
Proceedings of the 24th Conference on Computational Natural Language Learning, pages 578–595
Online, November 19-20, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

578

Identifying Robust Markers of Parkinson’s Disease in Typing Behaviour
Using a CNN-LSTM Network

Neil Dhir12†, Mathias Edman1†, Álvaro Sánchez Ferro3, Tom Stafford4, Colin Bannard5

1Kamin AI, 2Alan Turing Institute, 3HM CINAC,
4University of Sheffield, 5University of Liverpool

{neil,mathias}@kamin.ai, alvarosferro@hotmail.com
t.stafford@sheffield.ac.uk, cbannard@liverpool.ac.uk

Abstract

There is urgent need for non-intrusive tests
that can detect early signs of Parkinson’s dis-
ease (PD), a debilitating neurodegenerative
disorder that affects motor control. Recent
promising research has focused on disease
markers evident in the fine-motor behaviour of
typing. Most work to date has focused solely
on the timing of keypresses without reference
to the linguistic content. In this paper we ar-
gue that the identity of the key combinations
being produced should impact how they are
handled by people with PD, and provide evi-
dence that natural language processing meth-
ods can thus be of help in identifying signs
of disease. We test the performance of a bi-
directional LSTM with convolutional features
in distinguishing people with PD from age-
matched controls typing in English and Span-
ish, both in clinics and online.1

1 Introduction

Parkinson’s disease is a neurodegenerative disease
that affects approximately 1% of people over the
age of 60 (De Lau and Breteler, 2006). Its cardinal
manifestations include bradykinesia (slowness of
movement), tremor and rigidity. These result from
the degeneration of dopaminergic neurons in the
basal ganglia (an area of the brain responsible for
action selection). A particular challenge in the treat-
ment of PD is that by the time such motor signs are
present, over 50% of neurons in the affected area of
the basal ganglia (the substantia nigra) have been
lost (Fearnley and Lees, 1991). While neuroimag-
ing can pick up on these changes (Barber et al.,
2017), such procedures are prohibitively expensive
and cannot be performed on whole populations.
There is thus an urgent need for cheap and easy-

†Equal contribution.
1Code, models and data used in this paper can be found at:

http://typingresearch.com/conll2020/

to-administer measures that can be used for the
identification of at-risk individuals.

A long-used simple motor test for PD is the al-
ternating finger tapping test (Burns and DeJong,
1960). This test involves asking a person to alter-
nately tap an index finger in two locations a set
distance apart on a surface or on a keyboard (Gio-
vannoni et al., 1999). People with PD are typically
able to perform fewer taps over a 30 second pe-
riod than people with no diagnosis. While such
measures have proved useful, they suffer from a
clear lack of specificity – slowing of movement
is also a strong predictor of other neurodegenera-
tive disorders, such as Alzeimer’s disease (Roalf
et al., 2018). Furthermore, neural degeneration is
unlikely to be detected by as coarse-grained a mea-
sure as tapping rate until the disease is relatively
advanced. If specificity and earlier detection is to
be achieved more targeted tests will be required.

There is good theoretical reason to think that
more PD-specific markers will be present in record-
ings of learned serial order behaviours, such as
making a cup of tea, driving or typing. Analysis
of the production of such frequently-performed be-
haviours, and their underlying neurobiology, often
distinguishes between habit (the automatic produc-
tion of routinised movements) and goal-directed
responses (behaviours that involve top-down plan-
ning; Dolan and Dayan 2013). There is substantial
evidence that the degeneration of the basal gan-
glia in PD primarily affects areas responsible for
automatic behaviours (Sharman et al., 2013), and
results in a shift in the balance of habitual and
goal-directed control (Hadj-Bouziane et al., 2013).
Redgrave et al. (2010) predict that people with
early-stage or prodromal PD will have a problem
initiating their automatic behaviours.

This paper focuses on the detection of markers
of PD in one such behaviour – that of typing. It
is motivated by the prediction that people with PD

http://typingresearch.com/conll2020/
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will, from very early on and potentially prodroma-
lly (before the emergence of the acute symptoms
that allow conventional diagnosis), change the way
that they type, as they lose capacity for automatic
control. Natural language processing provides us
with techniques that we can use to pick up on those
changes. As a motor behaviour, typing has been the
focus of previous work on detecting or monitoring
PD (see related work section). Some such work has
focused on coarse-grained measures such as typing
speed. These suffer from the lack of specificity
associated with tapping measures. Other promising
work has looked at more detailed timing measures.
However this has continued to ignore the identity
of the sequences being typed. Different sequences
of keys present different motor challenges due to
the position of the keys on the keyboard and the
hand used. The extent to which typing these will
be facilitated by prior automatisation depends on
the relative frequency with which they have been
typed (Behmer and Crump, 2016). We therefore
expect consideration of the content of typing to be
critical in picking up on PD-related changes.

