
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2842–2851
August 1–6, 2021. ©2021 Association for Computational Linguistics

2842

Learning Sequential and Structural Information for Source Code
Summarization

YunSeok Choi, JinYeong Bak, CheolWon Na, Jee-Hyong Lee
College of Computing and Informatics

Sungkyunkwan University
Suwon, South Korea

{ys.choi, jy.bak, ncw0034, john}@skku.edu

Abstract

We propose a model that learns both the se-
quential and the structural features of code
for source code summarization. We adopt
the abstract syntax tree (AST) and graph
convolution to model the structural informa-
tion and the Transformer to model the se-
quential information. We convert code snip-
pets into ASTs and apply graph convolution
to obtain structurally-encoded node represen-
tations. Then, the sequences of the graph-
convolutioned AST nodes are processed by
the Transformer layers. Since structurally-
neighboring nodes will have similar represen-
tations in graph-convolutioned trees, the Trans-
former layers can effectively capture not only
the sequential information but also the struc-
tural information such as sentences or blocks
of source code. We show that our model out-
performs the state-of-the-art for source code
summarization by experiments and human
evaluations.

1 Introduction

Descriptions of source code are very important
documents for programmers. Good descriptions
help programmers understand the meaning of code
quickly and easily.

Source code has sequential information (code to-
kens) and structural information (dependency and
structure). To understand the content of the code
and generate a good summary, both pieces of in-
formation are essential to understand the summary.
However, most previous works used only one kind
of information. Iyer et al. (2016); Liang and Zhu
(2018); Hu et al. (2018b); Allamanis et al. (2016)
simply converted the source code into sequences
of tokens and tried to extract the features of the
source code from the sequential information of the
source code. They rarely considered the structure
information about the relationship between tokens.

On the other hand, Shido et al. (2019); Harer et al.
(2019); LeClair et al. (2020); Scarselli et al. (2008)
proposed tree-based models to capture the features
of the source code. They used the structural infor-
mation from parse trees but hardly considered the
sequence information of code tokens.

In order to accurately understand and represent
the source code, it is necessary to encode the struc-
tural information as well as the sequential infor-
mation. Recently, Ahmad et al. (2020) tried to rep-
resent both the sequential and the structural infor-
mation using the Transformer model with relative
encoding. Since relative encoding clipped the max-
imum distance for attention without considering
the parse tree, it is limited to represent the structure
of the code.

In this work, we propose a model that learns both
the structural and sequential information of source
code. We represent code snippets as abstract syntax
trees (ASTs), and apply graph convolution (Kipf
and Welling, 2017) to the ASTs to obtain the node
representation reflecting the tree structure such as
parents, children, and siblings. Nodes that are close
to each other in a tree, such as parent and child
nodes and sibling nodes, will have similar represen-
tations. Next, we convert the graph-convolutioned
ASTs into sequences by the pre-order traversal and
process them with Transformer layers (Vaswani
et al., 2017). Since structurally-neighboring nodes
have similar representations, such nodes will pay
more attention to one another in the Transformer
layers. Thus, the Transformer layers can easily cap-
ture not only the sequential information but also the
structural information such as sentences or blocks
of source code.

We also modify ASTs to better represent the
structural information of the source code. We add
sibling edges to represent neighboring blocks in
source code and add a node representing the name
of the function for Python. With the modification,



2843

(a) Source Code

(b) AST

(c) mAST

Figure 1: An example of Java code, Abstract Syntax
Tree and modified-Abstract Syntax Tree.

our model can better catch the blocks in the source
code.

In the experiment, we show that our model out-
performs the state-of-the-art for source code sum-
marization. We use two well-known Java (Hu et al.,
2018b) and Python (Wan et al., 2018) datasets col-
lected from Github. We additionally perform hu-
man evaluations and analyze the attention maps
between code tokens to see how well the model has
captured the structural information of code. The
result proves that it is very effective to model both
structural and sequential information for source
code summarization.

We describe the modified AST (mAST) in Sec-
tion 2 and present the proposed approach in Sec-
tion 3. In Section 4, we show the superiority of
our approach with experimental results and human
evaluations. We describe the related work in source
code summarization and compare their approaches
with our proposed approach in Section 5. Finally,
we conclude the paper in Section 6.

