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Abstract

Simultaneously modeling source code
and natural language has many excit-
ing applications in automated software
development and understanding. Pur-
suant to achieving such technology, we
introduce PYMT5, the PYTHON method
text-to-text transfer transformer, which is
trained to translate between all pairs of
PYTHON method feature combinations: a
single model that can both predict whole
methods from natural language documen-
tation strings (docstrings) and summarize
code into docstrings of any common style.
We present an analysis and modeling ef-
fort of a large-scale parallel corpus of 26
million PYTHON methods and 7.7 mil-
lion method-docstring pairs, demonstrat-
ing that for docstring and method gen-
eration, PYMT5 outperforms similarly-
sized auto-regressive language models
(GPT2) which were English pre-trained
or randomly initialized. On the CODE-
SEARCHNET test set, our best model pre-
dicts 92.1% syntactically correct method
bodies, achieved a BLEU score of 8.59 for
method generation and 16.3 for docstring
∗Corresponding author
†Work done during a Microsoft internship

generation (summarization), and achieved
a ROUGE-L F-score of 24.8 for method
generation and 36.7 for docstring genera-
tion.

1 Introduction

Software is a keystone of modern society,
touching billions of people through services
and devices daily. Writing and documenting
the source code of this software are challeng-
ing and labor-intensive tasks; software devel-
opers need to repeatedly refer to online doc-
umentation resources in order to understand
existing code bases to make progress. Devel-
oper productivity can be improved by the pres-
ence of source code documentation and a de-
velopment environment featuring intelligent,
machine-learning-based code completion and
analysis tools.

Recent progress in natural language process-
ing (NLP), especially encoder/decoder-based
transformer models (Vaswani et al., 2017)
and pre-training (Radford et al., 2018; Lewis
et al., 2019), has led to state-of-the-art per-
formance on language modeling, classifica-
tion (Devlin et al., 2018), translation (Raffel
et al., 2019), summarization (Liu and Lap-
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ata, 2019), grammar correction (Bryant et al.,
2017), entity recognition, dialogue genera-
tion (Budzianowski and Vulić, 2019), and
more. Along with these quantitative advances
have come deeper understanding of the learned
hidden representations which power transform-
ers (Kovaleva et al., 2019; Voita et al., 2019;
Clark et al., 2019; Ethayarajh, 2019). While
they are arguably not ‘natural,’ programming
languages are increasingly becoming model-
ing playgrounds for NLP modeling. Since
these languages by definition have a gram-
mar, syntax, and known relationships between
entities, they offer enticing opportunities for
an even deeper probing of NLP models and
tasks. Beyond theoretical importance, many
NLP tasks have practical utility in software
development environments: language model-
ing or generation can be used for code com-
pletion (Raychev et al., 2014; Bruch et al.,
2009; Svyatkovskiy et al., 2019, 2020), transla-
tion/summarization to generate documentation
or natural language summaries (Moreno et al.,
2013; Scalabrino et al., 2017; Wan et al., 2018;
Alon et al., 2018) or even summarize a set of
code changes (Moreno et al., 2014), transla-
tion and grammar error correction to patch and
detect bugs (Zhai et al., 2019), and joint em-
bedding of code and natural language for code
search (Husain et al., 2019; Gu et al., 2018).

In this work we focus on jointly modeling
both source code (PYTHON) and concomitant
natural language documentation (docstrings)
with transformers, through the study of dual
tasks: generating method code bodies from
signatures and docstrings, and generating doc-
strings from signatures and method code bod-
ies. While previous work (Allamanis et al.,
2015; Yin and Neubig, 2017) has leveraged the
grammar of code to extract features like the Ab-
stract Syntax Tree for modeling (treating code
and natural language as separate modalities),
we follow examples like Barone and Sennrich

(2017) and treat PYTHON and its docstrings
as fundamentally no different than other ‘natu-
ral’ languages, representing both source code
and natural language docstrings as sequences
of tokens sharing the same vocabulary. Here
we present a multi-mode translation method
resulting in PYMT5, the PYTHON method
text-to-text transfer transformer (inspired by
the text-to-text transfer transformer T5 (Raffel
et al., 2019)). Our single model can both learn
code/language generation and understand the
relationships between them.