We describe a method for using a convolutional
neural network (CNN) long short term memory
(LSTM) network to distinguish people with PD
from age-matched people with no diagnosis. One
motivation for this choice is that we want to pick
up on the fine temporal details of the sequential
data, in order to provide a measure that will be spe-
cific to PD. However the difficulty in picking up on
such subtle information is that any typing dataset
will also contain cruder information, such as the
average differences in overall timing across par-
ticipants. In order to tackle this, we normalise all
temporal variables using robust scaling – subtract-
ing each participant’s median value from all their
datapoints and dividing by their interquartile range.
We thereby require our network to pick up on more
subtle and potentially disease-specific information.

The contributions of this article are as follows:

• We introduce a new task and data type of ur-
gent clinical importance.

• We show that when we remove coarse-grained
differences between people with PD and con-
trols we are able to detect a strong (and, we
suggest, more disease-specific) signal.

• We provide evidence that adding character in-
formation to a CNN-LSTM that contains only
timing information improves performance
across datasets.

2 Related work

A simple motor test that we might consider a pre-
cursor to the use of typing is the alternating finger
tapping test (Burns and DeJong, 1960). This test
involves asking a person to alternately tap an index
finger in two locations a set distance apart on a
surface or on a keyboard (Giovannoni et al., 1999).
Noyce et al. (2014) report that the number of key
taps in 30 seconds (averaged across hands) can be
used to distinguish patients from controls, identi-
fying 50% of true positives with only 15% false
positives. Using the same measure (selecting the
worst performing limb in patients and comparing it
with the best performing limb in controls), Hasan
et al. (2019) report an AUC of 0.87.

While tapping tests are widely used they suffer
from a lack of specificity to PD. While they dis-
tinguish people with PD from control participants
with considerable success, there is good reason
to think that they will struggle to distinguish PD
from other neurodegenerative disorders. Roalf et al.
(2018) report an AUC of 0.68 in distinguishing peo-
ple with PD from people with Alzheimer’s disease
using a single tapping test.

In pursuit of an easier-to-gather alternative to
finger-tapping tests, Austin et al. (2011) examine
the interkey intervals (IKIs) of people typing user-
names while logging-in to a website. They found
a moderate-to-strong correlation between the par-
ticipants’ median IKIs during typing and the mean
time between taps finger taps in a 10 second pe-
riod. Building on this, Giancardo et al. (2016) used
key-hold times during transcription typing in order
to distinguish 42 people with recently-diagnosed
PD (off medication) from 43 controls. Properties
of the distribution of hold times for each patient
was used in an ε-support regression to generate a
unique score. In a two-fold cross-validation this
achieved a combined AUC of 0.81, comparable to
an AUC of 0.75 achieved with an alternating finger
tapping test on the same sample. Adams (2017)
logged key events during regular computer use over
an extended period by 20 patients and 33 controls.
Information about hold times and IKIs, including
measures of variance and of asymmetry between
hands was used in a classification ensemble of eight
different classification methods. This ensemble,
trained on the new data, achieved an AUC of 0.97
on the 85 participants from Giancardo et al. (2016).

All of the work described above has represented
typing behaviour with summary statistics rather
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than as sequences. Furthermore they have analysed
the timing of keystrokes without considering what
is being typed. The one exception to this latter point
is the work of Bannard et al. (2019) who look at the
accuracy of typing while copying text using engi-
neered features. They predict that people with PD,
while making more errors in general, should make
fewer ‘habit slips’. This is when a well-learned
sequence of key presses is produced in an inappro-
priate context, such as typing t-h-i-n-g when
the intended word is t-h-i-n because -i-n-g
is a frequent sequence. They find that is the case,
and that adding this information to a generalised
additive regression model predicting disease pro-
gression gives an improvement in fit relative to a
model just including timing information.

3 Datasets

We perform analyses of the following three
datasets, representing two different usage contexts
(recruited and tested in a clinic, and recruited and
tested remotely online) and two different languages:
English and Spanish. All participants were tested
via a browser-based app which presents a series of
sentences to be copy-typed, and collects the iden-
tity and timing of each key-press. All datasets con-
tain information about key down timing (when the
typist pressed each key), and the online-recruited
dataset additionally contains information about
about key up timing (when they released each key).
Summary statistics are found in table 1.

Table 1: Summary statistics of the datasets under inves-
tigation. Here N+

p refers to the number of PD patients
(unmedicated and medicated) with N−p referring to the
number of control participants. N+

s is the number of
sentences typed by PD positive patients.