(a) Source Code

(b) AST

Figure 2: An example of Python code and Abstract Syn-
tax Tree. The Python AST parser we used does not
create a node for the function name unlike the Java
AST parser. Since the function name is a very important
keyword in generating summaries, we add the function
name in the red box (a) to FunctionDef node in the
Python AST.

2 Representing Code as mAST

Figure 1 shows a code snippet and its AST in Java.
The abstract syntax tree (AST) is a structure to
represent the abstract syntactic structure of code
in a programming language. Source code is sepa-
rated into blocks and can be transformed into a tree
structure. The leaf nodes of an AST represent code
identifiers and names. The non-leaf nodes represent
the grammar or the structure of the language. All
non-leaf nodes in an AST have the structural infor-
mation about which blocks they belong to (parent
node) and which block they have (child nodes). So,
we can easily catch the structure information of
code from ASTs.

In order to more effectively represent structural
information, we modify ASTs by adding edges be-
tween siblings. Statements or blocks at the same
level in a code snippet are represented as sibling
nodes. For example, Expression node (line 2 in the
code), Foreach node (line 3) and Return node (line
7) are the statements or blocks at the same level,
and they are represented as siblings in the AST.
However, in ASTs, blocks at the same level (sib-
ling nodes) are not directly connected as shown in
Figure 1b. We can indirectly catch such informa-
tion via parent nodes.

Neighboring blocks are very important for the
sequential and structural understanding of source
code. To directly represent neighboring blocks, we



2844

Figure 3: Overview of our proposed model.

add sibling edges to ASTs as shown in Figure 1c
(red dotted lines).

In the case of Python, the Python AST parser we
used does not create a node for the function name,
unlike the Java AST parser. As the function name is
a very important keyword in generating summaries,
we add the function name to FunctionDef node as
a child in the Python AST as shown in Figure 2.
Then, we modify Python ASTs by adding sibling
edges.

3 Proposed Model

We propose a model using graph convolution lay-
ers and transformer layers to summarize the source
code. To encode both the structural and the sequen-
tial information of code, we combine both of the
above layers.

Figure 3 shows the overview of our model. A
given snippet is represented as a modified AST
(mAST). The initial representation of nodes in the
mAST is generated by the embedding layer. Since
the embedding layer generates the representation
considering only nodes themselves, we use graph
convolution to capture the structural information.
We apply graph convolution to each node in mAST.
Then, we can have node representations consid-
ering the structural features as well as the node
features.

The graph-convolutioned mASTs are converted
into sequences by pre-order traversal, and the se-
quences are given to the Transformer encoder.
Since structurally-neighboring nodes have similar
representations, the Transformer encoder can ef-
fectively capture not only the sequential features
but also the structural features such as sentences
or blocks of source code. After the Transformer
encoder generates the representations by reflect-

ing the sequential and structural information, the
Transformer decoder generates summaries.

3.1 Graph Convolution Network
Graph convolutional network (Kipf and Welling,
2017) is one of graph neural networks for repre-
senting nodes based on neighborhood features of
each node in graph data. In this paper, graph con-
volution layers are used to capture the structure
information of mASTs. Since the mAST extracted
from a given code C is a graph, we denote an AST
as G(C) = {V,E}, where V is a set of nodes and
E is a set of edges. Initially, nodes in V are one-hot
encoded tokens and then mapped into representa-
tion vectors, X , by the embedding layer.

Given representationX of nodes andE of edges,
new representations of nodes are calculated by
graph convolution layers as follows.

H0 = X,X ∈ Rn×d

H(l+1) = σ(AH(l)W (l)),W l ∈ Rd×d

where A is the adjacency matrix, W l is the graph
convolution weight matrix in the l-th layer, σ is the
activation function, n is the total number of nodes
in an mAST, and d is the embedding dimension.
The feature of each node represented by the graph
convolution layer is denoted as H . In the experi-
ment, the dimension of the weight matrix in a graph
convolution is d=512.

3.2 Transformer Encoder-Decoder
After graph convolution layers, the mAST is con-
verted into a sequence by pre-order traversal. The
pre-order traversal is applied to the original AST,
not the mAST, because mASTs are transformed



2845

Dataset Java Python

Train 69,708 55,538
Valid 8,714 18,505
Test 8,714 18,502

Unique leaf nodes in ASTs 106 54
Unique non-leaf nodes in ASTs 57,372 101,229

Unique tokens in summaries 46,895 56,189

Avg. nodes in AST 131.72 104.11
Avg. tokens in summary 17.73 9.48

Table 1: Statistics of Java and Python dataset

into graphs by adding sibling edges. The mAST is
used to obtain the structural representation of nodes
by considering nodes and their neighbors. Since the
original AST contains the original structure of the
source code, we use it to obtain a sequence.