The paper is organized as follows: we
begin in sec. 2 by presenting examples of
the performance of our novel multi-mode
PYMT5 —the PYTHON method text-to-text
transfer transformer model—which we trained
to translate between all pairs of combinations
of method signatures, docstrings, and bod-
ies which do not have the same feature in
both the source and target. In sec. 2.1 we de-
scribe our training data and the pre-processing
steps for source code and natural language
we followed, and compared it to existing par-
allel docstring-method corpora like CODE-
SEARCHNET (CSN)(Husain et al., 2019) and
that presented by Barone et al (Barone and Sen-
nrich, 2017). In sec.2.2 we explain our BART-
like (Lewis et al., 2019) pre-training scheme,
demonstrating a 25× speed-up in training time
for docstring generation. Next, in sec. 2.3 we
analyze and classify PYTHON docstrings, en-
abling style-conditioned docstring generation
in PYMT5. In sections 3 and 4, we discuss
PYMT5 results on method generation and doc-
string generation respectively and compare it
to two GPT2 models randomly initialized and
pre-trained on English.

2 Multi-mode training

Figure 1 shows examples of inputs and outputs
of our model PYMT5 for 3 example tasks:
(top, blue) predicting a body from a method
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Figure 1: Real examples of PYMT5 performing method generation using combinations of signatures
and docstrings. A leading comment in the input sequence instructs the model to output a particular
combination of features, e.g. ‘# target signature and body’ instructs PYMT5 to predict
both a signature and body.

PYMT5

Figure 2: PYMT5 performing docstring generation on an example method, showing the output when the
target prefix indicates one line (top, blue) and Numpydoc docstring (bottom, red) styles.

signature, (middle, red) predicting a whole
method from a natural language docstring,
and (bottom, green) predicting a body from
a signature and docstring. Note that the com-
ment ‘# target <specification>’ in-
structs the model to choose a particular form
of output. Further note that PYMT5 correctly
learns to interpret natural language: it inter-
prets ‘even’ as being related to ‘(example
%2) == 0’, and ‘greater than 1000’
as ‘number > 1000’. The model also pro-
duces syntactically correct code (as we will
discuss later, we never show the model syntac-
tically incorrect code), and correctly infers the
types of ‘lst’ and ‘numbers’ to be iterables

containing numbers.

PYMT5 can also be prompted with source
code to produce a docstring summary in
various styles. Figure 2 shows the model
prompted with one of the methods generated
by PYMT5 in Fig. 1 (top, blue), in both a
‘one line’ (top, blue) style and a ‘Numpydoc’
(bottom, red) style. It infers the intent from the
signature name and code, and even infers that
type of the argument is a list and return type
int. It produces the same terse one sentence
summary of the function in both cases.

In order to teach PYMT5 to maximally re-
late the separate method features (signatures,
docstrings, bodies), we trained it to translate
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between all pairs of feature combinations in
which the same feature does not appear in both
the source and target. This scheme is also ad-
vantageous as our corpus is unbalanced, with
only 1/5 methods featuring docstrings, and so
the model can learn to leverage all the features
whether they are present or not. Additionally, it
has been shown that code is more ‘predictable’
than natural language (Hindle et al., 2012). If
the method and argument names are a domi-
nating signal due to their relatively rigid struc-
ture, the model may learn to ignore the content
of docstrings. This multi-mode method over-
comes that by training the model to generate
method bodies from docstrings alone. See the
appendix for a more detailed description of the
multi-mode training scheme.

2.1 Dataset

Our data consists of 118k GITHUB reposito-
ries, which includes all public repositories la-
belled as containing primarily PYTHON source
code, featuring at least 10 stars, and which
have had a commit in the past 5 years. We
successfully cloned 112k of these repositories,
extracting 5.3 million PYTHON files from the
default HEAD state of each repository. We then
removed literal duplicate files, resulting in 2.3
million unique files, but did not remove finer-
grained clones. After removing license from
the files, the literal contents were used in the
pre-training step, comprising about 27GB of
raw text.