Collection Language N+
p /N

−
p N+

s /N
−
s

In-clinic English 16/25 426/739
In-clinic Spanish 11/9 310/265
Online English 99/130 1415/1862

3.1 In-clinic English copy-typing
Sixteen patients and 25 age-matched controls were
recruited and tested during a visit to a hospital
clinic in the UK (see Bannard et al. 2019). Pa-
tients were recruited to be in the early stages of PD
(Hoehn-Yahr stages 0− 2.5, UPDRS < 20 in the
medicated state), with normal cognitive function
and < 5 years from a confirmed diagnosis. All pa-
tients were asked to type 15 sentences, all of which

were taken from English-language Wikipedia arti-
cles, and ranged from 10 to 25 words (average of
µ = 19 words) in length. The experimental pro-
tocol was approved by NHS Health Research Au-
thority (no. STH18662TK). All participants were
tested twice – once before taking their morning
medication and once after for patients. On a five
point self assessment of their typing ability, rang-
ing from none to secretarial proficiency, control
participants reported an average 3.1 (4% no expe-
rience) and patients reported an average 2.7 (12%
no experience).

3.2 In-clinic Spanish copy-typing
Eleven patients and nine age-matched controls
were tested during a visit to a hospital clinic in
Spain (see Bannard et al. 2019). The inclusion
criteria for patients was the same as for the clinic-
tested English sample. All patients were asked to
type 30 sentences, all of which were taken from
Spanish language Wikipedia articles, and ranged
from 12 to 25 words (average of µ = 18 words) in
length. The experimental protocol was approved by
HM Hospitales, Spain (no. 14.11.710-GHM). Par-
ticipants were tested only once. Six of the patients
were tested prior to taking their morning medica-
tion and five after. On a five point self assessment
of their typing ability, ranging from none to sec-
retarial proficiency, control participants reported
an average 3.9 (0 had no experience) and patients
reported an average 3.7 (0 had no experience).

3.3 Online English copy-typing
For this newly-collected dataset, 130 controls and
100 people with PD were recruited and tested on-
line. The people with PD were recruited via the re-
cruitment service of a major US-based Parkinson’s
charity. The control participants were recruited
via a participant recruitment service. All partici-
pants were aged between 50 and 90 and identified
as resident in the US. Patients were recruited to be
self-reportedly in the early stages of PD (Hoehn-
Yahr stages 0 − 3 as indicated by responses to a
questionnaire), and within five years of a diagnosis.
The sentences typed were the same as those typed
by the in-clinic English sample. The experimental
protocol was approved by the University of Liv-
erpool Ethics Committee (no. 4572). Of the 100
people with PD, 24 reported that they either do not
take medication or had not taken any medication
yet that day. On a five point self assessment of
their typing ability, ranging from novice to expert,
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control participants reported an average 2.6 (13%
novices), medicated people with PD an average 3
(4% novices), and unmedicated people with PD an
average 3.1 (8% novices). Note that in contrast
to what we see in the clinic-collected datasets, the
people with PD here rate their typing ability more
highly than the controls. Unlike the in-clinic sam-
ples, this dataset contains information about both
key down timing and key up timing.

4 Method

We implement a neural language model (NLM)
which receives two different types of information
in variety of combinations: (1) Character iden-
tity information: one-hot encoded character se-
quences; continuous bag-of-words model (Mikolov
et al., 2013) encoded character sequences; (2) Key-
press timing information: inter-key interval (IKI),
time elapsed between consecutive key down events;
hold-time, time elapsed between key down and key
up events for a specific character; pause, time dif-
ference between key up and key down events for
consecutive key presses. The temporal information
is shown pictorially in fig. 1.

Key down

· · · · · ·

Key up Key down

Hold-time Pause

Inter-key interval

Time

Figure 1: Pictorial description of the compression and
release of keyboard keys and the temporal information
that results from those actions.

Different timing information is available in dif-
ferent datasets as reported in §3. We adapt our data
representation accordingly. We are interested here
in the value of character information over timing,
and examine its utility by building models with just
timing and then with timing and character.

Our approach is inspired by the recent work of
Kim (2014); Kim et al. (2016); Zhang et al. (2015).
The main component is the temporal convolutional
module (Zhang et al., 2015), which computes a
one-dimensional (1D) convolution over characters.
Convolutional neural networks (CNN) employ lay-
ers with convolving filters (Kim, 2014) which are
applied to local features (derived in our case from
the above information list of textual information).

Diverging from their approach, we use a smaller
number of convolutional layers followed by a bidi-
rectional long short-term memory (LSTM) layer
(Schuster and Paliwal, 1997). As such, our architec-
ture is able to extract both local and global features
as described in the work by Zhou et al. (2015) who
utilise a similar architecture. For a detailed de-
scription of the model architecture see fig. 2 and
appendix B.

