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Abstract

This paper takes a first step towards a critical
thinking curriculum for neural auto-regressive
language models. We introduce a synthetic
corpus of deductively valid arguments, and
generate artificial argumentative texts to train
CRiPT: a critical thinking intermediarily pre-
trained transformer based on GPT-2. Signifi-
cant transfer learning effects can be observed:
Trained on three simple core schemes, CRiPT
accurately completes conclusions of different,
and more complex types of arguments, too.
CRiPT generalizes the core argument schemes
in a correct way. Moreover, we obtain con-
sistent and promising results for NLU bench-
marks. In particular, CRiPT’s zero-shot accu-
racy on the GLUE diagnostics exceeds GPT-
2’s performance by 15 percentage points. The
findings suggest that intermediary pre-training
on texts that exemplify basic reasoning abili-
ties (such as typically covered in critical think-
ing textbooks) might help language models to
acquire a broad range of reasoning skills. The
synthetic argumentative texts presented in this
paper are a promising starting point for build-
ing such a “critical thinking curriculum for lan-
guage models.”

1 Introduction

Pre-trained autoregressive language models (LM)
such as GPT-2 and GPT-3 achieve, remarkably, com-
petitive results in a variety of language modeling
benchmarks without task-specific fine-tuning (Rad-
ford et al., 2019; Brown et al., 2020). Yet, it is also
widely acknowledged that these models struggle
with reasoning tasks, such as natural language in-
ference (NLI) or textual entailment (Askell, 2020).
Actually, that doesn’t come as a surprise, given the
tendency of humans to commit errors in reason-
ing (Kahneman, 2011; Sunstein and Hastie, 2015),
their limited critical thinking skills (Paglieri, 2017),
and the resulting omnipresence of fallacies and bi-
ases in texts and the frequently low argumentative

quality of online debates (Hansson, 2004; Guiaşu
and Tindale, 2018; Cheng et al., 2017): Neural lan-
guage models are known to pick up and reproduce
normative biases (e.g., regarding gender or race)
present in the dataset they are trained on (Gilburt
and Claydon, 2019; Blodgett et al., 2020; Nadeem
et al., 2020), as well as other annotation artifacts
(Gururangan et al., 2018); no wonder this happens
with argumentative biases and reasoning flaws, too
(Kassner and Schütze, 2020; Talmor et al., 2020).
This diagnosis suggests that there is an obvious
remedy for LMs’ poor reasoning capability: make
sure that the training corpus contains a sufficient
amount of exemplary episodes of sound reasoning.

In this paper, we take a first step towards the cre-
ation of a “critical thinking curriculum” for neural
language models. Critical thinking can be loosely
defined as “reasonable reflective thinking that is
focused on deciding what to believe or do.” (Norris
and Ennis, 1989) Generally speaking, our study
exploits an analogy between teaching critical think-
ing to students and training language models so
as to improve their reasoning skill. More specifi-
cally, we build on three key assumptions that are
typically made in critical thinking courses and text-
books: First, there exist fundamental reasoning
skills that are required for, or highly conducive to,
a large variety of more specific and advanced criti-
cal thinking skills (e.g., Fisher, 2001, p. 7). Second,
drawing deductive inferences is one such basic abil-
ity (e.g., Fisher, 2001, pp. 7–8). Third, reasoning
skills are not (just) acquired by learning a theory of
correct reasoning, but by studying lots of examples
and doing “lots of good-quality exercises” (Lau
and Chan, 2020), typically moving from simple to
more difficult problems (e.g., Bowell and Kemp,
2014).

These insights from teaching critical thinking
translate, with respect to our study, as follows (see
Fig. 1). First of all, we design and build ‘lots of
good-quality exercises’: a synthetic corpus of de-
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Figure 1: Training and testing of CRiPT language mod-
els (critical thinking intermediarily pre-trained trans-
former) with synthetic argumentative texts.

ductively valid arguments which instantiate a vari-
ety of (syllogistic) argument schemes, and which
are rendered as text paragraphs (Section 3). Next,
we use our synthetic argument text corpus to train
and to evaluate GPT-2 (Section 4). The training,
which maximizes a causal language modeling ob-
jective, can be conceived of as a generic, intermedi-
ary pre-training in the spirit of STILTS (Phang
et al., 2018) and yields models we term CRiPT
(critical thinking intermediarily pre-trained trans-
former).