In order to extract method-level informa-
tion for fine-tuning, we used the python3.7
standard library ast to produce the file-
level Abstract Syntax Tree (AST) for each
PYTHON file, extracting every individual and
class method. For each file which failed to
parse, we used 2to3 and autopep8 to over-
come the issue of different styles and white
space or tab conventions, successfully parsing
97.3% of the 2.3 million unique PYTHON files.

We used the PYTHON module astunparse
to take the AST for each method and unparse
them back into source code, so that our fine-
tuned model was never trained on syntactically
incorrect code. The statistics of our method-
docstring corpus are summarized in Table. 1.
Our parallel method-docstring corpus is twice
as large as the next largest irrespective of lan-
guage and over 15× as large as the next largest
PYTHON parallel corpus, both in CSN.

For each method, we ignored comments as
they generally represent trivia and are not part
of the normal language syntax. We cleaned the
docstrings by removing non-ASCII characters,
normalizing Unicode, and replacing commit
hashes, file paths, and URLs with placeholder
tokens. In all studies here, we randomly split
the files at the repository level (to prevent data
leakage) with 90% for training, 5% for valida-
tion, and 5% for a test set.

2.2 Pre-training

The majority of our PYTHON methods—over
20 million methods— do not possess doc-
strings. This imbalance is, in fact, an oppor-
tunity in light of the recent trend for NLP:
unsupervised pre-training of language mod-
els on vast amounts of raw text (Devlin et al.,
2018). Using these pre-trained models as start-
ing points for downstream tasks—like classi-
fication, translation, summarization, and ques-
tion answering—consistently yields state-of-
the-art results (Lewis et al., 2019; Raffel et al.,
2019).

Following this trend, we use a similar span-
masking objective used by the recent text-to-
text transfer transformer (T5) (Raffel et al.,
2019). As shown in Figure 3, after tokeniz-
ing the inputs, we sample a random subset of
the token spans up to length 3 to be replaced
with, e.g. a [MASK0] token, and then teach
the sequence-to-sequence model to replace the
missing tokens. The training target is com-
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Dataset Methods w/ docstring Languages

PYMT5 2.6× 107 7.7× 106 PYTHON
CSN (Husain et al., 2019) 6.4× 106 2.3× 106 PYTHON, et al.
Ciurumelea et al. (2020) 1.6× 105 1.6× 105 PYTHON
Barone and Sennrich (2017) 1.6× 105 1.5× 105 PYTHON

Table 1: Summary statistics of our PYTHON parallel corpus compared to others presented in the literature.
CSN contains 500k PYTHON methods with docstrings, among 6 other languages. Our parallel corpus is
3× as large as the next largest, and over 15× the size of the next largest PYTHON parallel corpus.

Figure 3: Denoising auto-encoder pre-training for sequence-to-sequence tasks, based on the span-
masking objective used by the T5 (Raffel et al., 2019). PYTHON files are first tokenized with spaces
replaced by the character Ġ, which is 256 in ordinal above the space character (similarly for newlines,
tabs, etc.). Note that indentation is a token of multiple Ġ’s. We replace random sub-sequences of tokens
with numbered masks, and train the model to return each mask followed by the tokens it replaced.

prised of numbered mask tokens followed by
the tokens that mask represents.

The architecture of PYMT5 is an encode-
decoder transformer with a vocabulary of
50181 (byte-pair BPE encoder trained on raw
python files), 6 self-attention encoder/decoder
layers in each encoder layers, and a hidden di-
mension of 1472, totaling 374 million parame-
ters. All the experiments in this paper, includ-
ing GPT2 were done using this same extended
GPT tokenizer. We pre-trained PYMT5 on
27GB of raw source code in total, for 3 weeks
on sixteen 32GB Tesla V100 GPUs, or 73
epochs total. When training on docstring gen-
eration alone, we observed 25× faster conver-
gence to a lower loss when starting with this
pre-trained model as compared to a random ini-
tialization. See the appendix for details. In all
experiments PYMT5 is trained starting with

this pre-trained model.