4.1 Data representation

Our model takes sentences (as sequence of charac-
ters and/or key press timing information) as input.
Before introducing the construction process of sen-
tence sequences we shall give a detailed description
of its elements.

First, for the sake of comparison, we conduct
experiments with two different character-identity
representations. The default representation is one-
hot encoding of characters where each unique char-
acter is associated with an index i such that the
representation of a character is a binary vector c
where ci = 1 and cj = 0, ∀j 6= i. We also evaluate
using a continuous vector representation of char-
acters, which is an adaptation of the commonly-
used continuous bag-of-words (CBOW) embed-
ding (Mikolov et al., 2013). While for word em-
beddings the CBOW algorithm learns the represen-
tation by predicting words from the surrounding
context, our character level adaptation utilises the
same algorithm but for the task of predicting char-
acters from their context. We learn the character
embeddings from a corpus of 100,000 Wikipedia
articles2, such that we obtain a character dictionary
where each character is associated with a unique
continuous vector representation of 50 dimensions.

The datasets in §3 contain, in addition to the
characters used, a timestamp for each character
key-down press td. However only for the online
English copy-typing dataset in §3.3 are timestamps
for key-up events denoted tup, available. We define
the order of a character sequence as the order of
the associated key-down timestamps indexed by k
such that tdk−1 ≤ tdk, ∀k ∈ 1, . . . ,K. For most
end-to-end deep learning one typically omits fea-
ture engineering and let the networks learn feature
representations from large datasets. Here however
we are dealing with relatively small (in the con-
text of deep learning) datasets. In particular the

2https://blog.lateral.io/2015/06/
the-unknown-perils-of-mining-wikipedia/

https://blog.lateral.io/2015/06/the-unknown-perils-of-mining-wikipedia/
https://blog.lateral.io/2015/06/the-unknown-perils-of-mining-wikipedia/
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Figure 2: Architecture of the neural language model applied to the example word: elephant. On the left is
shown the encoding matrix Xn where each row, as shown, corresponds to a character. From left to right, we see
the elements of the NLM including convolutional layers, a bi-directional LSTM layer and finally a fully connected
output layer with Softmax activation.

In-clinic English and Spanish datasets contain just
1165 and 575 sentences respectively (see table 1 for
further details). To aid learning we thus engineer a
set of three features from the key press timestamps.

As discussed in section §1 and §2 we expect
the effects of bradykinesia among people with PD
(PwPD) to result in differences in the average tim-
ings of keystrokes. However the goal of our experi-
ments is not to maximise performance on any one
dataset, but rather to find evidence of more robust
PD-specific typing characteristics that can help im-
prove the specificity of PD detection systems. To
this end we attempt to mute the coarse-grained,
between-group differences in our data by employ-
ing participant-level standardisation of all timing
related features. This is done by computing the me-
dian and interquartile range of all key press timing
features for each participant, and then robustly scal-
ing their corresponding sentences by subtracting
the median and dividing by the interquartile range.

Finally a sentence is represented as

xn
1:K = x1 ⊕ x2 ⊕ · · · ⊕ xk ⊕ · · · ⊕ xK (1)

where ⊕ is the concatenation operator, where n
indexes each sentence, k indexes each character
within each sentence and x is the character iden-
tity encoding vector (one-hot or CBOW) appended
with the timing features associated with the key
press of that character keypress. The longest sen-
tence in any dataset has length Kmax, and any en-
coded sentence Kn < Kmax, ∀n ∈ {1, . . . , N}
is padded with |Kmax − Kn| all-zero vectors so
that all encoded sentences Xn, have the same size:
Xn ∈ [0, 1]Kmax×m.

4.2 Text pre-processing
Here we will briefly discuss the most important
preprocessing steps. The complete procedure, with
detailed description, can be found in appendix A.
First, following the recommendation of Zhang et al.
(2015), all sentences are converted to lower-case.
Second, in this study we partially ‘implement’ the
error correction employed by the participant. While
we are interested in the errors that participants
make, and indeed Bannard et al. (2019) show that
the error types made can be indicative of disease
status, we assume that the process by which they
notice and correct those errors will be idiosyncratic
and not informative regarding our classification
goals. Consider the following example sentence,
taken from the dataset described in §3.1:

Books include Penguin
Island, a satire on the
F7Dreyfus afffair7777air.

Here the user has employed five corrective actions
(backspaces) which we indicate with 7. For each
sentence we implement and then delete all but one
of these backspace actions leaving only the first
errorfully pressed key (the first f in the fff) and
a single backspace symbol. Thus the text becomes:

Books include Penguin
Island, a satire on the
F7Dreyfus afff7air.

