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Abstract
The adaptation of pretrained language models
to solve supervised tasks has become a base-
line in NLP, and many recent works have fo-
cused on studying how linguistic information
is encoded in the pretrained sentence repre-
sentations. Among other information, it has
been shown that entire syntax trees are implic-
itly embedded in the geometry of such mod-
els. As these models are often fine-tuned, it
becomes increasingly important to understand
how the encoded knowledge evolves along the
fine-tuning. In this paper, we analyze the
evolution of the embedded syntax trees along
the fine-tuning process of BERT for six dif-
ferent tasks, covering all levels of the linguis-
tic structure. Experimental results show that
the encoded syntactic information is forgot-
ten (PoS tagging), reinforced (dependency and
constituency parsing) or preserved (semantics-
related tasks) in different ways along the fine-
tuning process depending on the task.

1 Introduction

Adapting unsupervised pretrained language mod-
els (LMs) to solve supervised tasks has become
a widely spread practice in NLP, with models
such as ELMo (Peters et al., 2018) and, most
notably, BERT (Devlin et al., 2019), achieving
state-of-the-art results in many well-known Natural
Language Understanding benchmarks like GLUE
(Wang et al., 2018) and SQuAD (Rajpurkar et al.,
2018). Several studies investigate what the LMs
learn, how and where the learned knowledge is
represented and what the best methods to improve
it are; cf., e.g., (Rogers et al., 2020). There is
evidence that, among other information (such as,
e.g., PoS, syntactic chunks and roles (Tenney et al.,
2019b; Lin et al., 2019; Belinkov et al., 2017), mor-
phology in general (Peters et al., 2018), or sentence
length (Adi et al., 2016)) BERT deep models’ vec-
tor geometry implicitly embeds entire syntax trees

(Hewitt and Manning, 2019). However, rather lit-
tle is understood about how these representations
change when fine-tuned to solve downstream tasks
(Peters et al., 2019).

In this work, we aim to understand how syn-
tax trees implicitly embedded in the geometry of
deep models evolve along the fine-tuning process
of BERT on different supervised tasks, and shed
some light on the importance of the syntactic in-
formation for those tasks. Intuitively, we expect
morpho-syntactic tasks to clearly reinforce the en-
coded syntactic information, while tasks that are
not explicitly syntactic in nature should maintain
it in case they benefit from syntax (Kuncoro et al.,
2020) and lose it if they do not. In order to cover
the three main levels of the linguistic description
(morphology, syntax and semantics), we select six
different tasks: PoS tagging, constituency pars-
ing, syntactic dependency parsing, semantic role
labeling (SRL), question answering (QA) and para-
phrase identification. The first three inherently deal
with (morpho-)syntactic information while the lat-
ter three, which traditionally draw upon the output
of syntactic parsing (Carreras and Màrquez, 2005;
Björkelund et al., 2010; Strubell et al., 2018; Wang
et al., 2019, inter-alia), deal with higher level, se-
mantic information. Almost all of our experiments
are on English corpora; one is on multilingual de-
pendency parsing.

2 Related work

BERT has become the default baseline in NLP, and
consequently, numerous studies analyze its linguis-
tic capabilities in general (Rogers et al., 2020; Hen-
derson, 2020), and its syntactic capabilities in par-
ticular (Linzen and Baroni, 2020). Even if syntactic
information is distributed across all layers (Durrani
et al., 2020), BERT captures most phrase-level in-
formation in the lower layers, followed by surface
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features, syntactic features and semantic features
in the intermediate and top layers (Jawahar et al.,
2019; Tenney et al., 2019a; Hewitt and Manning,
2019). The syntactic structure captured by BERT
adheres to that of the Universal Dependencies (Kul-
mizev et al., 2020); different syntactic and seman-
tic relations are captured by self-attention patterns
(Kovaleva et al., 2019; Limisiewicz et al., 2020;
Ravishankar et al., 2021), and it has been shown
that full dependency trees can be decoded from
single attention heads (Ravishankar et al., 2021).
BERT performs remarkably well on subject-verb
agreement (Goldberg, 2019), and is able to do full
parsing relying only on pretraining architectures
and no decoding (Vilares et al., 2020), surpass-
ing existing sequence labeling parsers on the Penn
Treebank dataset (De Marneffe et al., 2006) and
on the end-to-end Universal Dependencies Corpus
for English (Silveira et al., 2014). It can generally
also distinguish good from bad completions and
robustly retrieves noun hypernyms, but shows in-
sensitivity to the contextual impacts of negation
(Ettinger, 2020).