2.3 Docstring analysis

When examining docstring samples from our
corpus, one of the most salient features is
the different styles of documentation. The
PYTHON community has no prescribed or de
facto style for docstrings, but PYTHON en-
hancement protocol 257 (Goodger and van
Rossum, 2001) does describe one-line and
multi-line docstrings, and mandates indenta-
tion as well. Most modern large-scale projects
utilize docstring styles which are parseable, al-
lowing the automatic creation and synchroniza-
tion of source code and documentation web-
sites, see, e.g. sphinx. Therefore, a number
of standard styles have evolved in the commu-
nity.

The currently dominant parseable docstring
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styles (and the ones supported by sphinx)
are RESTRUCTUREDTEXT (reST) (Jones,
2013), the official GOOGLE style (Google,
2020), NUMPY style (also technically satis-
fies reST) (Maintainers, 2020), and JAVADOC

style (jav, 2011). The difference be-
tween each style is mainly in the syntax
of denoting sections (if they exist) and
the name/type/description annotation of the
method arguments and returned/yielded quan-
tities (if they exist). We defined, in addi-
tion to these styles, one-line (containing only
one line), one-paragraph (containing no empty
lines), and ‘other’ to label any docstring not
described so far, which includes informal user
docstring styles and a few project-specific
styles like the SAGE mathematics toolkit li-
brary.

Table 2 shows the breakdown of the fraction
of each of these styles in our corpus. The plu-
rality of docstrings (44%) are one-line. The
next most common style is one-paragraph at
14%. The next four most-common styles are
the machine parseable styles discussed above,
comprising 26.2% of the total number of doc-
strings. The appendix contains detailed dis-
tributions of method signature, docstring, and
method body character and line lengths.

Style Fraction of methods
One line 44%
One paragraph 14%
REST 13%
GOOGLE 7.3%
NUMPY 4.8%
JAVADOC 1.6%
Other 15%

Table 2: Docstring style statistics from 7.7 million
PYTHONdocstrings.

To visualize the space of these styles, we
used FASTTEXT vector embeddings of the doc-
strings, obtaining 100-dimension continuous
vector representations of each. We then used
PCA to reduce the dimensionality to 50 and ap-

plied the t-distributed stochastic neighbor em-
bedding (T-SNE) to obtain a two-dimensional
visualization. Figure 4 shows 1/10th of our
corpus (700k docstrings) embedded, colored
by docstring style as defined above. We can
see clear clustering of styles, indicating that
similar docstrings use the same style (for the
parseable styles). There is also a natural di-
chotomy between parseable and non-parseable
styles: the left side is dominated by ‘one line,’
‘one paragraph,’ and ‘other’ styles, and the four
parseable styles are largely on the right side.
This observation can be used to generate docu-
mentation consistent with the style of a given
project, or it could be used to translate meth-
ods into more informal descriptions useful for
search indices.

Figure 4: Visualization of continuous embed-
dings of 1/10th of our docstring corpus (770k doc-
strings), colored by docstring style. Embeddings
were obtained using FASTTEXT, and the two-
dimensional embedding was obtained via PCA
(for dimensionality reduction and initialization)
and t-SNE.
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Model Ppl BLEU Syntax Stat. R1 R2 RL

GPT2-med 2.36 5.60 85% Prec. 25.8 12.3 26.8
random Rec. 26.7 12.1 25.9

F1 21.8 10.6 22.5
GPT2-med 2.09 5.63 86% Prec. 25.4 12.1 26.3
english Rec. 26.9 12.2 26.1

