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Abstract

Reading and comprehension are quintessen-
tially cognitive tasks. Eye movement acts as
a surrogate to understand which part of a sen-
tence is critical to the process of comprehen-
sion. The aim of the shared task is to pre-
dict five eye-tracking features for a given word
of the input sentence. We experimented with
several models based on LGBM (Light Gradi-
ent Boosting Machine) Regression, ANN (Ar-
tificial Neural Network) and CNN (Convolu-
tional Neural Network), using BERT embed-
dings and some combination of linguistic fea-
tures. Our submission using CNN achieved
an average MAE of 4.0639 and ranked 7th in
the shared task. The average MAE was further
lowered to 3.994 in post task evaluation.

1 Introduction

Eye tracking data gauged during the process of nat-
ural and comprehensive reading can be an outset
to understand which part of the sentence demands
more attention. The main objective of the present
experiment is to understand the factors responsi-
ble for determining how we perceive and process
languages.

The CMCL-2021 shared task (Hollenstein et al.,
2021) focuses on predicting the eye-tracking met-
rics for a word. The goal of the task is to train a
predictive model for five eye-tracking feature val-
ues namely, nFix (Number of fixations), FFD (First
fixation duration), TRT (Total reading time), GPT
(Go past time), and fixProp (fixation proportion)
for a given word of a sentence (Hollenstein et al.,
2018; Inhoff et al., 2005). Here, nFix is the total
number of fixations on the current word, FFD is
the duration of the first fixation on the prevailing
word, TRT is the sum of all fixation durations on
the current word including regressions, GPT is the
sum of all fixations prior to progressing to the right
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of the current word, including regressions to pre-
vious words that originated from the current word
and fixProp is the proportion of the participants
who fixated on the current word. With respect to
eye-tracking data, regression refers to the backward
movement of the eye required to reprocess the in-
formation in the text (Eskenazi and Folk, 2017).

In this work we have experimented with two
broad categories of models: regessor based and
neural networks based. Among the regressor based
models, we tried with Catboost, XGboost, Light
Gradient Boosting Machine (LGBM) among others.
Among the Neural Network based models we have
used both ANN and CNN. LGBM gave the best
results among the regressor based models. CNN
produced lowest MAE between CNN and ANN. In
this paper we discuss the best models of each type
and their corresponding parameters in detail.

The paper is divided into the following sec-
tions: Section 2 describes some details of the
dataset used for the experiments. In Section 3
we discuss the data preparation approaches for
feature extraction. Model details are presented
in Section 4, and Section 5 presents analysis of
the results. Section 6 concludes the paper. The
code for the proposed system is available at https:
//github.com/shivaniiitd/Eye_tracking

2 Dataset Description

The present task uses the eye-tracking data of
the Zurich Cognitive Language Processing Cor-
pus (ZuCo 1.0 and ZuCo 2.0) (Hollenstein et al.,
2018, 2020). The dataset is divided into two subsets
Train, and Test. The data statistics are presented
in Table 1. The data was arranged according to
the sentence_id and word_id. The Train data set
contained the values of nFix, GPT, FFD, TRT and
fixProp for each word of the input sentences. We
used the first 100 sentences from the Train data for
validation purposes.

https://github.com/shivaniiitd/Eye_tracking
https://github.com/shivaniiitd/Eye_tracking
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Dataset No of Sentence No of Words
Train 800 15736
Test 191 3554

Table 1: Data statistics

3 Data Pre-processing and Feature
Selection

It is important to identify the features that provide
essential visual and cognitive cues about each word
which in turn govern the corresponding various
eye-tracking metrics for the word. In the present
work we have used BERT embeddings along with
linguistic features (Agarwal et al., 2020) to train
the predictive models.

Mean Absolute Error (MAE) was used for mea-
suring the performance of the proposed systems for
the shared task.

Before feature extraction, the following pre-
processing steps were performed:

• The <EOS> tag and extra white spaces were
stripped from the end of the words.

• Sentences were created by sequentially join-
ing the words having the same sentence_id.

• Additionally, for CNN and ANN models punc-
tuations were removed from the input word.

3.1 Feature Selection

Initially the essential token-level attributes were
extracted as follows:

1. Syllables: The number of syllables in a token
determines its pronunciation. The sentences
were tokenized using the spaCy (Honnibal
et al., 2020), and the syllables1 package was
used to calculate the number of syllables in
each token.