The single correction character 7 is left in the text
to be used as indicators for the NLM in the down-
stream classification task. When only a single cor-
rective action occurs it is simply left unamended as
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shown above. For an example see fig. 5 where the
correction character passed to the NLM is ω.

5 Experimental setup

The purpose of our experiments is to understand
the effect of including character information in
the classification of PD patients, when employ-
ing copy-typing as a diagnosis medium. Using the
model discussed in §4 we conduct multiple binary-
classification experiments to distinguish sentences
written by people with PD (PwPD), from those writ-
ten by age-matched controls. The same exercise is
undertaken to classify participants themselves.

We evaluate performance by measuring the area
under the receiver operating characteristic curve
(AUC). This is a common approach when dealing
with a two-class prediction problem (binary classi-
fication), in which the outcomes are labelled either
as positive (PwPD) or negative (control). The AUC
scores reported in §6 are calculated on the test sets.
For sentence classification we use participant level
five-fold cross-validation ensuring that sentences
from any one participant do not exist in both the
train and test set. We report the mean and standard
deviation over folds. For participant classification
we aggregate the sentence classification probabil-
ities using logistic regression with leave-one-out
cross validation and employ bootstrapping to re-
port mean and standard deviation. The model is
applied to the datasets described in detail in §3 with
summary statistics given in table 1.

We conduct hyperparameter search, model in-
trospection and ablation studies. Each dataset is
preprocessed according to the procedures outlined
in §4.1 and §4.2, and split into train, test and valida-
tion sets. This partitioning reduces the number of
samples which can be used for learning the model.
Our datasets are small compared to those typically
used for deep learning. We deal with this in multi-
ple ways, as detailed in appendix C.

6 Results

Our main experiments, as outlined above, involve
the use of timing information that has been robustly
scaled at the participant level in order to remove
coarse-grained differences between groups. To aid
understanding of the data, however, we will first
report the performance of a classifier that uses the
information that we have removed - the median
and interquartile range of keypresses - as the sole
features. The AUCs for logistic regressions using

these features as predictors can be seen in table 3.

Table 3: Results from logistic regression models with
median and interquartile range for interkey intervals as
features. We report mean AUC (and SDs) for both
medicated PwPD vs. controls in the On columns and
unmedicated PwPD vs. controls in the Off column.
The Spanish PwPD are mixed in medication status but
treated as a single group due to the small sample size.

Sentence classification

Dataset Off On

In-clinic English 0.76 (0.14) 0.76 (0.11)
Online English 0.64 (0.11) 0.53 (0.04)

In-clinic Spanish 0.91 (0.13) N/A

Participant classification

Dataset Off On

In-clinic English 0.77 (0.08) 0.76 (0.08)
Online English 0.56 (0.07) 0.56 (0.04)

In-clinic Spanish 0.91 (0.09) N/A

As can be seen the performance of these clas-
sifiers is good in some cases, particularly for the
in-clinic Spanish dataset. However performance is
variable, being poorest for the online dataset. This
pattern of results is to be expected and our goal here
is not to surpass their performance but to see how
we can perform with more PD-specific features.
The results for our main models, using the robust-
scaled data, are reported in table 2 and fig. 3. For
all datasets, the addition of character information
gives an improvement in performance over timing-
only models. The dataset on which the simple IKI
summary-statistic models reported above do worst
(the online English dataset) is the dataset on which
the best performance is reported here. This is likely
because it is the largest dataset and thus the best
suited to deep learning methods. This suggests that
performance improvements will be possible for the
network models with larger datasets.

6.1 Model interpretation

Deep learning models are often criticised for being
black box machines and the interpretation of deep
learning techniques is a growing area of interest
(Buhrmester et al., 2019). We apply one such tech-
nique – Gradient-weighted Class Activation Map-
ping (Grad-CAM; Selvaraju et al. 2017) – to our
model. Grad-CAM is commonly used to analyse
how CNN-based computer vision models make de-
cisions and highlight regions in the image that the
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Table 2: Results from NLM experiments showing improved performance for inclusion of character identity in-
formation across all datasets. We report mean AUC (and SDs) for both medicated PwPD vs. controls in the On
columns and unmedicated PwPD vs. controls in the Off column. The Spanish PwPD are mixed in medication
status but treated as a single group due to the small sample size.

