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Abstract
Recent studies constructing direct interactions be-

tween the claim and each single user response

to capture evidence have shown remarkable suc-

cess in interpretable claim verification. Owing

to different single responses convey different cog-

nition of individual users, the captured evidence

belongs to the perspective of individual cognition.

However, individuals’ cognition of social things

is not always able to truly reflect the objective.

There may be one-sided or biased semantics in

their opinions on a claim. The captured evidence

correspondingly contains some unobjective and

biased information. In this paper, we propose a

Dual-view model based on the views of Collective

and Individual Cognition (CICD) for interpretable

claim verification. For collective cognition, we

not only capture the word-level semantics based

on individual users, but also focus on sentence-

level semantics (i.e., the overall responses) among

all users to generate global evidence. For indi-

vidual cognition, we select the top-k articles with

high degree of difference and interact with the

claim to explore the local key evidence fragments.

To weaken the bias of individual cognition-view

evidence, we devise an inconsistent loss to sup-

press the divergence between global and local ev-

idence for strengthening the consistent shared ev-

idence between the both. Experiments on three

benchmark datasets confirm the effectiveness of

CICD.

1 Introduction

The problem of claim credibility has seriously affected

the media ecosystem. Research (Allen et al., 2020) illus-

trates that the prevalence of ‘fake news’ has decreased

trust in public institutions, and undermined democracy.

Meanwhile, ‘massive infodemic’ during COVID-19

has taken a great toll on health-care systems and lives

(Fleming, 2020). Therefore, how to verify the claims

spread in networks has become a crucial issue.

Current approaches on claim verification could be

divided into two categories: 1) The first category re-

Claim: In such a hot and rainy season, we should pay attention to the prevention of dengue fever. Not 
only mosquitoes can transmit it, but it is said that the disease could also be transmitted through the air. 

R1: This year is really hard, Let's get over this summer soon! 
R2: I think it's true. My husband had dengue fever before, and I also got infected soon. Maybe he infected me. 
R3: No, not all types of mosquitoes transmit dengue fever. 
R4: False, please don't continue to spread. It has been refuted that dengue fever will spread in the air. 
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Figure 1: Users’ individual cognition of a false claim.

lies on traditional machine learning and deep learning

methods to capture semantics (Yang et al., 2019), sen-

timents (Ajao et al., 2019), writing styles (Przybyla,

2020), and stances (Kumar and Carley, 2019) from

claim content, and meta-data features, such as user

profiles (Shu et al., 2019; Wu et al., 2020b) for verifi-

cation. Such approaches could improve verification

performance, but they are hard to make reasonable

explanations for the verified results, i.e., where false

claims go wrong; 2) To tackle this issue, many re-

searchers further focus on interpretable claim verifica-

tion (the second category) by establishing interactive

models between claims and each individual relevant

article (or comment) to explore coherent (Ma et al.,

2019; Wu et al., 2021), similar (Nie et al., 2019; Wu

et al., 2020a), or conflicting (Zhou et al., 2020) se-

mantics as evidence for verifying the false parts of

claims.

In interpretable claim verification, the majority of

models construct interactions between claims and

each single user response (i.e., a comment or a rele-

vant article) to capture evidence, which could effec-

tively learn some of errant aspects of false claims.

Due to different single responses reflect the cognition

of different individual users, the evidence captured

by these models is usually confined to individual

cognition. However, individuals’ cognition of social

things is not always able to truly reflect the objec-

tive (Greenwald et al., 1998; Boogert et al., 2018).

Owing to individuals are affected by factors such

as emotional tendency (Ji et al., 2019), traditional

beliefs (Willard and Norenzayan, 2017), and selec-

tively capturing information (Hoffman, 2018), there
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are considerable differences in cognition of different

individuals, and they are prone to cognitive bias, like

primacy effect (Troyer, 2011) and halo effect (Gold-

stein and Naglieri, 2011), there may be one-sided or

biased semantics in their expressed opinions. Thus,

the captured evidence also correspondingly contains

some unobjective and biased evidence fragments, de-

teriorating task performance. For instance, as shown

in Figure 1, facing a claim to be verified, different

individual users (here, users are the normal users on

social media, not journalists or professionals) have

different reactions. R2 (i.e., response 2 or relevant

article 2) and R3 released by users contain unreliable

and biased information perceived by their individu-

als, which may lead to some misleading information

being captured as evidence by existing interactive

models. Therefore, how to explore users’ collective

cognition on claims is a major challenge for inter-

pretable claim verification.