F1 21.7 10.6 22.5
PYMT5 2.36 10.6 93.6% Prec. 33.8 21.5 33.6

Rec. 44.1 25.0 43.8
F1 35.1 21.5 32.2

CSN test:
GPT2-med – 2.8 77.2% Prec. 32.3 11.8 33.7
random Rec. 19.6 7.0 19.3

F1 20.9 7.6 21.9
PYMT5 – 8.59 92.1% Prec. 25.6 12.5 25.3

Rec. 40.2 18.3 39.6
F1 28.4 13.5 24.8

Barone and Sennrich (2017) test:
PYMT5 – 20.2 91.1% Prec. 41.3 28.5 40.7

Rec. 52.2 34.7 51.3
F1 43.2 29.8 39.7

Barone et al. – 10.9 – – – –

Table 3: Comparing 3 models–GPT2 with a random weight initialization, GPT2 pre-trained on English,
and PYMT5–on the task of method generation from a signature and natural language docstring. The
first three rows use our test set consisting of 1,285,794 methods. The fourth and fifth rows compare
the performance of PYMT5 and GPT2-medium on the CodeSearchNet PYTHON test set. The final
rows compare the performance of PYMT5 on the parallel corpus test set of Barone and Sennrich (2017).
Syntax is the fraction of predicted methods which had correct syntax using the PYTHON 3.7 grammar.

3 Method generation

Now we turn our attention to method gener-
ation: predicting a whole method code body
from either a method signature, a natural lan-
guage docstring, or both. We first discuss a
benchmark of this task using a GPT2-medium
model (345 million parameters, see the ap-
pendix for details), training from scratch and
starting with the publicly released OPENAI En-
glish pre-trained checkpoint with weights from
HuggingFace(Wolf et al., 2019). In all experi-
ments we used an extended GPT2 tokenizer—
including white-space (one tab, two tabs, etc.)
tokens—for a total vocabulary size of 50337,
and we used beam decoding with a beam width
of 5.

The third row of tab. 3 shows PYMT5 has
more than double the BLEU score, overall
better recall, and significantly better ROUGE-
2 and ROUGE-L F-scores than our GPT2
baselines. Further, 93.6% of the methods
generated by PYMT5 were syntactically

correct PYTHON 3.7, whereas only 86% of
GPT2 methods were syntactically correct.
PYMT5 was trained on 16 Tesla V100 16GB
GPUs for 62 epochs, or 5 weeks training time
(see the appendix for its hyper-parameters) and
the GPT2 baselines were trained on the same
hardware for 1 week training time (achieving
the same or better validation loss/perplexity as
PYMT5).

The English pre-trained initialization of
GPT2 only slightly beats the random initial-
ization of GPT2, which could indicate that the
learned biases of English are not particularly
beneficial for writing PYTHON code; the met-
rics are almost all within our margin of error.
Note that Barone and Sennrich (2017) also
modeled methods from docstrings, obtaining
a similar BLEU score of 10.9 on their own
PYTHON parallel corpus. On the Barone et al.
test set, PYMT5 obtains nearly double these
scores at 20.2; such a large discrepancy could
be explained by data leaking from their test set
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Model Ppl BLEU R1 R2 RL

GPT2-med 2.36 19.4 P 32.6 19.3 33.6
random R 36.2 19.4 34.7

F1 31.0 18.2 31.6
GPT2-med 2.15 19.6 P 33.1 19.4 33.9
English R 36.4 19.5 34.8

F1 31.4 18.3 31.8
PYMT5 3.74 25.2 P 42.1 23.7 41.3

R 50.4 27.0 49.3
F1 43.3 24.4 39.8

CSN test:
GPT2-med – 9.5 P 30.6 13.3 31.4
random R 31.1 12.9 29.8

F1 26.3 11.5 27.2
PYMT5 – 16.3 P 38.0 19.2 36.8

R 52.7 24.5 51.0
F1 41.3 20.4 36.7

Barone test:
PYMT5 – 17.4 P 39.6 26.0 38.7

R 53.6 33.7 52.1
F1 43.1 27.8 39.1

Barone et al. – 13.84 – – – –

Table 4: Comparing 3 models–GPT2 with a ran-
dom weight initialization, GPT2 pre-trained on
English, and PYMT5–on the task of natural lan-
guage docstring generation from a signature and
method body. The first three rows are evaluated
on our test set of 383695 methods. The fourth
and fifth rows shows performance of PYMT5 and
GPT2-medium on the CSN PYTHON test set, and
the last two rows compare our model to Barone et
al. on their test set.

into our training set. Barone’s test set is also
200× smaller than ours and may not be a rep-
resentative sample of the whole PYTHON code
domain.