Different supervised probing models have been
used to test for the presence of a wide range of lin-
guistic phenomena in the BERT model (Conneau
et al., 2018; Liu et al., 2019; Tenney et al., 2019b;
Voita and Titov, 2020; Elazar et al., 2020). He-
witt and Manning (2019)’s structural probe shows
that entire syntax trees are embedded implicitly in
BERT’s vector geometry. Extending their work,
Chi et al. (2020) show that multilingual BERT re-
covers syntactic tree distances in languages other
than English and learns representations of syntactic
dependency labels.

Regarding how fine-tuning affects the represen-
tations of BERT, Gauthier and Levy (2019) found a
significant divergence between the final representa-
tions of models fine-tuned on different tasks when
using the structural probe of Hewitt and Manning
(2019), while Merchant et al. (2020) concluded
that fine-tuning is conservative and does not lead
to catastrophic forgetting of linguistic phenomena –
which our experiments do not confirm. However,
we find that the encoded syntactic information is
forgotten, reinforced or preserved differently along
the fine-tuning process depending on the task.

3 Experimental setup

We study the evolution of the syntactic structures
discovered during pretraining along the fine-tuning

of BERT-base (cased) (Devlin et al., 2019)1 on six
different tasks, drawing upon the structural probe
of Hewitt and Manning (2019).2 We fine-tune the
whole model on each task outlined below for 3
epochs, with a learning rate of 5e−5, saving 10
evenly-spaced checkpoints per epoch. The output
of the last layer is used as input representation
for the classification components of each task. To
mitigate the variance in performance induced by
weight initialization and training data order (Dodge
et al., 2020), we repeat this process 5 times per task
with different random seeds and average results.

PoS tagging. We fine-tune BERT with a linear
layer on top of the hidden-states output for token
classification.3 Dataset: Universal Dependencies
Corpus for English (UD 2.5 EN EWT Silveira et al.
(2014)).

Constituency parsing. Following Vilares et al.
(2020), we cast constituency parsing as a sequence
labeling problem, and use a single feed-forward
layer on top of BERT to directly map word vectors
to labels that encode a linearized tree. Dataset:
Penn Treebank (Marcus et al., 1993).

Dependency parsing. We fine-tune a Deep Bi-
affine neural dependency parser (Dozat and Man-
ning, 2016) on three different datasets: i) UD 2.5
English EWT (Silveira et al., 2014); ii) a multi-
lingual benchmark generated by concatenating the
UD 2.5 standard data splits for German, English,
Spanish, French, Italian, Portuguese, and Swedish
(Zeman et al., 2019), with gold PoS tags; iii) PTB
SD 3.3.0 (De Marneffe et al., 2006).

Semantic role labeling. Following Shi and Lin
(2019), we decompose the task into i) predicate
sense disambiguation and argument identification,
and ii) classification. Both subtasks are casted as
sequence labeling, feeding the contextual represen-
tations into a one-hidden-layer MLP for the first,
and a one-layer BiLSTM followed by a one-hidden-
layer MLP for the latter. Dataset: OntoNotes cor-
pus (Weischedel et al., 2013).

Question answering. We fine-tune BERT with

1Our experiments are implemented in PyTorch, using two
open-source libraries: the Transformers library (Wolf et al.,
2019) and AllenNLP (Gardner et al., 2017). Implementation
details, pretrained weights and full hyperparameter values can
be found in the libraries documentation.