Evaluating CRiPT’s ability to correctly complete
conclusions of arguments, we observe strong trans-
fer learning effects/generalization (Section 5): Just
training CRiPT on a few central core schemes (gen-
eralized modus ponens, contraposition and chain
rule) allows it to accurately complete conclusions
of different types of arguments, too (e.g., complex
argumentative forms that involve dilemma and de
Morgan). The language models appear to connect
and generalize the core argument schemes in a cor-
rect way. In addition, CRiPT is equally able to apply
learned argument patterns beyond the training cor-
pus’ domain.

Moreover, we test CRiPT on different reasoning
benchmarks. Because we are particularly inter-
ested in transfer learning effects, we do so in a
zero-shot set-up (i.e., evaluating our argumentation
models on entirely unrelated NLU tasks, which fol-
lows recent work by Mitra et al. (2019); Shwartz
et al. (2020); Ma et al. (2020)). We obtain consis-
tent and promising results for the GLUE diagnos-
tics (Wang et al., 2018) and SNLI (Bowman et al.,
2015) benchmarks (Section 5), finding that training
on core schemes clearly improves the NLU skills
of pre-trained models.

All these transfer learning effects observed
strengthen the analogy between teaching critical
thinking and training language models: A variety
of reasoning skills are improved by generic, inter-

mediary pre-training on high-quality texts that ex-
emplify a basic reasoning skill, namely simple de-
ductive argumentation. Obviously, drawing correct
inferences is just one of the elementary skills typ-
ically covered in critical thinking courses (Fisher,
2001). Critical thinking involves more than deduc-
tion. And it would hence, by analogy, be unreason-
able to expect that intermediary pre-training on the
synthetic argument corpus suffices to turn language
models into accomplished reasoners. However, we
have shown that argumentative texts (with valid
syllogistic arguments) are certainly a good starting
point when building a more comprehensive dataset
for initial or intermediary pre-training that might
help language models to acquire a broad range of
reasoning skills. Or, to put it differently, the syn-
thetic argumentative texts might belong to the core
of a “critical thinking curriculum for language mod-
els.” In the final section, we advance some ideas
for complementing the artificial argument corpus
so as to further improve the performance of LMs
with regard to different reasoning benchmarks.

2 Related Work

To our knowledge, this paper is, together with Gon-
tier et al. (2020), among the first to show that au-
toregressive language models like GPT-2 can learn
to reason by training on a text corpus of correct
natural language arguments. By contrast, previ-
ous work in this field, described below, has typ-
ically modeled natural language reasoning prob-
lems as classification tasks and trained neural sys-
tems to accomplish them. For example, Schick
and Schütze (2021); Schick and Schütze (2020)
find that a masked language model with classifica-
tion head achieves remarkable NLU performance
by pre-structuring the training data. This paper
explores the opposite route: We start with highly
structured (synthetic) data, render it as unstruc-
tured, plain text and train a uni-directional lan-
guage model on the synthetic text corpus.

Over and above the methodological novelty of
our approach, we discuss, in the following, related
reasoning benchmarks and explain what sets our
synthetic argument corpus apart from this work.

Rule reasoning in natural language Various
datasets have been developed for (deductive) rule
reasoning in natural language. One-step rule appli-
cation (cf. Weston et al., 2016; Richardson et al.,
2020; Tafjord et al., 2019; Lin et al., 2019) closely
resembles the conclusion completion task for gen-
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eralized modus ponens and generalized modus tol-
lens schemes described below. However, we go
beyond previous work in investigating the ability of
LMs to infer conclusions that have a more complex
logico-semantic structure (e.g., existential or uni-
versal statements). RuleTaker, arguably the most
general system for rule reasoning in natural lan-
guage so far, is a transformer model for multi-hop
inference (Clark et al., 2020). PRover (Saha et al.,
2020) extends RuleTaker by a component for proof
generation and is able to construct valid proofs and
outperforms RuleTaker in terms answer accuracy
in a zero-shot setting.