The Transformer encoder and decoder follow
the graph convolution layers. The sequence of the
mAST nodes is processed into the Transformer en-
coder. The Transformer architecture is good at cap-
turing long-term dependencies in a sequence. Since
we used graph convolutions, which generate similar
representations for structurally-neighboring nodes,
the Transformer encoder can easily capture depen-
dencies between nodes in the same code block,
between similar code blocks, and between code
blocks at the same level. As a result, the Trans-
former encoder can generate new representation
vectors which well reflect sequential and the struc-
tural information.

Next, the Transformer decoder generates the to-
ken of summary from the vectors generated by the
Transformer encoder. In the experiment, the dimen-
sion of nodes and summary tokens is dmodel=512.
The Transformer encoder and decoder are respec-
tively composed of a stack of N = 6 layers.

4 Experiment

We perform various experiments to show the superi-
ority of our model for source code summarization.

4.1 Setup

Datasets We evaluate our model using Java
dataset (Hu et al., 2018b) and Python dataset
(Wan et al., 2018). The statistics of the experiment
datasets are shown in Table 1. We used the Java
parser used by Alon et al. (2019) and the Python
parser used by Wan et al. (2018) for extracting the
abstract syntax tree of the code.

Metrics We adopt 3 performance metrics: BLEU
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and ROUGE-L (Lin, 2004).

Baselines We compare our model with baseline
models based on sequential information by Iyer
et al. (2016); Hu et al. (2018a,b); Wei et al. (2019);
Ahmad et al. (2020) and based on structural infor-
mation by Eriguchi et al. (2016); Wan et al. (2018).
We refer to the baseline results reported by Ahmad
et al. (2020).

Hyper-parameters We set the maximum length
to 200, and the vocabulary sizes for code and
summary to 50,000 and 30,000, respectively. We
train our proposed model using Adam optimizer
(Kingma and Ba, 2015). The mini-batch size and
dropout rate are 32 and 0.2. We set the maximum
training epoch to 200, and use early stopping. We
adopt beam search during inference time and set
the beam size to 4.

4.2 Quantitative Result

Overall Result Table 2 shows the overall perfor-
mance of the models. We present three proposed
models: AST-Only, AST+GCN and mAST+GCN.

AST-Only is the proposed model without graph
convolution layers. The model converts code snip-
pets into ASTs and does not include graph convo-
lutions. The sequenced AST nodes are given to the
Transformer encoder and decoder. We present this
model to verify how much ASTs are effective for
source code summarization. It performs better than
the baselines except for TransRel model proposed
by Ahmad et al. (2020). This result shows that AST,
which has more structural information on source
code, is better than simple code for source code
summarization.

AST+GCN is the proposed model with graph
convolution layers but without AST modification
(adding sibling edges). Code snippets are converted
into ASTs and node representations are gener-
ated by graph convolutions. The sequenced graph-
convolutioned AST nodes are input to the Trans-
former encoder and decoders. This model can ver-
ify how much the graph convolutions are useful. It
shows better performance than the baselines.

mAST+GCN is the proposed model with modi-
fied ASTs by adding sibling edges and with graph
convolution layers. It outperforms all baseline mod-
els. The performance improves by 0.91 and 0.3
BLEU, 0.74 and 0.35 METEOR, and 0.06 and 0.08



2846

Methods Java Python
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

CODE-NN (Iyer et al., 2016) 27.60 12.61 41.10 17.36 09.29 37.81
Tree2Seq (Eriguchi et al., 2016) 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq (Wan et al., 2018) 38.22 22.75 51.91 19.28 09.75 39.34
DeepCom (Hu et al., 2018a) 39.75 23.06 52.67 20.78 09.98 37.35
API+CODE (Hu et al., 2018b) 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model (Wei et al., 2019) 42.39 25.77 53.61 21.80 11.14 39.45
TransRel (Ahmad et al., 2020) 44.58 26.43 54.76 32.52 19.77 46.73

Proposed Model: AST-Only 44.76 26.75 53.93 31.59 19.16 45.48
Proposed Model: AST+GCN 45.30 27.26 54.45 32.41 19.77 46.35
Proposed Model: mAST+GCN 45.49 27.17 54.82 32.82 20.12 46.81

Table 2: Comparison of our proposed model with the baseline models.

