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Abstract

Numerical common sense (NCS) is necessary
to fully understand natural language text that
includes numerals. NCS is knowledge about
the numerical features of objects in text, such
as size, weight, or color. Existing neural lan-
guage models treat numerals in a text as string
tokens in the same way as other words. There-
fore, they cannot reflect the quantitative as-
pects of numerals in the training process, mak-
ing it difficult to learn NCS. In this paper, we
measure the NCS acquired by existing neural
language models using a masked numeral pre-
diction task as an evaluation task. In this task,
we use two evaluation metrics to evaluate the
language models in terms of the symbolic and
quantitative aspects of the numerals, respec-
tively. We also propose methods to reflect not
only the symbolic aspect but also the quantita-
tive aspect of numerals in the training of lan-
guage models, using a loss function that de-
pends on the magnitudes of the numerals and a
regression model for the masked numeral pre-
diction task. Finally, we quantitatively evalu-
ate our proposed approaches on four datasets
with different properties using the two met-
rics. Compared with methods that use exist-
ing language models, the proposed methods re-
duce numerical absolute errors, although exact
match accuracy was reduced. This result con-
firms that the proposed methods, which use the
magnitudes of the numerals for model train-
ing, are an effective way for models to capture
NCS.

1 Introduction

Numerical common sense (NCS) is knowledge
about the numerical features of objects in the real
world, such as size, weight, or color, each of which
has its own range and probability distribution (Ya-
mane et al., 2020). Consider the following example
sentence.

“John is 200 cm tall."

Figure 1 An overview of our proposed approaches for the
masked numeral prediction task. We propose to use a new
loss function LossNUM (LN) that is based on the magnitudes
of numerals for fine tuning masked word prediction (MWP)
model and a regression (REG) model that treats the masked
numeral prediction as a regression task.

When we read this sentence, we can infer from it
not only that John’s height is 200 cm but that John
is a tall person. However, this kind of inference can-
not be achieved by a system that does not have NCS
about how tall people generally are. Therefore, it
is essential to have knowledge about real-world nu-
merical features for a deep understanding of natural
language text containing numerals.

In recent years, BERT, GPT-3, and other neural
language models have achieved a level of perfor-
mance on par with or better than human perfor-
mance in many natural language processing tasks
(Devlin et al., 2019; Liu et al., 2019; Lan et al.,
2020; Brown et al., 2020). Moreover, several stud-
ies have recently been conducted to investigate
whether pre-trained neural language models have
commonsense knowledge, and these studies often
conclude that the language models have been suc-
cessful in acquiring some commonsense knowl-
edge (Petroni et al., 2019; Davison et al., 2019;
Bouraoui et al., 2019; Zhou et al., 2019; Talmor
et al., 2020).

However, it has also been reported that current
neural language models still perform poorly in nat-
ural language processing tasks that require NCS
and a deep understanding of numerals, such as
numerical reasoning, numerical question answer-
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ing, and numerical error detection/correction (Dua
et al., 2019; Chen et al., 2019). Numerals appear
frequently in various forms, such as dates, numbers
of people, percentages, and so on, regardless of the
domain of passages. Hence, the acquisition of nu-
merical common sense by neural language models
and the analysis of the acquired numerical common
sense are essential research topics to support sys-
tems for reasoning on text containing numerals and
smooth conversation with humans at a high level.

One of the major problems that make it difficult
for language models to understand the meaning
of numerals and to acquire NCS is that naive lan-
guage models treat numerals in text as string tokens,
just like any other word (Spithourakis and Riedel,
2018). This makes it difficult to obtain a mapping
between the string tokens and the magnitudes of
the numerals, which is needed to capture NCS.

In this study, we use the masked numeral predic-
tion task (Spithourakis and Riedel, 2018; Lin et al.,
2020) to evaluate and verify the NCS acquired by
neural language models. The task requires models
to predict masked numerals in an input passage
from their context. We use two types of evalu-
ation metrics: hit@k accuracy (Lin et al., 2020)
and MdAE and MdAPE (Spithourakis and Riedel,
2018) for this task. Hit@k accuracy calculates the
percentage of predictions in which the groundtruth
numeral is within the top k predicted numerals, and
we can say that they evaluate language models in
terms of the symbolic aspect of numerals. MdAE
and MdAPE are calculated from the difference be-
tween the groundtruth numerals and the predicted
numerals, and we can say that they evaluate lan-
guage models in terms of the quantitative aspect
of numerals.