To address the deficiencies, we propose a unified

Dual-view model based on Collective and Individual

Cognition (CICD) for interpretable claim verification,

which focuses on discovering global evidence and

local key evidence, respectively, and then strength-

ens the consistent shared evidence between the both.

Specifically, to explore users’ collective cognition to

capture global evidence, we design Collective cog-

nition view-based Encoder-Decoder module (CED).

CED develops claim-guided encoder that not only

learns word-level semantics based on individual user,

but also captures sentence-level semantics (i.e., the

overall opinions) among all users. Here, a relevant

article (a response) released by an individual user

is usually a sentence sequence, so all sentence-level

semantics convey the overall opinions of all users.

Then, CED develops hierarchical attention decoder

to generate global evidence by adjusting weights of

word-level and sentence-level semantics. To further

acquire the local key evidence based on individual cog-

nition, we develop Individual cognition view-based

Selected Interaction module (ISI) to screen represen-

tative top-k articles with high difference and interact

with the claim to gain local key evidence fragments.

To weaken the bias of individual cognition view and

strengthen the consistent shared evidence between

global and local evidence, we project inconsistent loss

to suppress the divergence. Experimental results not

only reveal the effectiveness of CICD but also provide

its interpretability. Our contributions are summarized:

• A novel framework integrating interdisciplinary

knowledge on interpretable claim verification is

explored, which discovers global and local ev-

idence from the perspectives of collective and

individual cognition to interpret verified results.

• Proposed CED captures word-level (individual)

and sentence-level (holistic) opinions, and reason-

ably adjusts the proportion between them, which

generates global evidence of the view of all users.

• Experiments on three competitive datasets demon-

strate that CICD achieves better performance than

other strong baselines.

2 Related Work

Automatic verification approaches rely on neural net-

works to extract content-based features, like seman-

tics (Popat et al., 2018; Wu et al., 2019), sentiments

(Nguyen et al., 2020), writing styles (Przybyla, 2020),

etc., and metadata-based features, like user profiles-

based (Kumar and Carley, 2019), comment-based

(Bovet and Makse, 2019), etc., for verification. These

methods could improve the accuracy of claim veri-

fication, but they are lack of interpretability for the

verified results. To tackle this, interpretable claim

verification has received great attention. Its basic

principle is to obtain queried, corrected, and rumor-

refuted semantics from the articles (or comments)

related to claims to interpret the credibility of claims.

At present, the methods for this task generally focus

on direct interactions between claims and relevant

articles to identify their matching degree (Nie et al.,

2019), consistency (Ma et al., 2019), implication (Liu

et al., 2019), conflict (Wu et al., 2020c), etc., to learn

practical evidence. For instances, HAN (Ma et al.,

2019) and EHIAN (Wu et al., 2020c) learned implica-

tion relationships between claims and relevant articles

to capture semantic conflicts as evidence, which re-

flected a certain interpretability. However, since all

relevant articles are involved, the captured conflicts

may be affected by some low-quality articles with

noisy semantics, easily resulting in the invalidation

of the evidence. In our model, we design ISI module

to screen all relevant articles to capture the valuable

representative articles with differential semantics, so

as to learn local key evidence fragments. In addition,

some methods, such as GEAR (Zhou et al., 2019)

and KGAT (Liu et al., 2020), relied on graph-based

networks to conduct semantic aggregation and rea-

soning on relevant articles, so as to capture global

evidence. Nevertheless, these models treat an entire

article (at the sentence level) as a node and ignore the

importance of word-level semantics in each article.
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To overcome these defects, our model constructs a

hierarchical attention decoder to fuse sentence-level

and word-level semantics for finely-grained generat-

ing global evidence.

3 The Proposed Approach

In this section, we introduce the details of CICD as

illustrated in Figure 2.

Inputs and Outputs For cognitive input repre-

sentations, the inputs of CED are a claim sequence

and the concatenation of its all relevant articles with

the number of N , while the inputs of ISI are a claim

sequence and each relevant article. Given any a se-

quence of length l words X={x1, x2, ..., xl}, where

each word xi∈Rd is a d-dimensional vector obtained

by pre-trained BERT model (Devlin et al., 2019). Par-

ticularly, the length of each sequence in relevant arti-

cles is l and that of the claim sequence is p. Thus, we

obtain the representations of the i-th relevant article

and the claim as Xr
i ∈Rl×d, Xc∈Rp×d, respectively.