ROUGE-L points in comparison to TranRel for
Java and Python datasets, respectively. The pro-
posed model with the AST modification has better
performances on BLEU, METEOR, and ROUGE-
L (excepts for METEOR in Java) than without the
modification. This proves that modified ASTs help
models learn more structural information of code
than general ASTs.

Position of graph convolution layers We per-
form additional experiments with different posi-
tions of graph convolution layers. The positions are
the front of the Transformer encoder, the back of
the Transformer encoder, and both the front and
back of the Transformer encoder.

Table 3 shows the performance scores according
to the position of the graph convolution layers. The
front model is the same as mAST+GCN which has
one graph convolution layer in front of the encoder.

The back model does not have graph convolution
layers in front of the Transformer encoder but has
one next to the encoder. Nodes in an mAST are
input to the encoder without graph convolutions,
but graph convolutions are applied to the output
of the encoder. Since the Transformer encoder can
catch structural patterns in simple sequences, the
graph convolution in the back of the encoder may
work better than the one in front because it can feed
more sharp structural information to the decoder.

The front+back model has two graph convolu-
tion layers: one in front and the other in the back
of the Transformer encoder. It may catch much
stronger structural patterns. The structurally en-
coded representations by a graph convolution layer
are fed to the encoder and the output of the encoder
is structurally enhanced once more by a graph con-
volution layer.

Table 3 shows the best result when located in
front of the Transformer encoder. The front+back

Position BLEU METOR ROUGE-L

Java Dataset

front 45.49 27.17 54.82
back 44.56 25.97 54.07

front+back 45.06 26.51 54.47

Python Dataset

front 32.82 20.12 46.81
back 32.31 19.70 46.42

front+back 32.58 19.78 46.58

Table 3: Performance by position of graph convolution
layers

Number BLEU METOR ROUGE-L

Java Dataset

1 45.49 27.17 54.82
2 44.72 26.70 53.87
3 44.14 25.62 53.46

Python Dataset

1 32.82 20.12 46.81
2 31.80 19.31 45.56
3 30.91 18.41 44.24

Table 4: Performance by number of graph convolution
layers

model is next to the front, and the back is the worst,
which means that the graph convolution before the
encoder is effective.

Since the Transformer has the ability to ex-
tract comprehensive features considering not only
sequential but also structural information in se-
quences, the convolution layer in the back of the
encoder may destruct such features and degrade the
performance. However, the graph convolution layer
in front of the encoder can help the encoder ana-
lyze structural patterns and to extract better features
because it enhances structural information.



2847

(a) mAST+GCN (b) AST+GCN (c) Baseline

(d) mAST+GCN (e) AST+GCN (f) Baseline

Figure 4: Attention maps of mAST+GCN, AST+GCN, and the baseline models for a code in Figure 5. (a), (b) and
(c) are the attention maps of the first Transformer encoder layer and (d), (e), and (f) are the attention maps of the last
Transformer encoder layer. A red box in (a) represents blocks in the snippets. We can see that the structural features
are clearly captured in the red box. Our model effectively captures large and hierarchical structural features.

Number of graph convolution layers We ana-
lyze the performance according to the number of
graph convolution layers. Graph convolutions are
effective at capturing structural features, so more
layers can help improve the performance. We tried
one to three layers in front of the encoder.

Table 4 is the result of each model with 1, 2 and
3 layers. The results show that our proposed model
with one graph convolution layer in front of the
Transformer encoder has better performance than
others. We think that this is because the graph struc-
ture of AST is not as complex as the general graph
structure. So, the node representation has the over-
smoothing problem when the graph convolution
layer is stacked deep.

4.3 Qualitative Result

We present the qualitative analysis of our model.
The attention map of an example code is compared
to show how much our model catches the structural
information. In order to further validate the perfor-
mance metrics of our model, we perform a human
evaluation on randomly sampled code snippets.

Attention Map Comparison We analyze atten-
tion maps of mAST+GCN, AST+GCN and the base-
line by Ahmad et al. (2020) to verify how our
model generates node representations compared

Figure 5: An example of Java code. We draw attention
maps for this in Figure 4.

to the others. Since we try to emphasize the struc-
tural information, we need to verify how much our
model reflects the structural information to gener-
ate representations.

