. In practice, this is likely to depend on various application-
dependent factors: where and when the data was collected, what domain and genre, and for
which language pair. For some domains and languages, for example English-French legal texts,
contamination may be expected to be negligible. For others, for example Russian-English prod-
uct reviews and descriptions, it may be much higher. In the absence of general MT detection
methods, the only way to reliably estimate the level of contamination is to analyse random
samples of the collected data manually.

In our experiments, using fully machine translated (i.e. 100% contaminated) auxiliary
training data most often degrades MT performance. This appears to contradict earlier results
(Ueffing, 2006; Bertoldi and Federico, 2009; Schwenk and Senellart, 2009; Lambert et al.,
2011), in which machine translated training data was successfully used to improve MT. The
main difference with our work is that all these previous studies were concerned with domain-
adaptation: the test and baseline training data were assumed to come from different domains,
while the MT auxiliary data came from the same domain as the test data. In our case, all data –
test, baseline and auxiliary training – come from the same domain. Again, our setup reflects a
worst-case scenario, in which the auxiliary training data is not assumed to be closer to the test
than the baseline training data, and our results must be interpreted accordingly.

Another important factor to consider when using potentially contaminated data is the in-
tended application for the trained MT systems. To better understand this point, it is useful to
examime some example translations. Table 4 compares example translations for two of our
experimental systems on the EMEA data: the Baseline system, and the system trained with all
available auxiliary training data, under the assumption that this was 100% contaminated (all
translations are MT). Example 1 shows how natural “translation memory effects”, which can
be normally observed when a domain is by nature very repetitive (as the EMEA), can be lost
with contaminated data: a frequent sentence, for which the baseline system “knew” a correct
translation, is now translated differently by the augmented system. To a certain extent, this
phenomenon may be exacerbated in our study by our experimental methodology: in practice,
finding a complete sentence verbatim in a Web-harvested corpus is probably quite unusual.

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1:  MT Researchers      Vancouver, BC       © The Authors 77



BLEU WER

Europarl

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

aux = 1 x baseline
aux = 4 x baseline
aux = 8 x baseline

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

aux = 1 x baseline
aux = 4 x baseline
aux = 8 x baseline

EMEA

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
10

−
5

0
5

10
15

20

aux = 1 x baseline
aux = 4 x baseline
aux = 8 x baseline

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10
15

aux = 1 x baseline
aux = 4 x baseline
aux = 8 x baseline

GALE

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

aux = 1 x baseline
aux = 4 x baseline
aux = 8 x baseline

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

aux = 1 x baseline
aux = 4 x baseline
aux = 8 x baseline

Figure 3: BLEU and WER gain relative to baseline, as a function of MT contamination level in
auxiliary training data. Each pair of solid and dashed lines corresponds to a different amount of
auxiliary training data (1, 4 and 8 times the size of the baseline dataset): solid lines correspond
to contaminated data; dashed lines correspond to filtered (decontaminated) data.
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Source Reference Baseline + 100% aux.
1. pour une description

complète des effets
indésirables observés
sous viagra , voir la
notice .

for the full list of all side
effects reported with vi-
agra , see the package
leaflet .

for a full list of all side
effects reported with vi-
agra , see the package
leaflet .

for a complete descrip-
tion of adverse effects
observed under viagra ,
see the notice .

2. par la suite , la dose doit
être ajustée au cas par
cas toutes les 1 à 2 se-
maine(s ) pour maintenir
le taux moyen de neu-
trophiles entre 1,5 x 109/
l et 10 x 109/ l.

subsequently the dose
may be individually ad-
justed every 1 - 2 weeks
to maintain the aver-
age neutrophil count be-
tween 1.5 x 109/ l and 10
x 109/ l.

thereafter , the dose
should be adjusted in
case by cases every 1 to
2 semaine(s ) to maintain
the average neutrophil
count between 1.5 x 109/
l and 10 x 109/ l.

subsequently , the dose
must be adjusted on a
case-by-case basis every
1-2 semaine(s ) to main-
tain the average rate of
neutrophils between 1.5
x 109/ l and 10 x 109/ l.

