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Abstract

We test four models proposed in the speech
emotion recognition (SER) literature on 15
public and academic licensed datasets in
speaker-independent cross-validation. Results
indicate differences in the performance of
the models which is partly dependent on the
dataset and features used. We also show that
a standard utterance-level feature set still per-
forms competitively with neural models on
some datasets. This work serves as a starting
point for future model comparisons, in addi-
tion to open-sourcing the testing code.

1 Introduction

Speech emotion recognition (SER) is the analy-
sis of speech to predict the emotional state of
the speaker, for which there are many current
and potential applications (Peter and Beale, 2008;
Koolagudi and Rao, 2012). As speech-enabled
devices become more prevalent, the need for reli-
able and robust SER increases, and also the need
for comparability of results on common datasets.
While there has been a large amount of research in
this field, a lot of results come from testing only on
one or two datasets, which may or may not be pub-
licly available. Additionally, different methodolo-
gies are often used, reducing direct comparability
of results. Given the wide variety of neural architec-
tures and testing methodologies, there is need for a
common testing framework to help comparisons.

This study aims to test some SER models pro-
posed in the literature on a discrete emotion classi-
fication task, and promote reproducibility of results
by using public and academic licensed datasets. In
addition, the code is publicly hosted on GitHub1

under an open source license, so that our results
may be verified and built upon. Our work has two

1https://github.com/Broad-AI-Lab/
emotion

main benefits. First, it serves as a baseline refer-
ence for future research that uses datasets present
in this study. Second, it allows for comparisons be-
tween datasets to see which of their properties may
influence classification performance of different
models.

The paper is structured as follows. In Section
2 related work is given, and in Section 3 we list
the datasets used in this study. The tested methods
are outlined in Section 4, and the results given
in Section 5. We briefly discuss these results in
Section 6 and a conclude in Section 7.

2 Related Work

There has been some previous work in compar-
ing SER techniques on a number of datasets. In
Schuller et al. (2009a), Schuller et al. compare
a hidden Markov model/Gaussian mixture model
(HMM/GMM) and a SVM classifier for emo-
tion class, arousal and valence prediction on nine
datasets. For HMM/GMM, 12 MFCC, log-frame-
energy, speed and acceleration features, are ex-
tracted per frame. For SVM, 6552 features are
extracted based on 39 statistical functionals of
56 low-level descriptors (LLDs). Testing was
done in a leave-one-speaker-out (LOSO) or leave-
one-speaker-group-out (LOSGO) cross-validation
setup. The only three datasets in common with
the present study are EMO-DB, eNTERFACE and
SmartKom, for which unweighted average recall
(UAR) of 84.6%, 72.5%, and 23.5% were achieved,
respectively. We use a similar methodology in the
present paper.

The Schuller et al. work is expanded in Stuhlsatz
et al. (2011), where multi-layer stacks of restricted
Boltzmann machines (RBMs) are pre-trained in
an unsupervised manner, then fine-tuned using
backpropagation as a feed-forward neural network.
The same datasets and configurations are used

https://github.com/Broad-AI-Lab/emotion
https://github.com/Broad-AI-Lab/emotion


Emotion
Dataset ang. hap. sad. fear sur. dis. neu. oth. unk. Total
CaFE 144 144 144 144 144 144 72 936
CREMA-D 1271 1271 1270 1271 1271 1087 7441
DEMoS 246 167 422 177 203 140 209 1564
EMO-DB 127 71 62 69 46 79 81 535
EmoFilm 232 240 254 221 168 1115
eNTERFACE 215 212 215 215 215 215 1287
IEMOCAP 1103 1636 1084 1708 5531
JL-corpus 240 240 240 240 240 1200
MSP-IMPROV 792 2644 885 3477 7798
Portuguese 63 46 59 41 64 35 60 368
RAVDESS 192 192 192 192 192 192 96 192 1440
SAVEE 60 60 60 60 60 60 120 480
ShEMO 1059 201 449 225 1028 2962
SmartKom 99 118 54 9 1786 183 46 2295
TESS 400 400 400 400 400 400 400 2800

Table 1: Dataset emotion distribution. The number of clips in each of the ‘big six’ emotions along with neutral and
other, is given, as well as the total number of clips in each dataset. oth. = other (dataset specific); unk. = unknown

as in Schuller et al. (2009a), but the all-class
emotion classification results are better on only
some of the datasets. In particular, GerDA per-
forms slightly better on average for SmartKom, but
slightly worse for EMO-DB and eNTERFACE. In
the current work, we compare many more meth-
ods on many more datasets; we also include more
recent datasets.