To perform this task, we investigate the follow-
ing two approaches to reflect the magnitudes of the
numerals for fine-tuning language models on the
masked numeral prediction task (Figure 1).

1. A masked word prediction model with a new
loss function LossNUM that is based on the
differences between the groundtruth numerals
and predicted numerals;

2. A masked word prediction model, called the
REG model, structured with an additional out-
put layer to predict a numeral from an input
passage containing a masked numeral.

We use the BERT-based masked word prediction
model as a baseline and conducted experiments on

four datasets, which differ from each other in the
length and domain of the passages as well as the
distribution and characteristics of the numerals ap-
pearing in the datasets. We compare the results and
investigate the relationship between the character-
istics of the numerals in the datasets and the perfor-
mance of each method. Although fine-tuning with
LossNUM causes a decrease in the exact match
accuracy, we found that it reduces numerical ab-
solute errors, which indicates the effectiveness of
LossNUM. The results of the REG model show
the difficulty of predicting numerals in natural lan-
guage text with the regression model. However,
there were some numerals that the REG model
predicted better than the existing language model,
indicating that the REG model and existing lan-
guage models are good at predicting numerals with
different characteristics.

In our experiments, to eliminate the negative ef-
fects of the sub-word approach, we do not split the
numerals into sub-words. The sub-word approach
splits words into shorter tokens called sub-words.
It has the advantage that even low-frequency words
can be represented by a combination of sub-words
that appear in a text more frequently. However,
unlike the case of words, sub-words derived from
numerals often have little relationship to the mean-
ing of the original numerals, which can make it
difficult to understand the meaning of numerals
(Wallace et al., 2019). All other words are sepa-
rated into sub-words in our experiments.

To summarize, in this work, we tackle the prob-
lem of dealing with numerals in naive language
models on the masked numeral prediction task. Our
contributions are as follows:

• We use two evaluation metrics (exact match
accuracy and numerical absolute errors) for
the masked numeral prediction task to evalu-
ate the language models in terms of the sym-
bolic and quantitative aspects of the numerals,
respectively.

• We propose a new loss function to reflect not
only the symbolic aspect but also the quan-
titative aspect of numerals in the training of
language models. For the masked numeral
prediction task, we also employ a regression
model, which predicts numerals as quantities.

• We quantitatively evaluate our proposed ap-
proaches on four datasets with different prop-
erties using the two metrics. The reduction
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in the numerical absolute errors of the pre-
dictions confirms the effectiveness of our pro-
posed approaches.

2 Related Work

2.1 Masked Numeral Prediction
Masked numeral prediction is the task of predict-
ing a masked numeral in an input passage from
the context (e.g., “The movie I saw yesterday was
[MASK] minutes long.") It can be used as an in-
dicator to evaluate the NCS acquired by language
models.

Lin et al. (2020) analyzed NCS captured by cur-
rent language models using a masked numeral pre-
diction task in which masked numerals were lim-
ited to numerals that could be uniquely determined,
such as “A car usually has [MASK] wheels." They
showed that even the current best pre-trained lan-
guage models still perform poorly compared to
humans on the task, which requires NCS. They
also found that even though pre-trained language
models seemingly make the correct predictions, the
models are often unable to maintain the correct an-
swer under even small changes, for instance, if the
above target sentence changes to “A car usually has
[MASK] round wheels."

Spithourakis and Riedel (2018) examined numer-
acy of neural language models using the masked
numeral prediction task. Numeracy refers to the
ability to understand the meanings of numerals and
to deal with them properly. They conducted their
experiments on scientific paper and clinical text
datasets that include many numerals that represent
the quantities of something. To improve the predic-
tion accuracy for such numerals, they proposed a
method that uses character-level recurrent neural
networks (Graves, 2013; Sutskever et al., 2011) for
prediction, a method that predicts the distribution
of the numerals as a mixture of Gaussian distribu-
tions, and an ensemble method of these methods.
They showed that the accuracy of the prediction of
quantity-like numerals can be improved by meth-
ods that consider the magnitudes of the numerals.