2. BERT Embeddings: The Bidirectional En-
coder Representations from Transformers
(BERT) (Devlin et al., 2019) embeddings are
contextualized word representations. We have
considered the average of the embeddings
from the last four hidden layers. The py-
torch_pretrained _bert2 uncased embeddings
have been used to extract this feature for each
token.

1https://github.com/prosegrinder/python-syllables
2https://github.com/huggingface/transformers

The above-mentioned features are extracted
token-wise but in the training set some input words
(which includes both singleton tokens and hyphen-
ated phrases) contained more than one token, e.g.
‘seventh-grade’

The final attributes that were used for the LGBM
models according to each input word are as follows:

• BERT Embeddings: BERT embeddings for
the input word is calculated by averaging the
embeddings over all the tokens that make up
the word, extracted using the BertTokenizer.

• Syllables: For extracting the syllables for each
input word , we sum the number of syllables
over all the tokens in that word.

• Word_id: This feature was supplied in the
dataset. It indicates the position of each word
or phrase in the sentence.

• Word_length: The total number of characters
present in each input word or phrase.

Some additional features, such as POS tag,
detailed tag, NER tag, dependency label and a
Boolean value to indicate whether a token is present
in the list of standard English stopwords or not,
were also considered. However, these features
have not been incorporated in the final models as
these features failed to improve the models’ per-
formances. To get the values of these features for
the input words, the properties of the last token in
the input word are used, unless it is a punctuation.
In that case the properties of the token before the
punctuation are used. To account for the above,
two additional features were considered:

(a) a binary feature (HasHyphen) to indicate
whether the phrase contains a hyphen or not;

(b) the number of punctuation (NumPunct) in the
phrase;

For illustration, for the input phrase ‘Brandenburg-
Kulmbach,’ the feature HasHyphen is 1 and
NumPunct is 2, and for the other features men-
tioned above, the token ‘Kulmbach’ was used.

4 Proposed Models

In this section we present the details of the three
predictive machine learning regression models
namely, LGBM, ANN and CNN.
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Features Avg_MAE nFix FFD GPT TRT fixProp
Syllables+ 4.01 MAE 4.02 0.69 2.52 1.58 11.24
Word_id+ λ1 6.6 2.6 4.6 9.6 3.6

Word_length+ λ2 12.6 12.6 9.2 0.6 3.6
BERT NL 75 62 62 80 31

Word_id + 4.01 MAE 4.01 0.68 2.52 1.58 11.25
Word_length+ λ1 4.6 1.0 4.6 9.6 10.6

BERT λ2 8.6 11.6 9.2 0.6 18.6
NL 75 62 62 75 31

Syllables+ 4.12 MAE 4.15 0.70 2.55 1.63 11.58
Word_length+ λ1 4.6 5.6 3.6 3.6 9.6

BERT λ2 8.6 15.6 6.6 0.6 9.6
NL 80 93 31 62 62

Syllables+ 4.27 MAE 4.31 0.71 2.59 1.68 12.06
Word_id+ λ1 4.6 2.6 1.6 4.6 7.6

BERT λ2 8.6 12.6 3.6 2.6 7.6
NL 93 62 31 62 31

Table 2: LGBM Regressor Models

4.1 LGBM Model
LGBM is a Gradient Boosting Decision Tree
(GBDT) algorithm which uses two novel tech-
niques: Gradient-based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB)
to deal with a large number of data instances and
large number of features respectively (Ke et al.,
2017).

GOSS keeps all the data instances in the GBDT
with large gradients and performs random sampling
on the instances with small gradients. The sparsity
of feature space in high dimensional data provides
a possibility to design a nearly lossless approach
to reduce the number of features. Many features
in a sparse feature are mutually exclusive. These
exclusive features are bundled into a single feature
(called an exclusive feature bundle).

Five LGBM Regressor models from the Light-
GBM python package3 were trained and tuned on
varied feature spaces. These models were trained
with BERT Embeddings which is present in all
models as a feature, along with different combi-
nations of linguistic features, namely, Word_id,
Word_length, and Syllables.

In the context of the given problem, the follow-
ing hyperparameters were tuned,

• lambda_l1 (λ1): It is the L1 regularization
parameter.

• lambda_l2 (λ2): It is the L2 regularization
parameter.

• num_leaves (NL): This is the main parameter
to control the complexity of the tree model,
and governs the leaf-wise growth of the tree.