The third and fourth rows of tab. 3 show the
performance of PYMT5 using the publicly
available CSN PYTHON test set, from which
we find notably worse results than on our own
test set. CSN curated their whole set by remov-
ing any methods with ‘test’ in the name and any
methods with fewer than 3 lines of code. We
calculated the performance of PYMT5 only
on a subset of our test set curated the same
way as CSN, observing F-scores for R1, R2,
and R-L on our test set of 29.7, 17.2, and 26.1,
which is lower than our nominal test set perfor-
mance of 35.1, 21.5, and 32.2 and closer to the
CSN performance of 28.4, 13.5, and 24.8. We
believe this curating choice explains the differ-

ence between our test set and the CSN test set.
We also conclude that tests and short methods
are ‘easier’ to complete, which is plausible,
and bodes well for automatic code completion
applications.

4 Docstring Generation

We now examine results from the docstring
generation task, which for evaluation pur-
poses were conditioned on both signatures and
method bodies. As in method generation, we
set a GPT2 benchmark with random initial-
ization and pre-trained English initialization
as well as the same hyperparameters. Table 4
shows that the ROUGE scores of the GPT2
baselines are within the margin of error; a
somewhat surprising result given the English
domain of docstrings. The third row shows
PYMT5 to be superior to GPT2-medium in
terms of BLEU and all of the ROUGE metrics.

We again present the results from the pub-
licly available CSN test set. Similar to the
method generation task, PYMT5 performs
worse on the CSN data than our own, likely
for the same reasons we discussed in sec. 3.
We also evaluated PYMT5 on the Barone et
al. parallel test set, as shown in the second to
last row of tab. 4, and find PYMT5 performs
notably worse on Barone’s test set than our
own test set, contradicting the hypothesis that
our doubling of the method generation BLEU
score is due to data leakage. PYMT5 has a
much higher BLEU score than that reported by
Barone et al, perhaps indicating real progress
in the code summarization field.

Docstring generation is similar to code sum-
marization, though the domains are different as
docstrings also contain structured annotations
of arguments, return values, raised exceptions,
and even in-line unit tests (doctest). TranS3

by Wang et al. (Wang et al., 2020) reports a
best ROUGE-L of 51.27 on the same test set
for code summarization, but does not specify
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which statistic they are reporting, so we can-
not make strong conclusions about the perfor-
mance of PYMT5 compared to the state of the
art.

5 Conclusion

In this work, we presented a novel multi-mode
PYTHON method text-to-text transfer trans-
former model PYMT5as well as the largest
parallel corpus of PYTHON source code and
docstrings reported in the literature to date. We
have trained PYMT5 to translate between
all pairs of combinations of method signa-
tures, docstrings, and method bodies which
do not have the same feature in both the source
and target. Further, we introduced control
token prefixes for docstring generation to fa-
cilitate docstring generation of various styles.
Focusing on two modeling tasks – predict-
ing PYTHON methods from docstrings and
summarizing PYTHON source code methods
into docstrings of various commonly occur-
ring styles – we have compared this new ap-
proach to the auto-regressive GPT2 baselines
trained on individual docstring or method gen-
eration tasks. On the CODESEARCHNET test
set PYMT5 achieves a BLEU score of 8.59
for method generation and 16.3 for docstring
generation, and a ROUGE-L F-score of 24.8
for method generation and 36.7 for docstring
generation. We have demonstrated the ef-
fectiveness of dynamic masked pre-training,
reducing docstring generation training time
by 25×. Looking forward, we plan to lever-
age PYMT5 for various downstream auto-
mated software engineering tasks—including
code documentation and method generation
from natural language statements—and de-
velop more model evaluation criteria to lever-
age the unique properties of source codes.
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A Appendix

A.1 Docstring statistics

Figure 5 shows the distributions of various fea-
tures of docstrings in our corpus. The top row
is the distribution of total character-level length
of the method signatures (left), docstrings (cen-
ter), and code bodies. The blue lines are for
methods possessing a docstring, and we can
see that the vast majority of these methods
have docstrings with more than 10 characters.
The bottom row shows the distribution of line
lengths of the concomitant features from the
top row. While the most common line length
of docstrings is 1 (comprising 41%), the vast
majority of docstrings have multiple lines.