Sentence classification Participant classification

Dataset Off On Off On

In-clinic English
Time Only 0.56 (0.09) 0.59 (0.07) 0.47 (0.09) 0.58 (0.09)
Time and Character (one-hot) 0.64 (0.03) 0.66 (0.07) 0.65 (0.09) 0.80 (0.07)
Time and Character (CBOW) 0.62 (0.05) 0.65 (0.11) 0.64 (0.09) 0.70 (0.08)

Online English
Time Only 0.68 (0.16) 0.64 (0.10) 0.73 (0.06) 0.65 (0.04)
Time and Character (one-hot) 0.78 (0.14) 0.70 (0.04) 0.79 (0.06) 0.70 (0.04)
Time and Character (CBOW) 0.77 (0.13) 0.67 (0.08) 0.84 (0.05) 0.75 (0.04)

In-clinic Spanish
Time Only 0.51 (0.13) N/A 0.68 (0.13) N/A
Time and Character (one-hot) 0.68 (0.11) N/A 0.77 (0.12) N/A
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Figure 3: ROC curves for sentence-level (a) and partic-
ipant (b) classification for the (one-hot) online English
Off -medication datasets are included.

model deems important. We repurpose Grad-CAM
to analyse which part of a sentence a CNN-based
NLM deems important for classification. For illus-
tration we have included an example visualisation
where we have applied our model to a sentiment
analysis task where Grad-CAM highlights the parts
of the sentence that indicate it should be classified
as having positive sentiment – see fig. 4. We use
the same approach to produce visualisations that
highlight the parts of a sentence that our model uses
to make a distinction between PwPD and Controls.

t h e m i c i s g r e a t
0

1

Figure 4: Example of Grad-CAM visualisation where
we apply our network to a sentiment analysis task. Here
we see the Grad-CAM highlighting the word “great” as
important for determining that the sentence has positive
sentiment.

Grad-CAM plots for example PwPD and con-
trol participants from the online English dataset
for each of our sentences can be found in ap-
pendix D. These images show the gradients of
the second and final convolutional layer for the
positive diagnosis (“typist has PD”) classifica-
tion class. Grad-CAM visualisations for all par-
ticipants and sentences, all convolutional layers
and all classification classes, can be accessed at
http://typingresearch.com/conll2020/. An
illustrative two-word excerpt from one of our sen-
tences typed by a single PwPD can be seen in figure
fig. 5. The first word different (typed with a
single corrected error on the second character by
this typist) is mostly blue indicating that there is
little in the sequence of keystrokes that the model
takes as indicating that it was typed by a PwPD,
while the second word pronunciation spans
more colours indicating that it contains keystrokes
that are indicative of its being typed by a PwPD.

Looking across participants we see that certain
parts of the sentences are consistently more impor-
tant for classification than others, as indicated by
their having gradients that diverge between PwPD
and controls. The first thing that this illustrates is
that key identity matters, confirming the conclu-
sions of our ablation study. It also allows us to
look at what properties the most discriminative key
sequences have in common. While no single prop-
erty can be identified as the clearest marker of PD,
we can identify suggestive patterns that are useful
in understanding typing in this population. This

http://typingresearch.com/conll2020/
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Figure 5: Grad-CAM visualisation of our network applied to a sentence typed by one participant, here ω stands in
for a correction to the text. The colours represent the importance of the different parts of the string for determining
that the typist has PD. The bottom numbers are the inter-key intervals between typed characters.
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Figure 6: Plot showing the mean and standard devia-
tions for the participant-scaled key hold and inter-key
intervals for each character in the word. The black (left)
and red (right) colouring indicates which hand typed
that character.

exploration serves as an illustration of how model
interpretation can provide potential mechanistic hy-
potheses to be tested in future work.

One pattern that the network seems to pick up
on can be seen in fig. 5 by observing the changes in
gradients for the keys with respect to the interkey
intervals seen below the sequence. There is a se-
quence of keys with high gradients at the end of the
first word and beginning of the second that have
relatively low IKIs. A notable property of this sub-
sequence is that each of the keys is typically typed
with a different hand from the previous key. Fig-
ure 6 shows the mean and standard deviations for
(robustly-scaled) key hold times and inter-key inter-
vals for the word pronunciation. The letters
are colour coded according to whether the character
is typed with the same hand (red) as the preceding
character or the other hand (black). This is based
on the approximation that the leftmost 5 columns
of the keyboard (from Q, A and Z to T, G and B)
are typed with the left hand and the rightmost 5
columns are typed with the right (Feit et al., 2016).
Moving between keys when switching hands is
fairly straightforward to perform while switching
between keys with the same hand requires consider-
able agility. We observe in our data that the typing
speed of PwPD is differentially affected by this
more than that of the controls. The network picks
up on this and has a tendency toward higher gradi-
ents at between-hand transitions where the typing
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Figure 7: Key transitions for a single example sentence
plotted along three dimensions. The y−axis indicates
the discriminative ability of each key transition, indi-
cated by the t-value for a comparison of the gradients
for that keypress in patients and controls, such that
a high value indicates that patients have consistently
higher gradients than controls. The x−axis represents
the extent to which the distribution of scaled IKIs for
each keystroke are differ between patients and controls,
again using a t−test (so that a high value indicates
that patients have more consistently higher scaled IKIs
than controls). The circles containing bigrams that in-
volve a within-hand transition are shown in red and the
circles containing across-hand-transition bigrams are
shown in blue. The bigrams that have highest values
on the y scale (that have gradients that are most con-
sistently higher in patients in controls) are those that
have a lower a value on the x−scale (they are associ-
ated with a relative dip in IKI in patients that is consis-
tently more pronounced than anything seen in patients)
and are shown in blue (involve a between key transi-
tion). This is apparent from the high ratio of blue to
red circles in the top left quadrant and indicates that
the model takes a dip in inter-key intervals for between-
hand-transition bigrams as a marker of PD.