For the outputs of the model, the outputs of CED are

the generated global evidence sequence of length o
words G={g1, g2, ..., go}, where gt is the represen-

tation of the t-th generated word and o is the length

of G. The outputs of ISI are the integrated vector of

top-k local key evidence fragments I=[I1; I2, ; ...; Ik],
where ; is the concatenation operation.

3.1 Collective Cognition View-based
Encoder-Decoder (CED)

To explore users’ collective cognition on claims,

we first rely on claim-guided encoder to capture

word-level and sentence-level semantics from all

relevant articles, and then adjust the proportion

between the both by hierarchical attention decoder

to generate global evidence.

3.1.1 Claim-guided Encoder
The claim-guided encoder module involves a se-

quence encoding layer and a matching layer.

Sequence Encoding Layer We rely on BiL-

STMs to encode all relevant articles and the claim

for their contextual representations. We utilize

the produced hidden states Hr = {hr1,hr2, ...,hrlall}
(where lall means the total length of all articles) and

Hc={hc1,hc2, ...,hcp} to denote the contextual repre-

sentations of relevant articles and the claim, respec-

tively, where hi (i.e., hri or hci ) is defined as follows:

hi = [
−→
hi ;
←−
hi ] (1)

where
−→
hi ∈R

dh and
←−
hi ∈R

dh are the i-th hidden

state of the forward and backward LSTMs for the

word xi respectively. ; is concatenation operation.

Attention-based Matching Layer is engaged to

aggregate the relevant information from the claim for

each word within the context of relevant articles. The

aggregation operation ai=attn(h
r
i ,H

c) is as follows:

ai =

kc∑

j=1

αi,jh
c
j (2)

αi,j=exp(si,j)/

p∑

k=1

exp(si,k) (3)

si,j = (hri )
�W1h

c
j (4)

where ai is the aggregated vector for the i-th word

of the articles. αi,j is the normalized attention score

between hri and hcj.
Here, the purpose of adopting claim to guide the en-

coding of relevant articles includes two perspectives:

1) Strengthening the focus of consistent semantics

associated with the claim in relevant articles, i.e., ex-

ploring how relevant articles evaluate the claim; and

2) Making the encoding semantics purer. We observe

that there are some advertisements or useless informa-

tion in relevant articles. This way is able to effectively

filter the noise irrelevant to the claim from relevant

articles, and consolidates the generation of relevant

semantics in the decoder module.

Furthermore, we output the hidden state correspond-

ing to the last word encoded by each relevant article to

form consistent sentence-level representations, where

hsi represents sentence-level representations of the i-th
relevant article. Particularly, we apply word-level rep-

resentations Hr={hr1,hr2, ...,hrlall} (which can also be

represented in the form of different relevant articles,

i.e., Hr={hr1,1,hr1,2, ...,hrN,l}, where lall=N×l) and

sentence-level representations Hrs={hs1,hs2, ...,hsN}
as memory bank for decoder generation.

3.1.2 Hierarchical Attention Decoder
To capture the collective cognition-view evidence

from relevant articles, we devise hierarchical atten-

tion decoder to consider the consistent semantics

with different granularity of relevant articles to gen-

erate global evidence. Specifically, we employ uni-

directional LSTM as the decoder, and at each decod-

ing time-step, we calculate in parallel both sentence-

level attention weight β and word-level α by:

βi = (hsi )
�W2h

d
t αi,j = (hri,j)

�W3h
d
t (5)

γi,j =
αi,jβi∑
i,j αi,jβi

(6)
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Figure 2: The general architecture of CICD. The model consists of: 1) CED for generating global evidence; 2) ISI

for exploring local key evidence fragments; and 3) Dual-view classification module leveraging inconsistency loss

to promote the learning of shared available evidence between global and local evidence.

where hdt is the hidden state of the decoder at the

t-th time-step, W2 and W3 are trainable parameters.

The word-level attention ascertains how to distribute

the attention over words in each sentence (each ar-

ticle), which could learn salient evidence segments

in each article, while the sentence-level attention de-

termines how much each article should contribute

to the generation at current time-step, which could

capture potential global semantics in all articles.