2We use the same experimental setup used by the au-
thors. Source: https://github.com/john-hewitt/
structural-probes

3Source: https://github.com/Tarpelite/
UniNLP/blob/master/examples/run_pos.py

https://github.com/john-hewitt/structural-probes
https://github.com/john-hewitt/structural-probes
https://github.com/Tarpelite/UniNLP/blob/master/examples/run_pos.py
https://github.com/Tarpelite/UniNLP/blob/master/examples/run_pos.py
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a linear layer on top of the hidden-states output
to compute span start logits and span end logits.4

Dataset: Stanford Question Answering Dataset
(SQuAD (Rajpurkar et al., 2018)).

Paraphrase identification. We fine-tune BERT
with a linear layer on top of the pooled sentence
representation.5 Dataset: Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett,
2005).

4 Evolution of syntax trees

Hewitt and Manning (2019)’s structural probe eval-
uates how well syntax trees are embedded in a
linear transformation of the network representa-
tion space, performing two different evaluations:
i) Tree distance evaluation, in which squared L2
distance encodes the distance between words in the
parse tree, and ii) Tree depth evaluation, in which
squared L2 norm encodes the depth of the parse
tree.

Using their probe, Hewitt and Manning show
that the 7th layer of BERT-base is the layer that
encodes more syntactic information. Therefore, to
analyze the evolution of the encoded syntax trees,
we train the probes on the 7th layer of the different
checkpoint models generated along the fine-tuning
process of each task.6

4.1 Tree distance evaluation

The probe evaluates how well the predicted dis-
tances between all pairs of words in a model recon-
struct gold parse trees by computing the Undirected
Unlabeled Attachment Score (UUAS). It also com-
putes the Spearman correlation between true and
predicted distances for each word in each sentence,
averaging across all sentences with lengths between
5 and 50 (henceforth referred to as DSpr.).

Morpho-syntactic tasks As shown in Figures 1
and 2, both metrics follow a similar behaviour
(shades represent the variability across the 5 model
runs). PoS tagging shows an important loss of per-
formance all along the fine-tuning process, espe-
cially noticeable for UUAS (Figure 1), suggesting
that distance-related syntactic information is of less
relevance to PoS tagging than could be intuitively

4Source: https://github.com/huggingface/
transformers/tree/master/examples/
question-answering.

5Source: https://github.com/huggingface/
transformers/blob/master/examples/
text-classification/run_glue.py.

6Cf. also Supplementary Material.

Figure 1: Tree distance evaluation. UUAS evolution.

Figure 2: Tree distance evaluation. Dspr evolution.

assumed. As many words have a clear preference
towards a specific PoS, especially in English, and
most of the ambiguous cases can be resolved using
information in the close vicinity (e.g., a simple 3-
gram sequence tagger is able to achieve a very high
accuracy (Manning, 2011)), syntactic structure in-
formation may not be necessary and, therefore, the
model does not preserve it. This observation is
aligned with Pimentel et al. (2020), who found that
PoS-tagging is not an ideal task for contemplating
the syntax contained in contextual word embed-
dings. The loss is less pronounced on depth-related
metrics, maybe because the root of the sentence
usually corresponds to the verb, which may also
help in identifying the PoS of surrounding words.

Constituency parsing and dependency parsing
share a very similar tendency, with a big improve-
ment in the first fine-tuning steps preserved along
the rest of the process. As both tasks heavily rely on
syntactic information, this improvement intuitively
makes sense. Dependency parsing fine-tuned on
the Penn Treebank (PTB) shows even higher results
since the probing is trained on the same dataset. In-

https://github.com/huggingface/transformers/tree/master/examples/question-answering
https://github.com/huggingface/transformers/tree/master/examples/question-answering
https://github.com/huggingface/transformers/tree/master/examples/question-answering
https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py
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Figure 3: Tree depth evaluation. Root % evolution.