2.2 Natural Language Processing Tasks That
Involve Numerals

2.2.1 Machine Reading Comprehension
Requiring NCS

Dua et al. (2019) created a machine reading com-
prehension dataset called DROP that contains ques-
tions requiring numerical operations such as addi-

tion, subtraction, and sorting to answer correctly.
They used the DROP dataset to evaluate current ma-
chine reading comprehension models and showed
that many questions requiring only simple numer-
ical operations easily solved by humans cannot
be answered correctly by current models. To im-
prove the performance of the models on the DROP
dataset, Hu et al. (2019) built a specialized archi-
tecture for numerical operations and achieved a
significant improvement in accuracy, although not
to human level. In contrast, Geva et al. (2020)
showed that even if they use a generative model
that is not specialized for numerical operations,
they can improve the performance on DROP using
additional data for numerical operation training. In
our experiments, we use the passages in the DROP
dataset for the masked numeral prediction task.

2.2.2 Numerical Error Detection
Numerical error detection is the task of determin-
ing whether or not numerals in input passages are
errors (Chen et al., 2019; Spithourakis et al., 2016).
To determine if a target numeral is an error, it is
necessary to have knowledge of the range of values
that the numeral can and cannot take. For example,
to notice numerical errors in sentences with dates
(for example, “Her birthday is December -3." or
“Her birthday is December 20.5."), it is necessary
to know that the range of possible values for nu-
merals representing dates is generally an integer
between 1 and 31. Therefore, the accuracy of nu-
merical error detection can be used to quantitatively
evaluate the NCS of the detection models. Chen
et al. (2019) experimented with the BiGRU model
to detect numerals multiplied by a random factor
in Numeracy-600K, which is a dataset of market
comments. They showed that the BiGRU model
was able to detect numerical errors with less than
60% accuracy even with small numeral changes of
approximately 10%. Moreover, it achieved an accu-
racy of only 76% even with large numeral changes
of approximately 90%. In our experiments, we
use the article titles from this dataset as one of the
datasets for the masked numeral prediction task.

2.2.3 Numeral Type Prediction
Numeral type prediction is the task of classifying
numerals in text into one of several fixed categories.
Prediction models are required to classify numerals
using their numerical values and contexts. Chen
et al. (2018) aimed to understand the meanings
of numerals in financial tweets for crowd-based
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Token-type • Spiders have 8 legs.
NCS • A week has 7 days.

Quantity-type • The adult male is approximately 170 cm tall.
NCS • The length of movies is about 120 minutes.

Table 1 Two types of NCS.

forecasting, providing the dataset FinNum, which
contains financial tweets in which numerals are
annotated with their categories. Their categories in-
clude “Monetary," “Percentage," “Temporal" (date
and time), and so on. They used a convolutional
neural network (CNN), long short-term memory
(LSTM), and bidirectional LSTM in experiments
and concluded that character-level CNN performed
the best. We use the FinNum dataset in our experi-
ments for the masked numeral prediction task.

3 NCS

3.1 Two Types of NCS

NCS is the knowledge about numerical features of
objects in the real world, such as size, weight, and
price. NCS is required to understand natural lan-
guage text that includes numerals or that refers to
the real-world numerical features of some objects.
We focus on the fact that numerals have two as-
pects, symbolic and quantitative, and hypothesize
that there are two types of NCS: token type and
quantity type (Table 1).

Token-type NCS refers to numerical knowledge
involving numerals that can be appropriately under-
stood as string tokens. This knowledge is definition-
like or rule-like knowledge that cannot use other
numerals instead, like “A week has 7 days." (Table
1). This kind of NCS is relatively easy to learn,
even with conventional language models that treat
numerals as string tokens in the same way as other
words. Related work on the evaluation and analy-
sis of token-type NCS acquired by current neural
language models was reviewed in Section 2.1.

Quantity-type NCS refers to knowledge of nu-
merical properties that have some kind of distribu-
tion or range, like “The adult male is approximately
170 cm tall." (Table 1). To acquire this kind of NCS,
it is necessary to understand numerals as not only
string tokens, but also quantities. Quantity-type
NCS is more important for numerical error detec-
tion/correction and numerical reasoning than the
token-type NCS. In recent years, there has been
an increasing amount of research on the acquisi-
tion of quantity-type NCS, including the creation

of datasets that collect the distributions of some
attributes such as weight, length, and price of com-
mon objects as well as the verification of such NCS
acquired by neural language models using these
datasets (Elazar et al., 2019; Zhang et al., 2020;
Yamane et al., 2020). In this paper, we aimed to
acquire quantity-type NCS as well as token-type
NCS with language models, focusing on the fact
that there are these two types of NCS.