3https://github.com/microsoft/LightGBM

The hyperparameters, namely λ1, λ2, and NL,
the overall model MAE (Avg_MAE) calculated
as average of the MAEs corresponding to each
eye-tracking metric, and the individual MAE corre-
sponding to each eye tracking metric evaluated on
the test sets are described in Table 2.

4.2 Artificial Neural Network

We have applied a seven layer deep ANN for the
shared task. First hidden layer has 1024 neurons,
followed by 4 hidden layers of sizes 512, 256, 64
and 16 respectively. The output layer is of size 1.
For each of the five eye-tracking features, we have
trained separate Neural Networks. The ANN is
implemented using Keras with tensorflow backend
(Chollet et al., 2015). Adam optimizer (Kingma
and Ba, 2017) is used to minimize the loss function
(MAE). Rectified linear unit (ReLU) activation is
applied on the dense layers. Hyperparameter tuning
detail is presented in Section 5. The learning rate
is set to decay at a rate of e−0.1 after 15 epochs.
Dropout layers with dropout rate of 0.2 was placed
after the first three hidden layers.

4.3 Convolutional Neural Network

The proposed CNN model has been implemented
with the following configuration. In order to cap-
ture the contextual information from the sentence,
we have used a context window of size K. We split
the whole sentence around that word with a sliding
window of length K. We named two matrices as
left and right context matrix, formed with preced-
ing and succeeding K-1 words, respectively. If the
number of words available for the sliding window
is less than K then K-r rows are padded with zero,
at the start for the left context matrix, and at the end
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Model Features Avg_MAE nFix FFD TRT GPT fixProp
CNN Word_id+ 3.99 MAE 4.02 0.70 2.24 1.58 11.43

Word_length+ BS 32 32 32 32 32
BERT DR 0.44 0.3 0.3 0.3 0.3

LR 1e-4 1e-4 1e-4 1e-4 1e-4
CNN Word_id+ 4.00 MAE 4.03 0.70 2.26 1.59 11.41

Word_length+ BS 16 16 32 16 32
BERT DR 0.4 0.1 0.4 0.3 0.0

LR 1e-4 1e-4 1e-4 1e-4 1e-4
ANN Word_id+ 4.08 MAE 4.06 0.71 2.37 1.58 11.68

Word_length+ BS 64 64 32 16 64
BERT DR 0.2 0.0 0.2 0.0 0.0

LR 1e-5 1e-5 1e-3 1e-4 1e-5
ANN Word_id+ 4.08 MAE 4.06 0.72 2.40 1.59 11.65

Word_length+ BS 64 32 32 64 64
BERT DR 0.0 0.3 0.3 0.2 0.0

LR 1e-5 1e-3 1e-3 1e-5 1e-5

Table 3: CNN model’s performance

for the right context matrix. We have conducted
experiments for values of K in the set {1, 2, 5, 10,
11, 12}. The best results were obtained for K=10.

The left and right context matrices are fed into
two different branches of convolutional layers. The
left branch has two convolutions with filter sizes
3× 3 with ReLU, and 5× 5 without ReLU in two
separate branches. For further processing outputs
from both the branches are concatenated. In the
right branch, two convolution layer with 3×3 filter
with ReLU are stacked.

Batch Normalization and ReLU activation are
applied on the output of convolutional layers, fol-
lowed by a pooling layer. The outputs of both the
branches are fed into two separate convolutional
layers with filter size 64 and kernel size 3 × 3,
followed by two max pooling / average pooling
layers with kernel size 2× 2. Average pooling has
generated the best results. The outputs of the two
branches are flattened to obtain two tensors. The
resulting tensors are averaged, and this acts as the
input to seven fully connected layers with sizes
2048, 1024, 512, 64, 32, 16 and 1, respectively.

The padding used in the convolutional layer is
‘same’ which keeps the input and output dimension
equal. For each of the five eye-tracking features,
we have trained separate Neural Networks. The
model was trained with loss function MAE, batch
size of 32 and Adam optimizer. ReLU activation
function is used for the fully connected layers ex-
cept the output layer. The learning rate is set to
decay at a rate of e−0.1 after 15 epochs. The net-
work has a dropout rate of 0.2 on the CNN layers
and between the fully connected layers of sizes
2048, 1024, 512, and 64. Hyperparameter tuning
details are described below.