Benchmarks for enthymematic reasoning An
‘enthymeme’ is an argument whose premises are
not explicitly stated, e.g.: “Jerry is a mouse.
Therefore, Jerry is afraid of cats.” The following
studies involve such reasoning with implicit as-
sumptions, whereas our synthetic argument corpus
doesn’t: all premises are transparent and explicitly
given. COMET generates and extends common-
sense knowledge graphs (Bosselut et al., 2019).
Trained on seed data, the model is able to mean-
ingfully relate subject phrases to object phrases
(by doing the type of completion tasks we intro-
duce in Section 4). The Argument Reasoning Com-
prehension (ARC) dataset (Habernal et al., 2018)
comprises simple informal arguments. The task
consists in identifying which of two alternative
statements is the missing premise in the argument
(see also Niven and Kao, 2019). CLUTRR is a
task generator for relational reasoning on kinship
graphs (Sinha et al., 2019). CLUTTR takes a set of
(conceptual) rules about family relations as given
and constructs set-theoretic possible worlds (rep-
resented as graphs) which instantiate these rules.
The task consists in inferring the target fact from
the base facts alone – the conceptual rules remain
implicit. Gontier et al. (2020) show that Transform-
ers do not only learn to draw the correct conclusion
(given a CLUTTR task), but also seems to acquire
the ability to generate valid proof chains. Finally,
training on synthetic knowledge-graph data from
scratch, Kassner et al. (2020) find that BERT (De-
vlin et al., 2019) is able to correctly infer novel
facts implicit in the training data.

Critical thinking tasks LogiQA (Liu et al.,
2020) is a collection of publicly available critical
thinking questions, used by the National Civil Ser-
vants Examination of China to assess candidates’

critical thinking and problem solving skills. Its
scope is much broader than our highly specific and
carefully designed argument corpus.

3 An Artificial Argument Corpus

This section describes the construction of a syn-
thetic corpus of natural language arguments used
for training and evaluating CRiPT.1

The corpus is built around eight simple, deduc-
tively valid syllogistic argument schemes (top row
in Fig. 2). These eight base schemes have been
chosen because of their logical simplicity as well
as their relevance in critical thinking and argument
analysis (Feldman, 2014; Bowell and Kemp, 2014;
Brun and Betz, 2016). Each of these eight base
schemes is manually varied in specific ways to
create further deductively correct variants, which
are verified for correctness using an off-the-shelf
theorem prover.

Negation variants of base schemes are created by
substituting a sub-formula with its negation (e.g.,
Fx  ¬F1x) and/or by applying duplex negatio
affirmat. Complex predicates variants build on base
schemes or their respective negation variants and
are obtained by substituting atomic predicates with
compound disjunctive or conjunctive ones (e.g.,
Fx  F1x ∨ F2x). De Morgan variants of base
schemes are finally derived by applying de Mor-
gan’s law to the respective variants created before
(a de Morgan variant of modus ponens is, for in-
stance: ∀x : ¬(Fx ∨ Gx) → Hx;¬Fa;¬Ga ⇒
Ha).

With 2-3 different versions for each of these vari-
ations of a base scheme (parameter n in Fig. 2), we
obtain, in total, 71 distinct handcrafted argument
schemes. In view of their simplicity and promi-
nence in natural language argumentation, three of
the eight base schemes are marked as core schemes:
generalized modus ponens, generalized contraposi-
tion, hypothetical syllogism 1.

Natural language instances of the argument
schemes can be created by means of a first-order-
logic domain (with names and predicates) and nat-
ural language templates for the formal schemes.
In order to obtain a large variety of realistic nat-
ural language arguments, we have devised (i) a

1The corpus as well as the source code used to generate
it are available at https://github.com/debatelab/
aacorpus. Selected example texts which illustrate, in partic-
ular, the multiple domains covered by the corpus are presented
in Appendix A.

https://github.com/debatelab/aacorpus
https://github.com/debatelab/aacorpus
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Figure 2: Syllogistic argument schemes used to create an artificial argument corpus with eight base schemes (upper
row), three of which are core schemes (left). Parameter n indicates the number of different schemes belonging to
one and the same base scheme group (column) and variant (row).

multi-stage templating process with (ii) alternative
templates at each stage and (iii) multiple domains.

This process can be split into five consecutive
steps.