3.2 Masked Numeral Prediction
3.2.1 Task Description
Masked numeral prediction is the task of predicting
a masked numeral in an input natural language text
from the words around the masked numeral (e.g.,
“The movie I saw yesterday was [MASK] minutes
long.") (Spithourakis and Riedel, 2018; Lin et al.,
2020). In this paper, we use this task as an indicator
to evaluate the NCS acquired by language models.

The masked numeral prediction task is defined
as follows:

Input : A passage containing exactly one tar-
get numeral masked with a special token
“[MASK]"

Output : A ranking of predicted numerals

Language models take a passage that contains ex-
actly one masked numeral as input, predict the nu-
merals that could replace the mask token from the
context words, and return the predicted numerals
in the form of a ranking. The aim of the language
models is to predict numerals that are closer to the
groundtruth numerals. In the task considered in this
paper, the target numerals are limited to numerals
in arithmetic form such as “3.14" and “1,000," and
numerical words such as “five" or “twenty" are not
considered. For negative numerals, only the parts
excluding signs were treated as target numerals;
the signs were treated as context words (for exam-
ple, in the case of the negative numeral “-10," only
“10" was masked as the target numeral). For frac-
tions, the denominator and numerator were treated
as two different numerals in training and evaluation
(e.g., the fraction “2/3" was masked in two ways:
“[MASK]/3” and “2/[MASK]”).

3.2.2 Evaluation Metrics
Exact Match Accuracy A masked numeral pre-
diction model generates a probability distribution
over its vocabulary of numeral tokens using a soft-
max function and returns a ranking of them for each
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mask. Hit@k accuracy calculates the percentage
of predictions in which the groundtruth numeral is
within the top k predicted numerals from the gener-
ated ranking (Lin et al., 2020). In our experiments,
we used k = 1, 3, and 10 for evaluation.

Numerical Absolute Error The hit@k accuracy
metric simply evaluates whether the groundtruth
numerals are included in the top k predictions. It
does not take into account how close the predicted
numerals are to the groundtruth numerals. How-
ever, in the masked numeral prediction task, a pre-
diction for a mask that is closer to the groundtruth
numeral is generally considered to be a better pre-
diction, even if it is incorrect, so we need an addi-
tional evaluation metric to evaluate language mod-
els in terms of the magnitude of the difference be-
tween the groundtruth numeral and the predicted
numeral.

Therefore, in the evaluation in this paper, fol-
lowing a previous work (Spithourakis and Riedel,
2018), we use the median absolute error (MdAE)
and median absolute percentage error (MdAPE).
MdAE and MdAPE are commonly used to eval-
uate regression models. They evaluate closeness
on the number line between groundtruth numerals
and predicted numerals (Spithourakis and Riedel,
2018). We can say that they evaluate language mod-
els in terms of the quantitative aspects of numerals.
MdAE and MdAPE are calculated as follows:

MdAE = median{|ansi − predi|} (1)

MdAPE = median

{∣∣∣∣ansi − predi
ansi

∣∣∣∣} (2)

where ansi is the magnitude of a groundtruth nu-
meral, predi is the magnitude of a predicted nu-
meral, and N is the number of masked numerals.

4 Approach

4.1 LossNUM

Naive masked word prediction (MWP) models re-
turn a probability distribution over their vocabulary
(only numeric words) and they are trained using
the cross entropy loss between their outputs and
the distribution of the correct answers as a loss
function. The usual cross entropy loss treats each
token in the vocabulary except for the correct an-
swer equally. However, in the case of the masked
numeral prediction task, we are motivated to train
language models with a loss function that yields a
smaller error for predictions that are numerically

closer to the groundtruth numeral and a larger er-
ror for predictions that are further away. This is
because it is generally considered that a prediction
of “9" is better than a prediction of “1" for a mask
for which the correct answer is “10." Therefore, in
this paper, we propose a loss function LossNUM,
that depends on the magnitudes of the numerals for
fine-tuning MWP models.
LossNUM is defined as follows:

(3)LossNUM =
N∑
i=1

{
(log(ansi)− log(predi))

2

× CELi

}
where ansi is the numerical magnitude of a
groundtruth numeral, predi is the magnitude of
the initial numeral predicted by the MWP model,
N is the number of masked numerals, and CELi is
the cross entropy loss calculated for the i-th masked
numeral. LossNUM is computed using the logarith-
mic differences between the groundtruth numerals
and predicted numerals following the treatment of
numerical errors in a previous study (Geva et al.,
2020). This is because the logarithmic difference
gives more weight to off-by-one errors in small
numerals, which are considered to be more fatal
than off-by-one errors in large numerals. These
differences are then multiplied by the usual cross
entropy loss to obtain the LossNUM. If it is used
when fine-tuning pre-trained language models, we
expect that the models will be fine-tuned to return
numeral tokens that are numerically closer to the
groundtruth numerals.