Then the context vector ct is derived as a combi-

nation of all word-level representations reweighted

by combined attention γ:

ct =
∑

i,j

γi,jh
r
i (7)

And the attentional vector is calculated as:

ĥdt = tanh(W4[h
d
t ; ct]) (8)

Finally, the predicted probability distribution

over the vocabulary V at the current step is:

PV = softmax(WV ĥ
d
t + bV ) (9)

where W4, WV , and bV are trainable parameters.

We adopt G={g1, g2, ..., go} to denote the gen-

erated sequence rich in global evidence.

3.2 Individual Cognition View-based
Selected Interaction (ISI)

To capture evidence fragments from individual cogni-

tion view, we design ISI module with the following

layers: 1) Sentence-level representation for captur-

ing high-level representations of relevant articles; 2)

Selected mechanism for screening the representative

top-k relevant articles with degree of difference; and

3) Co-interaction layer for making the claim and the

selected articles interact with each other to explore

local key evidence fragments.

3.2.1 Sentence-level Representation
We exploit BiLSTM to encode each relevant article

and capture the output of the last hidden state as the

sentence-level representation, where the encoding

process is similar to sequence encoding layer in

Section 3.2.1, where the sentence-level representa-

tion of the i-th article is hrsi .

3.2.2 Selected Mechanism
To capture representative top-k articles, we de-

velop selected mechanism to calculate the differ-

ence between each articles and other articles in

an automated manner. To do this, selected mech-

anism learns and optimizes an inter-sentential at-

tention matrix A∈RN×N . The entry (m,n) of A
holds the difference between article m and article

n (1≤m,n≤N and m �=n) and is computed as:

um=ϕ(Wmh
rs
m+bm) un=ϕ(Wnh

rs
n +bn) (10)

A[m,n] =
exp(um � un)∑N
i=1 exp(ui � un)

(11)

where ϕ is a activation function, Wm and Wn are

weight matrix, bm and bn are biases, and� denotes

dot product operator. The larger the entry A[m,n] is,

the higher the similar between article m and article n
is. Thus, the smaller A[m,n] corresponds to articlem
and n contain more differential semantics, and finally

we screen top-k relevant articles with high difference

for further downstream interaction.

3.2.3 Co-Interaction Layer
This co-interaction layer aims to explore local key ev-

idence fragments. Specifically, the layer enables the

claim to focus on the i-th article to discover the specific

evidence fragment, while the i-th article pays close at-

tention to the claim to explore the possible false part of
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the claim. Finally, we combine the two interactions to

constitute the individual key local evidence fragments.

Hrin
i = hrsi + softmax(hrsi ((Hcs)�))Hcs (12)

Hcin = Hcs + softmax(Hcs((hrsi )�))hrsi (13)

Ii = [Hrin
i ;Hcin] (14)

where Hrin
i is the evidence fragment of the i-th arti-

cle, Hcin is the false part of the claim, and Hcs is the

outputs of the last time step of Hc.

For all top-k articles, we integrate all local evi-

dence fragments by concatenation operation.

I = [I1; I2; ...; Ik] (15)

3.3 Dual-View Classification
To alleviate the bias of individual cognition-view

evidence fragments and strengthen the consistent

shared evidence between global and local evidence,

we introduce an inconsistency loss to penalize the

disagreement between the both evidence. We de-

fine the inconsistency loss function as the Kulllback-

Leibler (KL) divergence between G and I.

Lossin = DKL(G||I) =
K∑

k=1

G
′
klog

G
′
k

I′k
(16)

where G
′
k is the k-th element of the concatenation

of the words in G, and I′k is the k-th element of I.

Furthermore, we fuse the two types of penalized

evidence, and adopt softmax function to emit the prob-

ability distribution for training, where a loss forces

the model to minimize the cross-entropy error for a

training sample with ground-truth label y:

Loss = −
∑

ylogp (17)

p = softmax(Wp[G; I] + bp) (18)

where Wp and bp are the learnable parameters.

To ensure the effective synergy of the two cog-

nition views, we put together all loss mentioned

above for joint training.

L = Loss + αLossin (19)

where α is the hyper-parameter.