speed has a relative dip for a participant. Figure 7
provides further illustration of this widespread pat-
tern.



586

A second property of key sequences that ap-
pears to be important is their transitional probabil-
ity. There is good reason to think that PwPD will
have difficulty deploying learned habits in typing.
We know that the timing of keystrokes in typists is
sensitive to the transitional probabilities between
keys (Behmer and Crump, 2016), and we can take
this as a marker of acquired habits. We would ex-
pect this relationship to be altered in PwPD. Mixed
effects modelling with by-participant random in-
tercepts and slopes confirms that this is the case
in our data with an increase of a 26% of an IKI
interquartile range for each unit of standard devi-
ation in bigram surprisal (inverse log probability
of each character given the previous character) for
controls, and a significant 3% lower increase in
PwPD (p < 0.01) across all participants. This
indicates a reduced sensitivity to decreases in key
transition probabilities in pwPD relative to controls.
It is also the case that gradients are significantly
higher for keys with high surprisal. Figure 8 dis-
plays the three-way relationship between gradient
divergence, IKI divergence and surprisal and sug-
gests that the model is picking up on the reduced
effect of transitional probabilities on interkey inter-
vals for PwPD relative to controls.
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Figure 8: Contour – red (low) to yellow (high) – of
gradient divergence (t-value for PwPD-Control com-
parison) for different values of scaled IKI divergence
(t-value for PwPD-Control comparison again) and bi-
gram surprisal. Gradient divergence is greatest for key
transitions with high surprisal for which PwPD have
low scaled IKI relative to controls. The model appears
to pick up on the dampening of surprisal-related IKI
spikes for PwPD relative to controls.

7 Conclusion

In this paper we have provided evidence that nat-
ural language processing techniques and in partic-
ular CNN-LSTM networks can identify markers
of Parkinson’s disease in logged typing behaviour.
Critically there is good reason to think that the
markers identified will have high specificity with
regards to Parkinson’s disease. While simple motor
tests like the finger tapping test, and summary tim-
ing statistics from typing data, are widely used to
distinguish PwPD from people without the disease,
they rely on disease signs that PD has in common
with other disorders - namely general slowing. In
this work we first remove this disease sign from
the data and then use a CNN-LSTM to pick up on
more subtle changes in performance. We report
very promising performance using this approach.
We further report on an analysis of the gradients in
our model which suggests that it is picking up on
plausible effects of PD seen in the data.

Previous work has sought to distinguish PwPD
from controls by observing how rapidly and consis-
tently they press keys when typing. However, such
work begins by discarding potentially valuable in-
formation - the identity of the keys pressed. We
found that including key identify in our data/model
provided a performance improvement relative to
timing-only models. We found an improvement
in performance (increased AUC) in identifying pa-
tients among participants tested in clinics in both
English and Spanish. Furthermore we found a sub-
stantial leap in performance on the more difficult
task of discriminating PD patients from controls in
a new large dataset recruited and tested online.

These results suggest that NLP techniques al-
lows us to identify theoretically-motivated markers
of PD (Redgrave et al., 2010) in typing data. These
incorporate both speed and character information,
and so may be more robust than currently-used
markers. Future work will of course require that
we test this directly, by collecting typing data from
people with other neurological disorders and using
these markers for multi-class classification. This
work is only the tip of the iceberg in terms of the
contribution that NLP can make to the task of de-
tecting signs of Parkinson’s disease, and potentially
other movement disorders, in typing data.
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A Preprocessing copy-typing data

In this section we outline the detailed steps that
were taken in the preparation of the data for this
study. As noted in the body, the datasets under
consideration are those in table 1 which reproduce
here for completeness.