4.2 REG Model

The approach described in Section 4.1 uses ordi-
nary MWP models and the proposed loss, which
reflects the magnitudes of the predicted and
groundtruth numerals as the loss function during
fine tuning. In this section, we propose to use a
regression (REG) model for the masked numeral
prediction task.

The REG model is structured with an additional
numeric output layer as the final layer of BERT.
The output layer generates a single numeral be-
tween 0 and MAX_NUM from an input passage
processed by BERT, where MAX_NUM is the
largest numeral occurring in training data. The
mean squared error between groundtruth numerals
and predicted numerals, which is often used as a
loss function and an evaluation metric in regression
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tasks, is adopted as the loss function (LossMSE)
for fine-tuning the REG model on the masked nu-
meral prediction task. Similarly to the calculation
of LossNUM, LossMSE is calculated using the log-
arithmic values of both the groundtruth numerals
and predicted numerals to give more weight to off-
by-one errors in small numerals, which are consid-
ered to be more fatal than off-by-one errors in large
numerals.

LossMSE =
N∑
i=1

(log(ansi)− log(predi))
2 (4)

where ansi is the numerical magnitude of a
groundtruth numeral, predi is the magnitude of
the initial numeral predicted by the REG model,
and N is the number of masked numerals. For the
evaluation, which includes exact match accuracy,
the final output numeral is rounded to the nearest
integer and is used as the initial predicted numeral.
Next, the integers closest to the first predicted nu-
meral are used as the second predicted numeral,
the third predicted numeral, and so on, in order of
closeness.

5 Experiments

5.1 Dataset
In our experiments, we used four datasets, DROP
(Wikipedia) (Dua et al., 2019), arXiv (Science Pa-
pers) (Spithourakis and Riedel, 2018), FinNum (Fi-
nancial Tweets) (Chen et al., 2018), and Numeracy-
600K (Article Titles) (Chen et al., 2019). The data
in these datasets differ in passage length, the do-
main of the passages, and the distribution of the
numerals that appear in the datasets. These datasets
were created and used for different numerical tasks
such as numerical machine reading comprehension
and numeral type prediction (Section 2). We use
them for the masked numeral prediction in this
work. We denote these datasets as “WP," “SP,"
“FT," and “AT," respectively.

Statistics about the passages and numerals in
these four datasets are listed in Table 2. The
percentage of numerals that appear only in each
dataset (“% of one-time numerals"), the number
of different numerals that appear in a dataset (“Va-
riety of numerals"), and the number of numerals
that appear more than once in the same passage
(“Numeral duplication") are given. Every passage
in all four datasets contains one or more numerals.

WP and SP have relatively long passages, and
prediction models can make predictions based on

Statistic WP SP FT AT

Number of passages 4,329 14,821 3,992 420,000
Ave. passage len [tokens] 281.8 278.2 36.7 12.9

Number of numerals 65,783 120,105 10,312 537,214
% of integers 96.4% 80.0% 86.7% 98.5%
% of one-time numerals 2.93% 3.69% 9.74% 0.36%
Variety of numerals 3,667 7,944 1,503 4,204
Numeral duplication 25,269 57,372 1,354 22,555

Mean 1.57e6 5.55e16 2.02e15 2.98e7
Median 24.0 5.0 20.0 17.0

Table 2 Dataset statistics across different four datasets (train-
ing set).

(a) WP (b) SP

(c) FT (d) AT

Figure 2 Distribution of the numerals in the training data.

hints from unmasked numerals around the masked
numeral. In contrast, FT and AT have shorter pas-
sages, so there are fewer unmasked numerals in
the same passage. In addition, WP and AT tend to
contain more token-type numerals such as dates,
years, and game scores, whereas SP and FT tend
to contain more quantity-type numerals such as the
scores of experimental results and stock prices.

The distribution of the numerals in each dataset
is shown in Figure 2. The x-axis of each figure
shows, from left to right, the counts of numerals
less than 1, numerals between 1 and 10, ..., nu-
merals between 10,000 and 100,000, and numerals
greater than 100,000. We can see from this figure
that WP and AT certainly contain many years, and
thus the proportion of four-digit numerals in WP
and AT is higher than in the other datasets, and
FT has more numerals with six or more digits to
represent high amounts of money.