Table 4: Translation examples from the EMEA test domain. Baseline translations are produced
by the baseline MT system (see Table 3); + 100% aux. translations are produced by a system
trained with all available auxiliary training data (8 times the baseline data), 100% contaminated.

Source Reference Baseline + 100% aux.
1. next , there is - and once

again it is inevitable ,
yet questionable - an el-
ement of randomness ,
which is understandable
, in the decisions made
by the european institute
of florence .

ensuite , il y a , là en-
core , c’ est inévitable
, mais néanmoins dis-
cutable , une part d’ arbi-
traire , on le comprend ,
dans les choix opérés par
l’ institut de florence .

ensuite , il y a une
fois de plus - et c’ est
inévitable , encore con-
testable - un élément de
randomness , ce qui est
compréhensible , dans
les décisions prises par l’
institut de florence .

ensuite , il y a - et
, encore une fois , il
est inévitable , mais dis-
cutable - un élément du
caractère aléatoire , ce
qui est compréhensible ,
dans les décisions prises
par l’ institut européen
de florence .

2. i should be grateful if
the court would issue its
opinion on the reform of
the financial regulation
soon .

je remercie la cour des
comptes de bien vouloir
émettre rapidement son
avis sur la réforme du
règlement financier .

je serais reconnaissant la
cour serait question son
avis sur la réforme du
règlement financier bi-
entôt .

je devrais être recon-
naissants si le tribunal
devrait émettre son
opinion sur la réforme
de la réglementation
financière bientôt .

Table 5: Translation examples from the Europarl test domain. See Table 4 for details.

But the same example also highlights a more frequent problem: the augmented system may
“unlearn” official terminology and standard phraseology from the baseline corpus. For exam-
ple, the term “side effect” which becomes “adverse effects”, or “package leaflet” which is now
translated as “notice”. In Example 2, “average neutrophil count” becomes “average rate of
neutrophils”. If the domain is very sensitive to terminology and terminological consistency, this
may be a serious problem.

If, however, the emphasis is more on fluency and getting the meaning right, access to more
data may turn out to be beneficial, possibly more so than the BLEU and WER scores would
have us believe. Examples from the Europarl domain (Table 5) show situations where the
translation from the augmented system, although not as close to the reference as the baseline,
is actually more fluent and adequate. This seems to be due partly to a better coverage of the
source vocabulary (e.g. randomness) and to better handling of idioms.
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6 Conclusion

We have presented a study on the effect of MT contamination in training data on SMT per-
formance. Our focus was on scenarios where an existing baseline MT system is augmented
with Web-collected data, which may contain arbitrary quantities of machine-translated con-
tents. Our experiments demonstrate that MT quality is systematically affected by contaminated
training data; severely contaminated data can even decrease the quality of translations compared
to the baseline. In all cases of mild contamination, however, the adverse effects are usually quite
small, unless very large amounts of data are involved, or in the case of highly technical and/or
repetitive material.

Automatic methods to reliably distinguish between human and machine translations would
potentially be useful for decontaminating Web-collected data. However, it is uncertain that
such methods can be deployed in practice. In the presence of potentially contaminated data, an
alternative approach might be to identify which part of the collected training data is more likely
to be useful. For example, one could easily identify pairs of segments that contain previously
unseen vocabulary. Similarly, one could filter out segments or phrase-pairs that contain domain-
specific terminology, or unusual or inconsistent translations of this terminology.

Yet another approach with less-reliable training data is to turn to standard domain-
adaptation techniques. For example, auxiliary data could be used to generate distinct phrase
tables and language models, whose relative weight in the trained systems would be determined
empirically based on performance on suitably chosen tuning sets (Foster and Kuhn, 2007). This
is something we plan to integrate into our experimental framework in the near future.

When considering using bilingual data automatically harvested from the Web as training
data for MT systems, it is important to take the final application into consideration: whether
the resulting MT is intended for post-editing terminology-sensitive material, or for gisting and
knowledge acquisition. In the end, the best advice is probably to sample the data for quality,
and more importantly to monitor the quality of the resulting MT systems, both by appropriate
use of standard benchmarks and metrics, including human evaluation.
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