Parameters Range
NF [32, 64]
BS [16, 32]
LR [1e-3, 1e-4]
DR [0, 0.1, 0.2, 0.3, 0.4, 0.5 ]

Table 4: CNN Hyperparameter details

Parameters Range
BS [16, 32, 64]
LR [1e-3, 1e-4, 1e-5]
DR [0, 0.1, 0.2, 0.3, 0.4]

Table 5: ANN Hyperparameter details

4.4 Hyperparameter Tuning
Hyperparameter tuning for CNN was performed
on Learning Rate (LR), Batch Size (BS), Dropout
Rate (DR) and Number of Filters (NF) while ANN
hyperparamter tunning was performed on learning
rate, batch size, dropout rate. Hyperopt4 library
was used for grid search. For CNN and ANN the
range of values for grid search parameters are pre-
sented in Table 4 and Table 5, respectively. DR
in ANN was limited to 0.4 since higher value will
leave very few connections. The maximum number
of trials was set to 20. Pooling method variation
was controlled manually. CNN models with Aver-
age pooling and NF 64 produced the lowest MAE.
Additional experiments were conducted on CNN
with feature set word_id, word_length and BERT
was analysed for fine dropout rate of 0.42, 0.44
and 0.46 and higher batch size of 256. Learning
rate was reduced by 0.2 using Keras callback API
ReduceLROnPlateau. EarlyStopping was used to
stop the training process if the validation loss stops
decreasing.

4http://hyperopt.github.io/hyperopt/
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Model Features Avg_MAE nFix FFD GPT TRT fixProp
CNN word_id + Length+ BERT 3.99 4.02 0.7 2.24 1.58 11.43
CNN Syllables + Word_id+Length+BERT 4.00 4.03 0.70 2.26 1.59 11.41

LGBM Word_id + Length+ BERT 4.01 4.01 0.68 2.52 1.58 11.25
LGBM Syllables + Word_id + Length+ BERT 4.01 4.02 0.69 2.52 1.58 11.24

Table 6: Analysis of the best performing models

5 Results and Analysis

The comparison among top four performing mod-
els, ranked according to MAE, is presented in Ta-
ble 6. CNN models with the feature space Word_id
+ Length + BERT , as described in Section 3.1 per-
formed the best with MAE 3.99.

It has been observed that Word_id, Length and
the BERT embeddings are all present in the fea-
ture space of the best performing models, hence
these features play an important role in the deter-
mination of the eye-tracking metrics. Although,
addition of Syllables to the feature space of the
LGBM Model did not decrease the MAE corre-
sponding to nFix and FFD. In case of CNN, inclu-
sion of Syllables decreased the MAE correspond-
ing to fixProp. The best result with feature set
POS+word_len+word_id+BERT was generated by
CNN with an MAE of 4.07. Removal of POS tags
as a feature lead to improvement in FFD and TRT
however, the overall performance decreased.

The LGBM Models give the best results cor-
responding to nFix, FFD and fixProp among the
top 4 best performing models, While CNN based
model performed the best on Avg_MAE and GPT.
As we observe in Table 2, in most of the cases, the
removal of Word_id and Length led to a decline
in the systems’ performance. It is also observed
that the complex structure of Neural Networks fail
to model some of the features in comparison with
LGBM model. These experiments also indicate
that the feature space for individual eye-tracking
features may be curated separately to achieve a
better accuracy.

6 Conclusion

The aim of the present work is to develop a pre-
dictive model for five eye-tracking features. Ex-
periments were conducted using LGBM, ANN and
CNN models trained on a feature space consisting
of pre-trained BERT embeddings and linguistic fea-
tures namely, number of syllables, POS tag, Word
length and Word_id. The discussed CNN Mod-
els achieved the best performance with respect to
the test data. Experiments for studying the impor-

tance of individual features indicate that POS tag
has the lowest impact on the overall MAE, with
respect to the CNN Models and that the addition
of Syllables to the feature space in LGBM models
does not improve the overall performance of the
system. It is further observed that individual lin-
guistic features lead to a varied effect on different
eye-tracking metrics. Separate tuning of hyperpa-
rameters and feature space corresponding to the
LGBM and Neural Network based model, for each
eye-tracking metric, can improve the overall sys-
tem performance.

Even though CNN architecture is more complex,
but with the same set of features the LGBM regres-
sor gave almost same results. Currently, we did not
perform a rigorous hyperparameter tuning which
may be taken up in future.
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