3 Datasets

Fifteen datasets are used in this study, some of
which are open datasets, while others require a
signed EULA to access. All of the datasets have
a set of categorical emotional labels. A question
arises when using acted datasets with additional
annotations, such as CREMA-D, as to whether to
use the actor’s intended emotion as ‘ground truth’
for training a classifier or instead use a consensus of
annotators with majority vote. For MSP-IMPROV
and IEMOCAP, the label assigned by annotators is
used, consistent with previous work. For CREMA-
D we have opted to use the actors intended emotion,
rather than any annotator assigned labels. A table
describing the emotion distribution in each dataset
is given in Table 1.

3.1 Open Datasets

Open datasets are those under a free and permissive
license, and are able to be downloaded with request-
ing permission or signing an academic license. The

open datasets used in this study are: Canadian-
French emotional dataset (Gournay et al., 2018),
Crowd-sourced Emotional Multimodal Actors
Dataset (CREMA-D) (Cao et al., 2014), EMO-DB
(Burkhardt et al., 2005), eNTERFACE dataset (Mar-
tin et al., 2006), JL corpus (James et al., 2018),
Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) (Livingstone and
Russo, 2018), Sharif Emotional Speech Database
(ShEMO) (Mohamad Nezami et al., 2019), and the
Toronto Emotional Speech Set (TESS) (Dupuis and
Pichora-Fuller, 2011).

3.2 Licensed Datasets

Licensed datasets are those that require signing
an academic or other license in order to gain ac-
cess to the data. The licensed datasets used in this
study are: Database of Elicited Mood in Speech
(DEMoS) (Parada-Cabaleiro et al., 2019), EmoFilm
(Parada-Cabaleiro et al., 2018), Interactive Emo-
tional Dyadic Motion Capture (IEMOCAP) (Busso
et al., 2008), MSP-IMPROV (Busso et al., 2017),
Surrey Audio-Visual Expressed Emotion (SAVEE)
database (Haq et al., 2008), and the SmartKom cor-
pus, public set (Schiel et al., 2002).

4 Methodology

4.1 Models

We implement four neural network models that
have been proposed in previous literature. These



Model Input CNN RNN Att. # Params
Aldeneh 2D X 4.4M–13.7M

Latif 1D X X 1.2M
Zhang 1D X X X 0.7M
Zhao 2D X X X 0.6M

Table 2: Summary table of model parameters. CNN: convolutional neural network. RNN: recurrent neural network.
Att.: attention pooling. The number of parameters for the Aldeneh model depends on the number of frequency
bands in the input.

models were selected with the goal of having a
variety of model types (convolutional and recur-
rent), variety of input formats (spectrogram and
raw audio), and recency (within the past few years).
After each model is introduced with citation, it will
subsequently be referred to by the primary author’s
surname. A summary table of model types and
number of parameters is given in Table 2. Each
model outputs are probability distribution over N
classes.

We implement the final model from Aldeneh and
Mower Provost (2017). This consists of four inde-
pendent 1D convolutions, followed by maxpooling.
The resulting vectors are concatenated into a fea-
ture vector which is passed to two fully-connected
layers. The Aldeneh model takes a 2D sequence of
log Mel-frequency spectrograms as input.

The model from Latif et al. (2019) consists of
3 independent 1D convolutions of with batch nor-
malisation and maxpooling. The filters are con-
catenated feature-wise and a 2D convolution is per-
formed, again with batch normalisation and max-
pooling. The final 1920-dimensional feature se-
quence is passed through a LSTM block, followed
by 30% dropout and a fully-connected layer. The
Latif model takes 1D raw audio as input.

The model from Zhao et al. (2019) consists of
a convolutional branch and a recurrent branch that
act on 2D spectrograms. The recurrent branch
consists of a bidirectional LSTM with a single
layer, whereas in the paper they used two lay-
ers. The convolutional branch consists of three
sequential 2D convolutions, with batch normali-
sation, max-pooling and dropout. The filters and
kernel sizes are different across convolutions and
the resulting time-frequency axes are flattened and
passed through a dense layer. The convolutional
and recurrent branches are individually pooled us-
ing weighted attention pooling, concatenated and
finally passed through a dense layer.