A.2 Pre-training details

Figure 7 is the complete training script,
using the Facebook AI Research Se-
quence (FAIRSEQ) modeling library, with
which we pre-trained PYMT5. The data
was pre-noised and processed using the
fairseq-preprocess command, and
placed in the directory indicated by $DIR.
The architecture and training hyper-parameters
are set in this script. PYMT5 was trained
with the same hyperparameters, but with data
described in sec.A.4.

Figure 7 shows learning curves of a sin-
gle seq2seq model of the same architecture as
PYMT5 trained only on docstrings, starting
from random initializations, and starting from
our pre-trained model. As the figure shows, the
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Figure 5: Histogram of the number of characters (top row) in the PYTHON signatures (left), docstrings
(middle), and method body (right). The blue lines are for methods with docstrings, the yellow lines are for
methods without docstrings. The vast majority of docstrings have more than 10 characters. The bottom
row shows histograms of the number of lines for the same features described in the top row.

pre-trained initialization converged to a better
validation loss 25× faster than the randomly
initialized model.

A.3 GPT2 training details

Our GPT2 experiments also used the FAIRSEQ

library, with the OpenAI English checkpoint
supplied by the HuggingFace library. Fig-
ure 8 shows the complete training script, where
for the English pre-trained initialization a pre-
trained checkpoint was provided. Each models
was trained on 4 Tesla V100 GPUs with 16GB
of memory each, for 7 days.

A.4 Multi-mode training details

In order to better teach PYMT5 to under-
stand the relationships between all the differ-
ent features of code (signatures, docstrings,
and bodies) we taught it to translate between

Figure 6: Learning curves for training a sequence-
to-sequence transformer, translating from python
method definitions to their docstrings. Blue curves
represent the training and validation loss, and show
that convergence (validation loss stops decreasing)
occurs after 3.97 × 105 steps or 183 epochs. The
optimization of the pre-trained model with identi-
cal hyperparameters reaches and beats the best val-
idation loss at 1.5× 104 steps or 7 epochs.
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Figure 7: The fairseq-train script used to
pre-train PYMT5, setting all the relevant hyper-
parameters.

Figure 8: The fairseq-train script we used
to train our GPT model baselines

all pairs of combinations of these features
which do not contain the same feature in
both the source and target. In this way, the
model can learn to produce method bodies us-
ing both signatures and docstrings, or one or
the other. Table 5 spells out exactly which
combinations were provided to the model
as a source and target. For each source
example the comment string ‘# target
<feature> (<style>)’ was added, in-
structing the model which feature combination
(e.g. signature and body). Only if a docstring
was in the target, a style imperative was added,
where the styles are defined and discussed in
the main text.

Figure 9 shows the training curves for
PYMT5, where the solid black line is the train-
ing loss, and all the other curves are the valida-
tion loss for each of the tasks indicated in tab. 5.
The dashed lines indicate tasks where doc-
strings are present in the target, showing that
these are generally less predictable than code-
only targets (as the validation loss is larger).
PYMT5was trained on 16 Tesla V100 16GB
GPUs for 62 epochs, or 5 weeks training time.
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Docstring 3 3 3

Body 3 3 3
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Sig + body 3
Doc + body 3

Table 5: A table of all possible translation possibil-
ities between the 3 features of a function: the sig-
nature (sig), docstring (doc), and body. We train
our model to translate between sources and targets
indicated with a 3, which were chosen as all pairs
of feature combinations which do not contain the
same feature in both the source and target. The sys-
tem is then instructed to target code bodies when
performing function completion.
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Figure 9: Learning curve for the multi-mode training, where the black line is the training loss, and the
other lines are the validation loss for each mode of translation. Dashed lines indicate the docstrings are
in the target, solid lines have only code in the target.