terestingly, the probe performs similarly even if
the parsing task is modeled as a sequence labeling
problem (as in constituency parsing), suggesting
that the structure of syntax trees emerges in such
models even when no tree is explicitly involved
in the task. The initial drop observed for PoS tag-
ging and monolingual dependency parsing with
UD, trained on UD EN EWT, may be related to the
size of the dataset, since UD EN EWT is signifi-
cantly smaller than the other datasets and therefore
the models see less examples per checkpoint.
Semantics-related tasks As shown in Figures 1
and 2, both metrics follow different behaviours
(again, shades represent the variability across the
5 model runs). Paraphrase identification shows a
small but constant UUAS loss along the fine-tuning,
while QA shows a slightly steeper loss trend. Ini-
tially, SRL loses around 12 points, suggesting that
it discards some syntactic information right at the
beginning, and follows a similar downward trend
afterwards. Those three tasks show a stable perfor-
mance along the fine-tuning for the DSpr metric,
which implies that even if there is a loss in UUAS
information it does not impact the distance order-
ing.

4.2 Tree depth evaluation
The probe evaluates models with respect to their
ability to recreate the order of words specified by
their depth in the parse tree, assessing their ability
to identify the root of the sentence as the least deep
word (Root %) and computing the Spearman corre-
lation between the predicted and the true depth or-
dering, averaging across all sentences with lengths
between 5 and 50 (henceforth referred to as NSpr).
Morpho-syntactic tasks Again, both metrics fol-
low a similar behaviour, as shown in Figures 3 and

Figure 4: Tree depth evaluation. Nspr evolution.

4. PoS tagging shows a sustained loss of perfor-
mance, though softer than the loss observed for
the distance metrics. This loss is slightly less pro-
nounced for Root % than for Nspr, suggesting that
while depth-related syntactic information may be
of less relevance to PoS tagging than it is to the
other morpho-syntactic tasks, identifying the root
of the sentence may be important, as the root of
the sentence is likely to become one of the am-
biguous tags and therefore identifying it may help
to select the correct label. Constituency parsing
and dependency parsing share a similar tendency,
with a big improvement in the first steps preserved
along the rest of the fine-tuning process, reinforc-
ing the intuition previously introduced in Section
4.1 about the structure of syntax trees emerging in
models even when no tree is explicitly involved in
the task. Again, an initial drop can be observed for
PoS tagging and monolingual dependency parsing
with UD, most probably related to the smaller size
of the UD EN EWT dataset used in both tasks.

Semantics-related tasks Both metrics follow a
similar behaviour, as shown in Figures 3 and 4,
with all tasks following a soft but sustained loss of
performance until the end of the fine-tuning pro-
cess, specially noticeable for Root %.

5 Conclusions

We show that fine-tuning is not always a conserva-
tive process. Rather, the syntactic information ini-
tially encoded in the models is forgotten (PoS tag-
ging), reinforced (parsing) or preserved (semantics-
related tasks) in different (sometimes unexpected)
ways along the fine-tuning, depending on the task.
Thus, we expected that morpho-syntactic tasks
clearly reinforce syntactic information. However,
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PoS tagging forgets it, which, on the other side, can
also be justified linguistically (cf. Section 4.1). In
contrast, tasks closer to semantics mostly preserve
the syntactic knowledge initially encoded. This
interesting observation reinforces recent findings
that models benefit from explicitly injecting syntac-
tic information for such tasks (Singh Sachan et al.,
2020).

Overall, we observed that morpho-syntactic
tasks experiment substantial changes in the initial
phases, while semantic-related tasks maintain a
more stable trend, highlighting the importance of
syntactic information in tasks that are not explicitly
syntactic in nature (Kuncoro et al., 2020). These
observations lead to some interesting insights, but
also to further questions; for instance: Can we find
a specific set of probes covering different linguistic
phenomena to be used as a pretraining stopping
criteria? Would this lead to an improvement in the
encoding of the linguistic information on pretrained
models?
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Lauma Pretkalniņa, Sophie Prévost, Prokopis Proko-
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gang Seeker, Mojgan Seraji, Mo Shen, Atsuko
Shimada, Hiroyuki Shirasu, Muh Shohibussirri,
Dmitry Sichinava, Aline Silveira, Natalia Silveira,
Maria Simi, Radu Simionescu, Katalin Simkó,
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A Target tasks performance evolution

To complement the results shown in the main pa-
per, we include here the performance curves of the
target tasks for which the models are fine-tuned,
along with the performance curves of the structural
probes metrics, facilitating the comparison of the
evolution of the encoded syntax trees information
and the target tasks performances.