5.2 Experimental Setup

In the experiments, we used the BERT-based MWP
model as the baseline model. It consists of the
BERT model with an additional softmax layer as
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the final layer. Given an input passage processed by
BERT, the softmax layer outputs the probability dis-
tribution over the model’s vocabulary of numeric
words. Each mask in a passage can be filled with
a single numeric word, and the numeric vocabu-
lary contains not numerals expressed in English
words such as “ten" and “twenty-four" but numer-
als expressed in arithmetic characters such as “10,"
“2021," and “10,000."

In this experiment, we used the Adam optimizer
with a learning rate of 5 × 10−5. The batch size
for fine-tuning and evaluation was 32 and the max-
grad-norm was 1.0. All tokens except the numerals
in the passages were tokenized by the BERT tok-
enizer and passages were truncated to sequences
no longer than 512 tokens.

In this evaluation, we did not split numerals into
sub-words using BERT but treated them as single
words using our own additional rules. By treating
numerals as single words, we believe that it be-
comes easier to learn mappings between strings of
numerals and their corresponding numerical mag-
nitudes, which is difficult to learn from sub-word
segmented numerals. The single word segmenta-
tion of numerals also eliminates the need to use
encoder–decoder models or other methods to pre-
dict sub-word sequences for masks when predicting
numerals, which has the advantage of making the
masked numeral prediction task easier to handle,
even for naive MWP models.

6 Result and Discussion

6.1 LossNUM

Table 3 shows the result of the naive BERT-based
MWP model with pre-training but without fine-
tuning (MWP), fine-tuned MWP with cross entropy
loss (Ft. MWP w/ CEL), and fine-tuned MWP with
LossNUM (3) (Ft. MWP w/ LN). Each dataset is
divided into three parts: training set, validation set,
and test set. Each fine-tuned model is fine-tuned
first on the training set and then on the validation
set of the corresponding dataset, and then it is eval-
uated on the test set of the same dataset.

First, comparing MWP and Ft. MWP w/ CEL,
we can see that the scores of all metrics have been
improved by fine-tuning for all datasets. Moreover,
the increases in the scores obtained on FT and AT
are substantially larger than those obtained on WP
and SP. This is probably because the average pas-
sage lengths of WP and SP are longer than those
of FT and AT, and the language models succeeded

Dataset Approach hit@1↑ hit@3↑ hit@10↑ MdAE↓ MdAPE↓

MWP 23.8 32.1 45.0 7.0 42.9
WP Ft.MWP w/ CEL 28.5 36.6 49.0 5.4 25.0

Ft.MWP w/ LN 28.5 37.2 50.2 6.0 28.6

MWP 40.1 50.2 63.1 2.0 50.0
SP Ft.MWP w/ CEL 45.5 55.5 67.7 1.0 33.3

Ft.MWP w/ LN 48.4 57.6 69.2 1.0 25.5

MWP 19.9 27.8 43.2 10.0 85.1
FT Ft.MWP w/ CEL 40.5 49.1 60.0 3.0 50.0

Ft.MWP w/ LN 40.0 48.2 59.4 3.0 46.7

MWP 20.1 32.7 54.7 7.0 80.0
AT Ft.MWP w/ CEL 56.3 69.1 80.4 1.0 0.0994

Ft.MWP w/ LN 55.7 68.5 80.0 1.0 0.0995

Table 3 Hit@k accuracy (%), MdAE, and MdAPE (%) of
the BERT-based MWP models on the four datasets.

in predicting masked numerals in WP and SP to
some extent from context words and surrounding
unmasked numerals without fine-tuning (Table 2).

Next, we compare Ft.MWP w/ CEL and Ft.
MWP w/ LN. Focusing on the MdAE and MdAPE
scores, it is confirmed that the reduction in the nu-
merical absolute errors of the predictions, which
is the objective of the proposed loss function
LossNUM, is achieved on the SP and FT datasets.
In contrast, the MdAE and MdAPE scores of the
WP and AT datasets increased. This may be due
to the different nature of the numerals in these
datasets. Because of the nature of the domains
of these datasets, the WP and AT datasets contain
many numerals that are better understood as string
tokens, such as years, dates, and football game
scores. Hence, fine-tuning with LossNUM does
not improve the accuracy of masked numeral pre-
diction in these datasets. In contrast, the SP and
FT datasets contain more numerals that are better
understood as quantities, such as the numerals rep-
resenting scores of experimental results or detailed
amounts of money, and it is thought that reflecting
the magnitudes of these numerals in model train-
ing improves the prediction accuracy in SP and
FT.1 The proposed loss function LossNUM, which
is intended to help language models understand
the magnitudes of the numerals and reduce the nu-
merical absolute errors, also leads to a small but
significant improvement in the hit@k accuracies
on some datasets.