The model proposed in Zhang et al. (2019) acts

on a raw audio waveform. The audio is framed
with a frame size of 640 samples and shift of 160
samples. Two 1D convolutions with maxpooling
are calculated along the time dimension. The fea-
tures are then pooled in the feature dimension and
flattened to a 1280-dimensional vector per frame.
The sequences are fed into a 2-layer GRU, before
weighted attention pooling, as in the Zhao model.
Although this model was originally designed to per-
form multi-task discrete valence and arousal clas-
sification, we apply it to the single-task emotion
label classification.

4.2 Cross-validation
We perform leave-one-speaker-out (LOSO) or
leave-one-speaker-group-out (LOSGO) cross-
validation for all tests. Before testing, we perform
per-speaker standardisation of feature columns, as
in (Schuller et al., 2009a). If a dataset has more
than 12 speakers, then 6 random speaker groups
are chosen for cross-validation. For IEMOCAP
and MSP-IMPROV, each session defines a speaker
group. All models are trained for 50 epochs with
the Adam optimiser (Kingma and Ba, 2017) and a
learning rate of 0.0001. The batch size used for
the Aldeneh and Latif models was 32, for the Zhao
model was 64, and for the Zhang model was 16.
Each was trained using sample weights inversely
proportional to the respective class sizes, so the
each class had equal total weight. The sample
weights were used to scale the cross-entropy loss.
The metric reported is ‘unweighted average recall’
(UAR), which is simply the mean of the per-class
recall scores. This incorporates all classes equally
even if there is a large class bias, and minimises
the effect of class distribution on the reported
accuracy, so that models can’t simply optimise for
the majority class. Each test is repeated 3 times
and averaged, except for the Zhang model, which
was only tested once, because it took too long to
train.

All models were implemented in Python using



the TensorFlow2 Keras API. Testing was run on
a machine with 64GB of RAM, an AMD Ryzen
3900X CPU, and two NVIDIA GeForce RTX 2080
Super GPUs, each with 8GB of VRAM. Each train-
ing run used only one GPU, however.

For the Zhang et al. (2019) and Latif et al.
(2019) models we use the raw time domain sig-
nals. These are clipped to a maximum length of
80,000 samples (5 seconds at 16,000 kHz), but
not padded, unlike the fixed spectrograms. For
the Zhao et al. (2019) model we input a 5 sec-
ond log-mel spectrogram with 40 mel bands calcu-
lated using a frame size of 25ms and frame shift
of 10ms. Audio is clipped/padded to exactly 5 sec-
onds. For the Aldeneh and Mower Provost (2017)
model we test three different inputs: a 5 second 240
mel band spectrogram, 240 log-mel bands without
clipping/padding, and 40 log-mel bands without
clipping/padding. The log-mel bands are variable
length sequences and are length-padded to the near-
est larger multiple of 64, before batching. This way
the models train with different sequence lengths.

5 Results

A table of results is given in Table 3 below. All
combinations of dataset and model+features were
tested. For comparison, we also report on the per-
formance of the ‘IS09’ standard feature set intro-
duced in the first INTERSPEECH emotion com-
petition (Schuller et al., 2009b). For this we use
a support vector machine (SVM) with radial ba-
sis function (RBF) kernel, with SVM parameter C
and kernel parameter γ optimised using LOS(G)O
cross-validation. We also report human accuracy
where it has either been mentioned in the corre-
sponding citation, or can be calculated from multi-
ple label annotations provided with the dataset.

6 Discussion

From the results we see that the models using raw
audio as input tend to perform worse than those us-
ing spectrogram input. There are also cases, such as
on the Portuguese dataset, where the Zhang model
performs the best of the four, and such as on the JL
corpus, where the raw audio models are better than
the fixed-size spectrogram models but worse than
the variable length log-mel models.

There are many possible reasons for this, and
due to time constraints, more thorough investiga-
tion was not able to be done. One reason is likely

2https://www.tensorflow.org/

the lack of hyperparameter tuning. Hyperparame-
ters like number of training epochs, learning rate,
batch size, and model specific hyperparameters
such as the number of convolution kernels or num-
ber of LSTM units, can have a moderate effect on
the performance of each model. These would need
to be optimised per-dataset using cross-validation,
before testing. Another possible reason is the ten-
dency for models to overfit. We found that the
raw audio models were overfitting quite badly and
achieving worse performance on the test set as a
result, even though they have a moderate number
of parameters. Regularisation techniques can help
with this, such as dropout and regularisation loss,
along with batch normalisation. Finally, while we
tried to make our models as similar as possible to
the original papers, there are likely implementa-
tion differences that negatively influence the per-
formance of our models. The design of the Zhang
model was for discrete arousal/valence prediction,
and it is likely that a slightly modified architecture
would better suit categorical emotion prediction.
The other models were also tested with slightly
different methodologies from ours, which would
influence difference in reported results.