Along with the performance curves of the four
structural probes metrics (UUAS, Nspr, Root %
and Dspr), the following figures include the perfor-
mance curves of the target tasks and a brief discus-
sion of the results, to help interpretation. Figure 5
shows the accuracy evolution of PoS tagging. Fig-
ures 6, 7 and 8 show the Labeled Attachment Score
(LAS) of Dependency parsing with PTB SD, EN
UD EWT and UD multilingual, respectively. Fig-
ure 9 shows the accuracy evolution of Constituency
parsing. Figure 10 shows the F1 score evolution of
Question Answering. Figure 11 shows the F1 score
and accuracy evolution of Paraphrase identification.
Finally, Figure 12 shows the F1 score evolution of
Semantic Role Labeling.
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PoS tagging reaches a 0.95 accuracy in only two
checkpoints, ending up with a 0.97 on the last check-
point (Figure 5a). It shows a loss of accuracy for
the four probing metrics all along the fine-tuning
process, especially noticeable for UUAS (Figure 5b)
and Root % (Figure 5d), suggesting that syntactic
information is of less relevance to PoS tagging than
could be intuitively assumed. The loss is less pro-
nounced on depth-related metrics, maybe due to the
fact that the root of the sentence usually corresponds
to the verb, which may also help in identifying the
PoS of surrounding words.

(a) Fine-tuning. Accuracy

(b) Structural probes tree distance evaluation. UUAS (c) Structural probes tree distance evaluation. Dspr

(d) Structural probes tree depth evaluation. Root % (e) Structural probes tree depth evaluation. Nspr.

Figure 5: POS Tagging. Fine-tuning & probing metrics evolution.
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Dependency parsing with PTB SD shows a
steep learning curve (Figure 6a), reaching a per-
formance of 0.90 LAS on the third checkpoint, up
to a final 0.94. All four probing metrics show an
important improvement in the first fine-tuning step
(Figures 6b, 6c, 6d and 6e), which is preserved along
the rest of the process. As the task heavily relies on
syntactic information, this improvement intuitively
makes sense. Compared to the result of the other
dependency parsing experiments, this one show big-
ger improvements because the probing is trained on
the same dataset.

(a) Fine-tuning. LAS

(b) Structural probes tree distance evaluation. UUAS (c) Structural probes tree distance evaluation. Dspr.

(d) Structural probes tree depth evaluation. Root % (e) Structural probes tree depth evaluation. Nspr

Figure 6: Dependency Parsing PTB SD. Fine-tuning & probing metrics evolution.
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Dependency parsing with EN UD EWT shows
a shallower learning curve than other experiments
(Figure 7a), as the dataset is significantly smaller
than the multilingual and PTB and therefore the
models see less examples per checkpoint, ending
up with a high performance of 0.9. After an initial
drop (probably due to the dataset size, as mentioned
before), the probing metrics show a big improve-
ment in the first fine-tuning steps, preserved along
the rest of the process (Figures 7b, 7c, 7d and 7e).
As the task heavily relies on syntactic information,
this improvement intuitively makes sense.

(a) Fine-tuning. LAS

(b) Structural probes tree distance evaluation. UUAS (c) Structural probes tree distance evaluation. Dspr.

(d) Structural probes tree depth evaluation. Root % (e) Structural probes tree depth evaluation. Nspr

Figure 7: Dependency Parsing EN UD EWT. Fine-tuning & probing metrics evolution.
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Multilingual dependency parsing shows a
steeper learning curve than dependency parsing
with EN UD EWT, as it is trained with a larger
dataset (Figure 8a), reaching a performance of
0.87 in LAS. All four probing metrics show a big
improvement in the first fine-tuning step, preserved
along the rest of the process (Figures 8b, 8c, 8d
and 8e). As the task heavily relies on syntactic
information, this improvement intuitively makes
sense.