We observe the attention maps for the sample
code in Figure 5. We draw an attention map by eval-
uating the pairwise dot product of the output of a
Transformer layer in the encoder. For mAST+GCN
and AST+GCN, the output of a layer is the se-
quence of the mAST nodes, and for the baseline, it
is the sequence of the program tokens.

We compare the attention maps of the first and
the last Transformer layer in the encoder of each
model. Figure 4a, 4b and 4c are the attention maps
of the first layer of mAST+GCN, AST+GCN and
the baseline. Figure 4d, 4e and 4f are the attention



2848

maps of the last layer of mAST+GCN, AST+GCN
and the baseline.

Rectangles on the diagonal as shown in a red
box in Figure 4a represent blocks in the snippets.
Since nodes or tokens in a block may have high
similarities, we can see rectangles along with the
diagonal. In the attention maps of the first layers,
the rectangles are faint because the structural infor-
mation has not been processed much yet, but we
can see many distinct rectangles which means that
the structural features are clearly captured.

If we compare the attention maps by our models
and the baseline, there are many small rectangles
in the baseline. On the contrary, in our models, we
can see a few large rectangles in which there are
small rectangles. We see a hierarchical structure in
the attention maps of our model.

The fact that the baseline produces many small
rectangles implies that the baseline can capture
only small structural features. We can also note
that these small structural features are smaller than
statements, considering that the example snippets
have only 4 lines. The baseline hardly captures
large structural features.

On the other hand, our model effectively cap-
tures large and hierarchical structural features. We
can easily identify rectangles that match with state-
ments or blocks in the attention maps by our pro-
posed models.

The attention maps from mAST+GCN and
AST+GCN are very similar. However, we can see
differences in each attention map of the first and
the last layer. If we compare the first layer attention
maps, the blocks of mAST+GCN are more distinct,
which implies that the modification of ASTs by
adding sibling edges is helpful to model structural
information. If we compare the last layer attention
maps, we can see that hierarchical structures of
rectangles are clear in the map by mAST+GCN,
which also says that the modification is effective to
capture structural features.

Human Evaluation We performed human evalu-
ation (Kryscinski et al., 2019) on the Java dataset to
prove the effectiveness of how good summaries our
model generates. We randomly choose 100 snip-
pets and ask 4 people with knowledge of the Java
language to evaluate the summaries. They are CS
graduate students and have many years of experi-
ence in Java languages. We ask them to evaluate
the 3 following aspects:

• Fluency (quality of the summary)

Fluency Relevance Coverage

Wins 146 145 144
Losses 130 135 140

Ties 124 120 116

Table 5: Human evaluation of the appropriateness of
the generated summaries on the Java dataset. We ask
annotators to select a more appropriate summary from
two candidates generated by different models. Our pro-
posed model outperforms the baseline.

• Relevance (selection of the important content
from source code)

• Coverage (selection of the whole content of
source code)

We show pairs of summaries from our model and
the baseline (Ahmad et al., 2020) to the annotators,
and ask them to select one of win, tie, and loss in
the three aspects, respectively. Our model shows
superiority in all aspects as shown in Table 5. The
scores of fluency and relevance are higher than the
baseline, which means that our model generates
more appropriate summaries using more natural
expressions.

Figure 6 shows some examples of summaries for
the qualitative comparison. We choose 6 Java snip-
pet examples. We choose them from the snippets
on which all the annotators make the same decision
in each aspect. The three snippets on the left are
the ones that the annotators choose win (our model
is better) and the right ones for loss.

5 Related Work

As techniques and methods of deep learning have
developed, researches for source code summa-
rization have been studied based on sequence-to-
sequence models. Iyer et al. (2016) proposed a
model that performed source code summarization
task for the first time. Allamanis et al. (2016) sum-
marized the source code using a convolutional at-
tention network model. Hu et al. (2018a) proposed
an RNN-based sequence-to-sequence model using
the pre-order traversal sequence of the abstract syn-
tax tree. Also, Hu et al. (2018b) summarized source
code with the knowledge on imported APIs us-
ing two encoders (source code encoder and API
encoder). Ahmad et al. (2020) proposed a Trans-
former model with a relative position for summa-
rizing source code. Wei et al. (2019) proposed a
dual model that learned the code and summary se-
quence simultaneously. Wan et al. (2018) adopted



2849

Figure 6: Examples for the qualitative comparison. The left examples are chosen from the ones that have 4 wins
(all the annotators agree that our model is better), and the right examples are chosen from the opposite cases.

reinforcement learning to summarize source code.
These approaches mainly focused on the sequential
and context information of code, but little consid-
ered the structural information about the relation-
ship between code tokens.