We also see a dependence on both dataset and
features used. The Aldeneh model with 240 log-
mels tended to be better than with only 40 log-
mels, but also better than a fixed size 240 mel-band
spectrogram, but this was dependent on dataset.
It’s possible that the zero-padding and -60dB clip-
ping of the spectrograms negatively impacted the
performance. The Zhao model performs best out
of the four on the SmartKom dataset, achieving
a UAR better than chance level, but still worse
than the SVM with IS09 features. It’s possible that
in this instance the separate LSTM and convolu-
tional branches have a greater effect. Unfortunately
we were not able to test all combinations of spec-
trogram features with the Zhao model. In future
we aim to complete this, as well as compare using
spectrograms with different frame size and clipping
parameters.

Finally, the time taken to train these models
is quite long due to using full cross-validation.
An argument can be made for predefined train-
ing/validation/test sets of larger datasets, but these
are often created ad hoc and can vary between stud-
ies, so collective agreement would be needed for
using these as a common standard.

https://www.tensorflow.org/


Corpus A1 A2 A3 L N O SVM-IS09 Human
CaFE 53.8 54.0 52.1 22.3 32.3 48.0 57.2
CREMA-D 66.6 67.0 63.4 42.4 48.4 57.9 65.0 40.0
DEMoS 61.4 61.9 61.5 25.5 26.9 45.7 51.2 61.1
EMO-DB 73.2 74.6 72.7 45.2 49.7 53.7 82.1 84.3
EmoFilm 49.6 49.7 49.4 40.2 45.6 44.7 53.2 73
eNTERFACE 77.9 79.4 77.4 38.6 45.0 66.4 76.3
IEMOCAP 61.1 60.5 58.2 46.2 49.2 58.3 59.8 73.8
JL 65.8 67.8 47.9 54.0 61.2 46.6 66.2 69.1
MSP-IMPROV 47.2 47.5 46.2 35.2 38.0 48.6 52.4 77.8
Portuguese 38.3 39.0 41.5 37.4 43.3 39.9 50.0 73.2
RAVDESS 32.5 39.5 60.0 29.6 32.9 43.0 60.6 62.5
SAVEE 58.4 59.6 48.5 34.8 33.0 30.1 57.0 66.5
ShEMO 54.6 55.7 50.7 43.6 48.4 51.8 51.3
SmartKom 15.8 16.8 17.5 16.0 16.7 22.6 28.5
TESS 48.7 49.5 55.1 38.5 30.6 48.4 45.9 82

Table 3: Table of results. All values are given in UAR. A1: Aldeneh model with variable 40 log-mels. A2: Aldeneh
model with variable 240 log-mels. A3: Aldeneh model with fixed 5s 240-mel spectrogram. L: Latif model with
5s raw audio. N: Zhang model with 5s raw audio. O: Zhao model with fixed 5s 40-mel spectrogram. Human
accuracy is the average accuracy of a human rater, either tested in the relevant citation, or calculated directly from
annotations (e.g. CREMA-D).

7 Conclusion

In this paper we have presented an evaluation of
different neural network models proposed for emo-
tion recognition, and compared their performance
for discrete emotion classification on 15 publicly
available and academic datasets. We used a con-
sistent methodology across all datasets, and have
kept hyperparameters very similar across the pro-
posed models. The results show differences in the
performance of the models which sometimes de-
pends on the evaluated dataset. We also showed
that the models requiring raw audio input tended to
perform worse than the ones requiring spectrogram
input, however more testing is required, with hy-
perparameter tuning and regularisation techniques,
to determine the cause of this performance differ-
ence. In general, our work serves as a baseline for
comparison for future research.

In future, we aim to additionally test models us-
ing utterance level features as input, and compare
with non-neural network models such as SVM and
random forests. We also aim to test feature gen-
eration methods such as bag-of-audio-words and
unsupervised representation learning.
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