4 Experiments

4.1 Datasets and Evaluation Metrics
For evaluation, we utilize three publicly available

datasets, i.e., Snopes, PolitiFact (both released by

(Popat et al., 2018)), and FEVER (Thorne et al.,

2018). The first two datasets contain 4,341 and 3,568

news claims, associating with 29,242 and 29,556

relevant articles (these articles can be regarded as

responses of different individual users to claims) col-

lected from various web sources respectively. FEVER

consists of 185,445 claims accompanied by manual

annotation Wikipedia articles. For labels, each claim

in Snopes is labeled as true and false, while Poli-

tiFact divides claims into six kinds of credibility la-

bels: true, mostly true, half true, mostly false, false,

and pants on fire. To distinguish the veracity more

practically, like Ma et al. (2019), we merge mostly

true, half true and mostly false into mixed, and treat

false and pants on fire as false. Then, the labels of

PolitiFact are classified as true, mixed, and false.

On FEVER, each claim is partitioned as supported,

refuted, or NEI (not enough information). For

evaluation metrics, on Snopes and PolitiFact, we

exploit micro-/macro-averaged F1(micF1/macF1),

class-specific precision (Prec.), recall (Rec.) and F1-

score (F1) as evaluation metrics. We hold out 10% of

the claims for tuning the hyper parameters, and con-

duct 5-fold cross-validation on the rest of the claims.

On FEVER, we leverage accuracy (Acc.), and F1-

score (F1) as evaluation metrics, and follow Thorne

et al. (2018) to partition the annotated claims into

training, development (Dev.), and testing (Test.) sets.

4.2 Settings

For parameter configurations, we adjust them accord-

ing to the performance of development sets, we set

the word embedding size d to 768. The dimensional-

ity of LSTM hidden states dh is 120. The length l of

each relevant article is 100 and that of the claim p is

assigned as 20. Due to no parameters depend on the

number of articles N , instead of intercepting a fixed

number, we set N to vary with claims. Initial learning

rate is set to 2e-3. The loss weight coefficient α is

trained to 0.2. The dropout rate is 0.4, and we set the

mini-batch size of the three datasets as 32, 32, and

64, respectively. Additionally, an Adam (Kingma and

Ba, 2015) optimizer with β1 as 0.9 and β2 as 0.999

is used to optimize all trainable parameters.

4.3 Experiments on Snopes and PolitiFact

4.3.1 Performance Comparison
We compare CICD and several competitive baselines:

1) DeClarE (Popat et al., 2018) models joint inter-

actions between claims and articles and aggregates

word-level credibility signals from external articles for

evidence-aware assessment; 2) BERT (Devlin et al.,

2019), we employ pre-trained BERT classifier to ver-

ify claims; 3) HAN (Ma et al., 2019), a hierarchical

attention network, constructs the interactions between

claims and relevant articles for capturing sentence-
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Methods

Snopes PolitiFact
True False True False Mixed

micF1 macF1 Prec. Rec. F1 Prec. Rec. F1 micF1 macF1 F1 F1 F1

DeClarE 0.762 0.695 0.559 0.556 0.553 0.839 0.837 0.837 0.475 0.443 0.447 0.576 0.307
BERT 0.781 0.706 0.587 0.601 0.594 0.852 0.854 0.853 0.493 0.462 0.478 0.596 0.320
HAN 0.807 0.759 0.637 0.665 0.651 0.874 0.860 0.867 0.523 0.487 0.495 0.627 0.340
HAN-ba 0.771 0.738 0.556 0.765 0.644 0.899 0.774 0.832 0.520 0.471 0.475 0.629 0.308
EHIAN 0.831 0.784 0.614 0.790 0.691 0.893 0.896 0.894 0.554 0.509 0.513 0.651 0.362
CICD (Ours) 0.846 0.795 0.629 0.796 0.703 0.897 0.904 0.900 0.572 0.525 0.529 0.665 0.373

Table 1: Comparison of our model with baselines on Snopes and PolitiFact.

level evidence by considering their topical coherence

and semantic inference strength; 4) HAN-ba (Ma

et al., 2019) is a variant of HAN, where the gated

attention is replaced to biaffine attention for acquiring

evidence; and 5) EHIAN (Wu et al., 2020c) is an

evidence-aware hierarchical interactive attention net-

work, which focuses on the direct interaction between

claim and relevant articles to explore key evidence

fragments. As shown in Table 1, we observe that:

• BERT achieves at least 6.5% improvement on

micF1 than DeClarE, which illustrates pre-trained

model can learn rich semantic context features to

improve performance, which is also the reason that

we adopt BERT to train word embeddings. HAN

consistently outperforms BERT, which indicates

HAN capturing the coherence between relevant

articles could help improve the task performance.