Collection Language N+
p /N

−
p N+

s /N
−
s

In-clinic English 16/25 426/739
In-clinic Spanish 11/9 310/265
Online English 99/130 1415/1862

The following data-cleaning and data-wrangling
steps were taken, to prepare the data for preprocess-
ing:

1. Remove duplicate responses.

2. Calculate Levenshtein distance (edit distance)
and remove sentences which have a measured
value3 above 75. This is done on the typed
sentences (i.e. the ones seen by the user during
the experiment, not the concatenated logged
keys).

3. Remove all sentences where participants have
employed ← , → , ↑ and ↓ keys. As
the error-corrective behaviour becomes too-
complex with their inclusion, they were re-
moved to simplify the problem space.

4. Replace Space (spacebar) with a blank key to
homogenise the dataset.

5. Make all sentences lower-case (to facilitate
better inference in the modelling stage) – see
(Zhang et al., 2015).

6. To create a homogeneous key corpus for all
participants, the following keys (all were ex-
tracted from the dataset itself) were mapped
to <unk>:

• ContextMenu

• Delete

• End

• Enter

• F11

• F16

• \n

3A cut-off value was selected by inspection, and it was
found that any sentence which had a value below this was not
informative enough to warrant inclusion.

• Home

• Insert

• MediaPreviousTrack

• None

• NumLock

• PageDown

• Process

• Unidentified

This is necessary because all participants took
part in the data collection, used their own per-
sonal computer, and thus by extension their
own keyboard. We use a US English keyboard
which has a grid size of 5× 14.

7. Remaining keys with a character length of
more than one, are mapped to Greek letters
so as to not corrupt the character encoding
downstream in the NLM:

• backspace → α

• shift → β

• control → γ

• capslock → δ

• meta → ε

• tab → ζ

• alt → η

8. We set an option which allows for the shift

key to be completely dropped. We do this
owing to its use for capitalising letters. As
this is not of interest to us in this study we
typically remove it.

9. Hold-time and inter-key interval outliers are
removed and replaced with the first moment
of a kernel density estimate of those timings,
for all sentences typed by a given participant.

10. Backspace implementation is the next step, as
described in §4.2.
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B Model architecture

Table 4: Detailed description of NLM architecture

Layer Details

1D Convolution

#filters 16
filter size 3
stride 1
L2 regularisation 1e-6
Activation ReLU

Dropout probability 0.5

1D Convolution

#filters 8
filter size 3
stride 1
L2 regularisation 1e-6
Activation ReLU

Dropout probability 0.5

Bidirectional LSTM
#hidden units 64
Activation tanh

Fully connected
input size 64
output size 2
Activation Softmax

C Model training

To counter act over-fitting we use an array of
standard techniques including dropout (Srivas-
tava et al., 2014), weight regularisation and
early stopping(Goodfellow et al., 2016, §7).
Additionally we employ a task specific training
schedule to aid feature learning in the convolu-
tional layers. We first split our sentences into
word pairs such that we effectively increase the
number of samples, e.g. Books include
Penguin Island...→[Books include,
Penguin Island,...]. Given that the con-
volutional layers operate locally on the sentence
we can then pre-train the filters on this augmented
dataset in a more stochastic optimisation process.
We then use the standard protocol (Chollet,
2017, §5.3) for transfer learning by freezing the
convolutional filter weights before training ensues
on the sentence datasets until performance on the
validation set stops improving. Finally we unlock
the convolutional filters and re-start training on the
sentence dataset with a lower learning-rate and
larger batch size.

The models are trained via Adam optimisation
(Kingma and Ba, 2014) over shuffled mini-batches

with early stopping terminating training if valida-
tion loss does not improve for 16 epochs. The
initial learning rate is set to 0.001 and is decreased
by a factor 0.5 if the validation loss does not im-
prove for 10 epochs. We use a batch size of 16 for
the word-pair convolutional filter pre-training and
the first round of training on the sentence datasets,
for second tuning round we increase the batch size
to 32 and start with a learning rate of 10−4. For
regularisation we use dropout with probability 0.5
on and L2 regularisation with factor 10−6 on all
convolutional layers.

D Additional Grad-CAM visualisations

Shown in this section are additional examples of
the 1D Grad-CAM, applied to all sentences, with
positive and negative examples shown for each in
the pages overleaf. The gradient and timing visu-
alisations (the Grad-CAMs) can be understood by
consulting the legend in fig. 9.

Character

Gradient intensity

Inter-key interval

Hold time
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Figure 9: Grad-CAM legend. The left panel contains
the keys and the respective magnitudes they measure.
The right panel contains a small example of the 1D
Grad-CAM applied to the word consonant.

Additional Grad-CAM figures are shown over-
leaf.
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