(a) Fine-tuning. LAS

(b) Structural probes tree distance evaluation. UUAS (c) Structural probes tree distance evaluation. Dspr.

(d) Structural probes tree depth evaluation. Root % (e) Structural probes tree depth evaluation. Nspr

Figure 8: Dependency Parsing UD Multilingual. Fine-tuning & probing metrics evolution.
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Constituency parsing fine-tuning follows a steep
curve, quickly reaching an Accuracy of 0.87 that
is further improved to 0.9 in the last checkpoint
(Figure 9a). All four probing metrics show a big
improvement in the first fine-tuning steps, preserved
along the rest of the process (Figures 9b, 9c, 9d and
9e). As the task heavily relies on syntactic infor-
mation, this improvement intuitively makes sense.
Interestingly, even though the task is modeled as a
sequence labeling problem, the probe performs sim-
ilarly to the dependency parsing tasks, suggesting
that the structure of syntax trees emerges in such
models even when no tree is explicitly involved in
the task.

(a) Fine-tuning. Accuracy

(b) Structural probes tree distance evaluation. UUAS (c) Structural probes tree distance evaluation. Dspr.

(d) Structural probes tree depth evaluation. Root % (e) Structural probes tree depth evaluation. Nspr

Figure 9: Constituent Parsing. Fine-tuning & probing metrics evolution.
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Question answering fine-tuning quickly reaches
an F1 score of 0.73 on the first step, which is further
improved to 0.88 in the last checkpoint (Figure 10a).
All four probing metrics show a clear loss trend (Fig-
ures 10b, 10c, 10d and 10e). The loss is specially
noticeable for UUAS and Root %, and more stable
for the Spearman correlations, suggesting that even
if there is a loss of information it does not impact
the distance and depth orderings.

(a) Fine-tuning. F1

(b) Structural probes tree distance evaluation. UUAS (c) Structural probes tree distance evaluation. Dspr.

(d) Structural probes tree depth evaluation. Root % (e) Structural probes tree depth evaluation. Nspr

Figure 10: Question Answering. Fine-tuning & probing metrics evolution.
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Paraphrase identification fine-tuning starts with an F1 score of 0.81 on the first step that is further
improved to 0.90 in the last checkpoint (Figure 11a). Regarding accuracy, after reaching 0.69 on the first
checkpoint it follows a shallower curve to a final 0.86 (Figure 11b). All four probing metrics follow a
loss trend (Figures 11c, 11d, 11e and 11f). The loss is specially noticeable for UUAS and Root %, and
more stable for the Spearman correlations, suggesting that even if there is a loss of information it does not
impact the distance and depth orderings.

(a) Fine-tuning. F1 (b) Accuracy

(c) Structural probes tree distance evaluation. UUAS (d) Structural probes tree distance evaluation. Dspr.

(e) Structural probes tree depth evaluation. Root % (f) Structural probes tree depth evaluation. Nspr

Figure 11: Paraphrase identification. Fine-tuning & probing metrics evolution.
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Semantic Role Labeling fine-tuning follows a
steep curve for F1, quickly reaching an F1 score of
0.71 on the first step that is further improved to 0.82
in the last checkpoint (Figure 12a). All four probing
metrics follow a loss trend (Figures 12b, 12c, 12d
and 12e). The loss is specially noticeable for UUAS,
which initially loses around 12 UUAS points, and
more stable for the Spearman correlations, suggest-
ing that even if there is a loss of information it does
not impact the distance and depth orderings.

(a) Fine-tuning. F1

(b) Structural probes tree distance evaluation. UUAS (c) Structural probes tree distance evaluation. Dspr.

(d) Structural probes tree depth evaluation. Root % (e) Structural probes tree depth evaluation. Nspr

Figure 12: Semantic Role Labeling. Fine-tuning & probing metrics evolution.