There are also studies that convert source code
to AST to represent the structure of source code.
Liang and Zhu (2018) proposed a tree-based re-
cursive neural network to represent the syntax tree
of code. Shido et al. (2019) represented source
code using the tree structure encoder of tree-LSTM.
Harer et al. (2019) adopted tree-transformer to en-
code the structure of ASTs. Fernandes et al. (2019)
proposed the structured neural model for source
code summarization. Alon et al. (2019) represented
source code based on AST paths between pairs
of tokens. LeClair et al. (2020) proposed a model
that encoded the AST of source code using graph
neural networks. These approaches utilized ASTs
to capture structural features, but less considered
the sequence characteristics of code in a program

language.

6 Conclusion

We proposed a model that learned both the sequen-
tial and the structural features of code for source
code summarization. We adopted the abstract syn-
tax tree (AST) and graph convolution to model
the structural information and the Transformer to
model the sequential information. We also modified
the AST to deliver more structural information.

We verified that modified ASTs and graph convo-
lutions were very effective to capture the structural
features of code through quantitative and qualita-
tive analysis. We also showed the superiority of
our model over the state-of-the-art for source code
summarization by experiments and human evalua-
tions.



2850

Acknowledgments

This work was supported by Institute of Infor-
mation & communications Technology Planning
& Evaluation (IITP) grant funded by the Ko-
rea government (MSIT) (No.2019-0-00421, Ar-
tificial Intelligence Graduate School Program
(Sungkyunkwan University)). This research was
supported by the MSIT (Ministry of Science, ICT),
Korea, under the High-Potential Individuals Global
Training Program) (2019-0-01579) supervised by
the IITP (Institute for Information & Communica-
tions Technology Planning & Evaluation).

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007,
Online. Association for Computational Linguistics.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for ex-
treme summarization of source code. In Proceed-
ings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR Work-
shop and Conference Proceedings, pages 2091–
2100. JMLR.org.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2019. code2seq: Generating sequences from
structured representations of code. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
823–833, Berlin, Germany. Association for Compu-
tational Linguistics.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Structured neural summariza-
tion. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net.

Jacob Harer, Chris Reale, and Peter Chin. 2019. Tree-
transformer: A transformer-based method for cor-
rection of tree-structured data. arXiv preprint
arXiv:1908.00449.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin.
2018a. Deep code comment generation. In 2018
IEEE/ACM 26th International Conference on Pro-
gram Comprehension (ICPC), pages 200–20010.
IEEE.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with
transferred API knowledge. In Proceedings of the
Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pages 2269–2275. ijcai.org.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2073–2083.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Wojciech Kryscinski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 540–
551, Hong Kong, China. Association for Computa-
tional Linguistics.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th International Conference on Program Com-
prehension, pages 184–195.

Yuding Liang and Kenny Qili Zhu. 2018. Auto-
matic generation of text descriptive comments for
code blocks. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 5229–5236. AAAI Press.

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
http://proceedings.mlr.press/v48/allamanis16.html
http://proceedings.mlr.press/v48/allamanis16.html
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P16-1078
https://openreview.net/forum?id=H1ersoRqtm
https://openreview.net/forum?id=H1ersoRqtm
https://arxiv.org/abs/1908.00449
https://arxiv.org/abs/1908.00449
https://arxiv.org/abs/1908.00449
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/D19-1051
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492


2851

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE transactions on
neural networks, 20(1):61–80.

Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto,
Atsushi Miyamoto, and Tadayuki Matsumura. 2019.
Automatic source code summarization with ex-
tended tree-lstm. In 2019 International Joint Con-
ference on Neural Networks (IJCNN), pages 1–8.
IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of the
33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pages 397–407.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.
Code generation as a dual task of code summariza-
tion. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
6559–6569.

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/IJCNN.2019.8851751
https://doi.org/10.1109/IJCNN.2019.8851751
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://proceedings.neurips.cc/paper/2019/hash/e52ad5c9f751f599492b4f087ed7ecfc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e52ad5c9f751f599492b4f087ed7ecfc-Abstract.html