• In interpretable methods, CICD outperforms De-

ClarE, which is because our model not only focuses

on word-level semantics like DeClarE, but also

grasps the holistic sentence-level features. More-

over, owing to HAN and HAN-ba drive all relevant

articles to participate in the interaction, prompting

them to gain a small boost in precision on Snopes,

but this way may introduce noise from nonsignifi-

cant articles. CICD effectively avoids this problem

by selecting vital articles for interaction, which

obtains significant improvements in other metrics

compared with HAN and HAN-ba. Furthermore,

CICD consistently outperforms EHIAN on Snopes

and PolitiFact. The superiority is clear: CICD not

only values individual cognition view to capture

key evidence fragments, but also generates collec-

tive cognition-view evidence for claim verification.

4.3.2 Ablation Study
In order to evaluate the impact of each component of

CICD, we ablate CICD into the following simplified

models: 1) -matching U represents the attention-

based matching layer of CED is removed; 2) -CED

Methods
Snopes PolitiFact

micF1 macF1 micF1 macF1

-matching U 0.802 0.753 0.529 0.486
-CED 0.791 0.748 0.526 0.476

-selected I 0.810 0.763 0.541 0.490
-interaction I 0.822 0.770 0.557 0.497

-ISI 0.803 0.751 0.530 0.483
-inconsistency loss 0.831 0.782 0.556 0.508

CICD 0.846 0.795 0.572 0.525

Table 2: Ablation analysis of CICD.

means CED is deleted from our model; 3) -selected I
refers to the selected mechanism is removed from ISI;

4) -interaction I represents the co-interaction unit of

ISI is replaced by concatenation operation; 5) -ISI
corresponds to ISI is separated; and 6) -inconsistency
loss means the inconsistency loss is removed. As

shown in Table 2, we observe that:

• The removal of each module (-CED or -ISI) weak-

ens the performance of CICD, presenting from

4.2% to 5.5% degradation in micF1, and the strip-

ping of different layers (like -selected I and -

interaction I) of each module also reduces the model

performance, reducing at least 2.4% performance

in micF1, which describes the effectiveness of each

component and the organic integrity of CICD.

• -CED reflects the lowest performance in all simpli-

fied models, decreasing 5.5% and 4.6% in micF1

on the two datasets, respectively, which elaborates

the effectiveness of our CICD capturing the collec-

tive cognition-view global evidence. Meanwhile,

-ISI underperforms CICD, showing 4.3% and 4.2%

degradation in micF1 on the two datasets respec-

tively, which conveys the necessity of the explo-

ration of local key evidence fragments from indi-

vidual cognition view.

• When compared with -inconsistency loss, CICD

significantly improves the performance on the two

datasets with the help of inconsistency loss unit,

which verifies the effectiveness of our model rely-
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ing on inconsistency loss to discover shared valu-

able semantics between global and local evidence.

4.3.3 Evaluation of Co-Interaction Networks
To obtain a more detailed understanding of the su-

periority of our co-interaction networks (CoI), we

compare CoI with the following prevalent interaction

networks: 1) MLP (Multilayer Perceptron) acts as

an interaction strategy to automatically abstract the

integrated representation of claims and articles; 2)

Self-Att (Self-attention Networks) (Vaswani et al.,

2017) adopts the claim as query, and relevant arti-

cles to serve as values and keys for interaction; 3)

Biaf-Att (Biaffine Attention) (Ma et al., 2019) mea-

sures the degree of semantic matching for interaction;

and 4) Symm-Intr (Symmetric interaction attention)

(Tao et al., 2019) is exploited to model the interac-

tion between claims and articles. Specifically, we

investigate the performance and time cost of these

methods on Snopes and PolitiFact based on Linux

CentOS with NVIDIA TITAN Xp GPU, as shown

in Figure 3. We observe that:

From the overall performance of all methods, our

method achieves the optimal performance, outper-

forming other methods by more than 5.1% and 5.6%

performance in micF1, respectively. From the indi-

cator of time cost, our method saves a great deal of

time. Compared with Self-Att and Symm-Intr, our

method saves from 500 to 1,000 seconds in time cost

on the two datasets, respectively. The reason is that

the structures of multiple mappings of self-attention

networks and the repeat stacks of symmetric atten-

tion delay the efficiency. Although the time cost of

our method is higher than that of MLP and Biaf-Att,

the performance of both methods is unsatisfactory,

which is lower than our method al least 2.6% and

3.7% in micF1 on both datasets. On the whole, these

adequately manifest the superiority of our method.