Passages a) and b) in Table 4 are examples where
the MWP model fine-tuned with the cross entropy
loss made largely incorrect predictions. Passage
a) shows predictions in a context where it can be

1The percentage of integers in the dataset and the distribu-
tion of the numerals can also reveal the trend of the numerals
in the dataset (Table 2, Figure 2).
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inferred that the masked numeral is greater than
1724 and not much larger than 1724. The MWP
model fine-tuned with the cross entropy loss re-
turned “1925," which is numerically far from the
groundtruth numeral, although it is considered to
be a numeral representing a year. In contrast, the
MWP model fine-tuned with LossNUM returned
“1727," which is not correct, but is above 1724 and
not far from 1724. Note that “1925" and “1727" do
not appear in the context passage, and the models
chose these numerals out of their respective vocab-
ularies. In passage b), the context suggests that
the masked numeral is considered to be a numeral
representing a percentage between 0 and 100 (more
specifically, between 75.6 and 100) from its context.
However, for this mask, the MWP model fine-tuned
with the cross entropy loss predicted “50,000,"
which substantially exceeds 100. In contrast, the
MWP model fine-tuned with LossNUM success-
fully predicted a numeral less than 100, although it
should be greater than 75.6. These are successful
examples where language models were fine-tuned
to predict numerals that are numerically close to
the groundtruth numerals by fine-tuning them with
LossNUM, which imposes large penalties on nu-
merically large errors. In some cases, fine-tuning
language models with LossNUM caused them to
fail to predict numerals that the models fine-tuned
with the cross entropy loss predicted correctly. This
could also cause them to predict numerals that were
rather far from the groundtruth numerals.

6.2 REG Model

In this section, we compare and analyze prediction
results of the naive BERT-based MWP model fine-
tuned with the cross entropy loss and the REG
model fine-tuned with LossMSE (4). We used the
WP dataset to train and evaluate them.

The results of the fine-tuned MWP model with
the cross entropy loss (Ft. MWP w/ CEL) and the
fine-tuned REG model with LossMSE (Ft. REG w/
MSE) listed in Table 5 reveal that the REG model
is substantially inferior to the MWP model with re-
spect to prediction accuracy. 2 However, the REG
model can predict large numerals better and has
fewer large errors, indicating that the two models
are good at predicting numerals with different char-
acteristics (Figure 3). Figure 3 shows heat maps

2Note that the difference between the scores of “Ft. MWP
w/ CEL" in WP on Table 3 and the scores of “Ft. MWP w/
CEL" on Table 5 is because the models in Table 5 are trained
on half of the Wikipedia dataset.

(a) Fine-tuned MWP model (b) Fine-tuned REG model

Figure 3 Confusion matrices of the digits of the groundtruth
numerals and the predicted numerals from the two models.

representing confusion matrices of the groundtruth
numerals and the numerals predicted by the two
models. The numerals are classified by the num-
ber of digits. In both heat maps, the y axis is the
number of digits of the groundtruth numerals and
the x-axis is that of predicted numerals. The darker
the blue, the higher the percentage of numerals
belonging to the corresponding cell in each row.

The percentage of substantially incorrect predic-
tions that differ by more than one, two, and three
digits from the groundtruth numerals are respec-
tively 8.5%, 3.4%, and 1.5% for the MWP model,
whereas they are significantly lower, that is, 7.7%,
1.8%, and 0.4% for the REG model (Table 6). This
indicates that the overall prediction accuracies of
the REG model are quite low, and for many numer-
als, the MWP model can provide better predictions.
However, there are certain numerals that the REG
model can predict more accurately than the MWP
model. Moreover, the confusion matrices also in-
dicate that the REG model is more suitable for
predicting large numerals than the MWP model,
suggesting that the MWP and REG models are
good at predicting different types of numerals.