In step 1, the argument scheme, which serves as
formal template for the natural language argument,
is chosen at random.

In step 2, each sentence in the formal scheme
(premises and conclusion) is individually replaced
by a natural language pattern in accordance with a
randomly chosen template. For example, the for-
mula “∀xFx→ Gx” might be replaced by any of
the following natural language sentence schemes:
“Every F is a G”, “Whoever is a F is also a G”,
“Being a G is necessary for being a F”, “If someone
is a F, then they are a G”. Some of these patterns
(e.g., the fourth one in the above list) are reserved
for generating an out-of-domain test dataset, and
are not used for training.

In step 3, the entity- and property-placeholders
in the resulting argument scheme are replaced
argument-wise with names and predicates from
a domain. We hence obtain an instance of the for-
mal argument scheme as premise-conclusion list.
Each domain provides hundreds of entity-names,
which can be paired with different binary predi-

cates to create thousands of different unary predi-
cates. For example, the text in Fig. 1 is obtained
by substituting predicates from the domain female
relatives, which includes predicates like being a
“sister of Anna”, “granddaughter of Elsa”, “cousin
of Sarah”, . . . Once more, some domains are used
for testing only, and not for training (see below and
Section 4.2).

In step 4, the premises of the natural language
argument are randomly re-ordered.

In step 5, the premise-conclusion list is packed
into a text paragraph by adding an argument intro,
framing the premises, and adding an inference in-
dicator. Again, multiple templates are available for
doing so, which yields a large variety of textual
renderings of an argument.

Following this pipeline, we generate natural lan-
guage instances of each formal argument scheme,
thus creating:

1. a training set of argumentative texts, based on
the default domains and templates (TRAIN);

2. an evaluation set of argumentative texts, based
on the default domains and templates, which
are used for development (DEV);

3. a test set of argumentative texts, based on the
default domains and templates and used for
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final tests (TEST_OUT-OF-SAMPLE);
4. a test set of argumentative texts, based on the

domains and templates reserved for testing
(TEST_OUT-OF-DOMAIN).

This represents the artificial argument text cor-
pus we use to train and evaluate CRiPT.

4 Experiments with CRiPT

Our basis for training and evaluating CRiPT are
three compact versions of GPT-2 with 117M, 345M
and 762M parameters, as implemented by Wolf
et al. (2019). We note that all of these models fall
short of the full-scale model with 1542M parame-
ters.2

4.1 Training
From the training items in the Artificial Argu-
ment Corpus (TRAIN) we sample three types of
differently-sized training sets TRAIN01 ⊂ TRAIN02
⊂ TRAIN03 as follows (see also the color pattern in
Fig. 2):

• TRAIN01: all training items which are in-
stances of a core scheme, i.e. generalized
modus ponens, generalized contraposition, hy-
pothetical syllogism 1 (N=4.5K, 9K, 18K,
36K)

• TRAIN02: all training items which are in-
stances of a base scheme (N=4.5K, 9K, 18K,
36K)

• TRAIN03: all training items in the corpus
(N=4.5K, 9K, 18K, 36K)

In an attempt to avoid over-fitting, we blend
the training arguments with snippets from Reuters
news stories (Lewis et al., 2004) and the stan-
dardized Project Gutenberg Corpus (Gerlach and
Font-Clos, 2018), trying a mixing ratio of 1:1 and
thus doubling training size to N=9K, 18K, 36K,
72K.3 Training the BASE model (pre-trained GPT-2)
on TRAIN01–TRAIN03 yields three corresponding
CRiPT models (see Appendix B). For purpose of
comparison, we have similarly trained three ran-
domly initialized Transformer models (structurally
identical with GPT-2) – none of these random mod-
els gains any performance through training on our
critical thinking corpus.

2The fine-tuned models are released through https://
huggingface.co/debatelab.

3We find that fine-tuning on the accordingly enhanced
argument corpus still increases the model’s perplexity on the
Wiki103 dataset by a factor of 1.5 (see Appendix D), which
suggests to mix a higher proportion of common texts into the
training data in future work.