4.3.4 Evaluation of Hierarchical Attention
Decoder

To verify the effectiveness of the internal structure

of hierarchical attention decoder (HAD) in CED,

we ablate HAD with the following models: -word.,
-sentence., and -merge. respectively denote HAD re-

moving word-level attention α, sentence-level atten-

tion β, and merged semantics γ. decoder. represents

the vanilla decoder. Experimental results are shown

in Table 3, we observe that: first, the removal of any

module of HAD could weaken the performance of

the model, which confirms the effectiveness of each

module. Second, in addition to the basic decoder,

Methods
Snopes PolitiFact

micF1 macF1 micF1 macF1

-word. 0.827 0.784 0.558 0.517
-sentence. 0.815 0.770 0.545 0.502

-merge. 0.833 0.787 0.562 0.520
decoder. 0.804 0.758 0.535 0.489

CICD 0.846 0.795 0.572 0.525

Table 3: Evaluation of hierarchical attention decoder.

Methods
Dev. Test.

Acc. F1 Acc. F1
NSMN 0.697 0.431 0.621 0.398
HAN 0.720 0.488 0.669 0.446
GEAR 0.738 0.492 0.708 0.474
KGAT 0.745 0.501 0.716 0.485
CICD (Ours) 0.763 0.525 0.731 0.497

Table 4: Results of different baselines on FEVER.

our model achieves the most prominent boost with

the support of sentence-level attention, which proves

the effectiveness of HAD fusing sentence-level se-

mantics to capture global semantics of HAD.

To further investigate the contribution of sentence-

level semantics to the global evidence, we take Figure

1 as an example to visualize the global evidence gen-

erated by our model with and without sentence-level

attention, respectively. As shown in Figure 4, we

observe that the model with sentence-level attention

focuses more on the sentences with maximum weight,

that is, R4, such as the words ‘do not spread’ and ‘re-

futed it spreads in the air’, while the model without

sentence-level attention does not identify which rele-

vant articles are more valuable, so that they concen-

trate more on R2 and R3, like ‘get infected husband’

and ‘not all types of mosquitoes’. These fully prove

the effectiveness of sentence-level semantics for the

generation of global evidence.

4.4 Experiments on FEVER

To examine the extensibility of our model, we

also compare CICD and the following state-of-the-

art baselines on FEVER dataset: 1) NSMN: The

pipeline-based system, Neural Semantic Matching

Network (Nie et al., 2019), conducts document re-

trieval, sentence selection, and claim verification

jointly for fact extraction and verification; 2) HAN: It

has introduced in Section 4.3.1; 3) GEAR: A graph-

Do not spread this news, we prevent the 
transmission of dengue fever through mosquito. It 
is refuted that it spreads in the air. 

I get infected after my husband, it maybe true 
that dengue fever could be transmitted through 
mosquitoes and air, but not all types of mosquitoes. 

(a) Our model with sentence-level attention (b) Our model without sentence-level attention

Figure 4: The sequences generated by our model with

and without sentence-level attention, respectively.
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(a) On Snopes (b) On PolitiFact

Figure 3: The performance comparison between co-interaction networks (CoI) and some prevalent interaction networks.

Claim: 120 million people had died of the COVID-19 coronavirus disease. 
R1: That's what this video screenshot shows "People don't have a job, people don't know 
where to go, they don't know what to do," Biden said Thursday. "Now we have over 120 
million dead from COVID." 
R2: Is this a prophecy? Coronavirus is terrible. More than one-third of the country died from it. 
R3: He just falsely claimed 120 million Americans died from the coronavirus. "That's a serious 
error. That's not a permissible type of error," Trump said. Trump took to Twitter to criticize 
Biden's mistake, which he called, "mortifying stupid." 
R4: Joe Biden short circuiting again. You better get programmed better next speech. 
R5: The screenshot of the video is one-sided, it is only a segment of the video. However, he 
corrected himself immediately to say the number was actually 120,000. 