Table 4 shows examples of incorrect predictions
made by the MWP models and the REG model.
Passage c) is an example where the REG model
made better predictions for a large numeral than
did the MWP models. The reason why the MWP
models predicted “94.7" and “10.7" is that the con-
text in which the word “census" appears in the
training data has many occurrences of numerals
that represent percentages (including “94.7" and
“10.7"), such as the percentage of population by age.
From these results, it can be seen that the MWP
models basically do not understand the magnitude
of the numerals and learn relationships between nu-
merals as string tokens and context words. Passage
d) shows that the MWP models are effective in pre-
dicting a masked numeral where the groundtruth
numeral also appears elsewhere in the passage.
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Passage Ans CEL LN REG

a) Captain John Lovewell made three expeditions against the Indians. On the first expedition
in December 1724, he and his militia company of 30 men left Dunstable, . . . On December
10, 1724, they and a company of rangers killed two Abenakis. In February [MASK],
Lovewell made a second expedition to the Lake Winnipesaukee area. . . .

1725 1925 1727 762.0

b) Houston is considered an Automobile dependency city, with an estimated [MASK]% of
commuters driving alone to work in 2016, up from 71.7% in 1990 and 75.6% in 2009. . . .

77.2 50,000 11 12.0

c) As of the census of 2010, there were [MASK] people, 140,602 households, and 114,350
families residing in the county. . . .

516,564 94.7 10.7 118523.0

d) In September 1941, Partisans organized sabotage at the General Post Office in Zagreb.
. . . In November [MASK], German troops attacked and reoccupied this territory, with the
majority of Partisan forces escaping towards Bosnia. . . .

1941 1941 1941 1287.0

Table 4 Examples of incorrect predictions in the WP dataset. We list the context passages containing one masked numerals
(“Passage"), the groundtruth numerals (“Ans") and the numerals predicted by the MWP model fine-tuned with the cross entropy
loss (“CEL"), by the MWP model fine-tuned with LossNUM (“LN"), and by the REG model fine-tuned with LossMSE (“REG").

Model hit@1↑ hit@3↑ hit@10↑ MdAE↓ MdAPE↓

Ft.MWP w/ CEL 27.4 35.8 48.6 6.0 28.6
Ft.REG w/ MSE 4.19 7.52 15.2 54.0 60.0

Table 5 Hit@k accuracy (%), MdAE, and MdAPE (%) of
two approaches on the WP dataset.

Model ±2~ digits ±3~ digits ±4~ digits

Ft.MWP w/ CEL 8.5% 3.4% 1.5%
Ft.REG w/ MSE 7.7% 1.8% 0.4%

Table 6 Percentages of substantially incorrect predictions of
the MWP and REG model.

6.3 Future Work

MdAE, which uses the numerical absolute errors
between predicted numerals and groundtruth nu-
merals, is sensitive to the scale of the data and
is easily affected by the prediction accuracy for
large numerals in a dataset that contains numer-
als of different scales and types. MdAPE, which
evaluates absolute percentage errors, imposes large
penalties on the overestimation of masked numer-
als. For example, a prediction of “1" for “31"
in a sentence “Today is October 31." and a pre-
diction of “31" for “1" in a sentence “Today is
October 1." should both be equally wrong, but
the former results in an error of approximately
|31−1|
31 × 100 ≈ 100%, whereas the latter results

in an error of |1−31|1 × 100 = 3000%. Because of
these problems, there is room for consideration of
the appropriate evaluation metrics for the masked
numeral prediction task.

Although the REG model has a lower prediction
accuracy than existing language models, there are
certain numerals that the REG model can predict

more accurately than the MWP model. This im-
plies that the overall prediction accuracy can be
improved by using the MWP model and the REG
model differently depending on the target numer-
als. Such a combination method is also one task
for future work.

7 Conclusion

In this paper, we used the exact match accuracy
and numerical absolute errors metrics to evaluate
the masked numerical prediction task, focusing on
the fact that numerals have two aspects: symbolic
and quantitative. Based on this fact, we proposed
two methods to reflect the two aspects of numer-
als in the training of language models. Although
the proposed loss function, LossNUM, decreased
the exact match accuracy slightly, it also reduced
the numerical absolute errors on the masked nu-
meral prediction task, indicating the effectiveness
of LossNUM. Furthermore, we analyzed the re-
lationship between the properties of numerals in
datasets and the performances of different predic-
tion methods on four datasets with different prop-
erties. As a result, it was found that the types of
numerals that are likely to be mistakenly predicted
depend on which method is used.
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