Claim: 120 million people had died of the COVID-19 coronavirus disease. 
R1: That's what this video screenshot shows "People don't have a job, people don't know 
where to go, they don't know what to do," Biden said Thursday. "Now we have over 120 
million dead from COVID." 
R2: Is this a prophecy? Coronavirus is terrible. More than one-third of the country died from it. 
R3: He just falsely claimed 120 million Americans died from the coronavirus. "That's a 
serious error. That's not a permissible type of error," Trump said. Trump took to Twitter to 
criticize Biden's mistake, which he called, "mortifying stupid." 
R4: Joe Biden short circuiting again. You better get programmed better next speech. 
R5: The screenshot of the video is one-sided, it is only a segment of the video. However, he 
corrected himself immediately to say the number was actually 120,000. 

Claimed 120 million Americans died of coronavirus is a serious error, Biden's mistake, the screenshot is one-sided. 

(b) The interpretation via visualization of CICD (c) The visualization of captured words by attention weights in ISI 

(a) Generated sequence from CED 
R3 R3 R5 

Figure 5: The Interpretability and transparency of different modules of CICD via a false sample on Snopes.

based evidence aggregating and reasoning model

(Zhou et al., 2019) enables information to transfer

on a fully-connected evidence graph and then utilizes

different aggregators to collect multi-evidence infor-

mation; 4) KGAT: Kernel graph attention network

(Liu et al., 2020) conducts more fine-grained fact ver-

ification with kernel-based attentions, where using

BERT (Base) encoder with ESIM retrieved sentences.

As shown in Table 4, we observe that: CICD out-

performs the two pipelines (NSMN and HAN) by

from 4.3% to 11.0% boost in accuracy, respectively.

This is because these two baselines lack the integra-

tion and reasoning process between relevant articles

when capturing evidence. CICD boosts the perfor-

mance in comparison with GEAR and KGAT, show-

ing at least 1.8% and 1.5% improvement in accuracy

on development and testing sets, respectively. The rea-

son may be that although the two graph-based models

aggregate and reason information from relevant arti-

cles to collect multi-evidence, they treat each relevant

article equally, leading to individual-cognitive rele-

vant articles with some biased semantics interfering

with their reasoning process. It is more feasible for

our model to discover global evidence and local key

evidence fragments comprehensively from the per-

spectives of collective and individual cognition.

4.5 Case Study: Cognition-view Explanation
Analysis

To interpret the results of our model more transpar-

ently and intuitively, we visualize the outputs of each

module of CICD as shown in Figure 5, where Figure

5 (a) is the sequence generated by CED module, and

the highlighted words in Figure 5(b) and 5 (c) are

respectively the words captured by CICD to interpret

the results and the words obtained by ISI module to

obtain the evidence fragments. We could learn:

• ISI ignores some articles with pale and feeble

semantics (R2 and R4), and selects the articles

with more valuable semantics (R1, R3, and R5)

and captures multiple local evidence fragments,

such as ‘this video screenshot shows’ (E1), ‘se-

rious error’ (E2), and ‘screenshot of the video is

one-sided’ (E3). Particularly, fragment E1 is mis-

leading, which reflects the deviation of individual

cognition.

• The sequence generated by CED effectively gains

available evidence ‘120 million Americans a seri-

ous error’ and ‘the screenshot is one-sided’ through

balancing the possible evidence semantics in rele-

vant articles from a global perspective.

• By constraining global and local evidence, CICD

disciplines the misleading evidence fragment E1

captured by ISI, and finally highlights the shared

salient evidence between the both as the final in-

terpretability of the verification results.

5 Conclusion

In this paper, we proposed a unified dual-view model

based on the perspectives of collective and individ-

ual cognition for interpretable claim verification,

which constructed collective cognition view-based
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encoder-decoder module to generate global evidence

and designed individual cognition view-based se-

lected interaction module to explore local key ev-

idence segments. Besides, we introduced incon-

sistent loss to penalize the disagreement between

global and local evidence for promoting the capture

of consistent shared evidence. Experiments on three

different widely used datasets demonstrated the ef-

fectiveness and interpretability of our model. In the

future, we plan to expand the work as follows: 1)

Developing questioning mechanism to filter the sus-

picious evidence; and 2) Integrating social cognition,

psychology, and other interdisciplinary knowledge

to improve the interpretability of claim verification.
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