4.2 Testing
Conclusion Completion on Artificial Argument
Corpus To test whether language models can rea-
son correctly, we assess their ability to accurately
complete conclusions of arguments in the artifi-
cial argument corpus. Here, we make use of the
fact that, by construction, the conclusion of every
argument in the corpus ends with a predicate (a
property-term such as “sister of Chloe” or “sup-
porter of Tottenham Hotspurs”), which is poten-
tially preceded by a negator. First of all, as shown
in Table 1, we test whether the model is able to
correctly fill in the final predicate (task split). The
second, more difficult task consists in completing
the final predicate plus, if present, the preceding
negator (task extended). With a third, adverserial
task we check how frequently the model wrongly
adjoins the complement of the correct completion
of the extended task (task inverted).

Task Conclusion with
cloze-style prompt

Completion

split Every F is a G G

Some F is not a G G
a is a F or not a G G

extended Every F is a G a G

Some F is not a G not a G
a is a F or not a G not a G

inverted Every F is a G not a G

Some F is not a G not a G
a is a F or not a G not a G

Table 1: Three conclusion completion tasks

Clearly, the higher the accuracy in the split and
extended tasks, and the lower the accuracy in the
inverted task, the stronger the model’s reasoning
performance.

Based on the artificial argument corpus (see Sec-
tion 3), we generate and distinguish three different
test datasets, each of which comprises the three
tasks described above, as follows:

• out of sample (oos): contains items from
TEST_OUT-OF-SAMPLE, which share domain
and natural language templates with the train-
ing data;

• paraphrased (para): a sample of 100 items,
randomly drawn from TEST_OUT-OF-SAMPLE,
which have been manually reformulated so as
to alter the premises’ grammatical structure

https://huggingface.co/debatelab
https://huggingface.co/debatelab
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imposed by the natural language templates;
• out of domain (ood): contains items from

TEST_OUT-OF-DOMAIN, which belong to dif-
ferent domains and instantiate grammatical
patterns other than the training data.

Technically, conclusion completions, in all tasks
and tests, are generated by the language model with
nucleus sampling and top-p = 0.9 (Holtzman et al.,
2019).

Classification for NLU Benchmarks To inves-
tigate transfer learning effects, we evaluate the
trained models on standard NLU benchmarks, such
as GLUE AX and SNLI. These benchmark tasks
are classification problems. In the following, we de-
scribe how we use the generative language models
to perform such classification.

Using simple templates, we translate each bench-
mark entry into alternative prompts (e.g., context
and question) and/or alternative completions (e.g.,
answers). Consider for example a GLUE-style
problem given by two sentences “The girl is eat-
ing a pizza.” and “The girl is eating food” and
the question whether one entails, contradicts, or is
independent of the other. We can construct three
prompts, corresponding to the three possible an-
swers (entail / contradict / independent):

Prompt1: The girl is eating a pizza.
Therefore,
Prompt2: The girl is eating a pizza. This
rules out that
Prompt3: The girl is eating a pizza. This
neither entails nor rules out that
Completion: the girl is eating food.

In this case, the correct match is obviously
Prompt1–Completion. The ability of a language
model to discern that “The girl is eating pizza” en-
tails (and does not contradict) “The girl is eating
food” will be reflected in a comparatively low con-
ditional perplexity of Completion given Prompt1
and a correspondingly high conditional perplexity
of Completion given Prompt2 or Prompt3.

Generally put, we classify a given input X by
constructing N alternative prompts p1, . . . pN and
a completion c, such that each pair (pi, c) corre-
sponds to a class i ∈ {1 . . . N} of the classification
problem. The conditional perplexity of the comple-
tion c given prompt pi according to the language
model serves as prediction score for our classifier
(as for instance in Shwartz et al., 2020).

5 Results

Conclusion Completion on Artificial Argument
Corpus Does CRiPT correctly complete conclu-
sions of natural language arguments? Fig. 3 dis-
plays the evaluation results in an aggregated way.
Each subplot visualizes the accuracy of the models
in the three completion tasks for a different test
dataset (see Section 4.2).
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Figure 3: Accuracy of CRiPT in three conclusion com-
pletion tasks and on different test datasets (out of sam-
ple, paraphrased, out of domain).

We may observe, first of all, that pre-training
on the argument corpus effectively improves
conclusion-completion-skill. In all three test
datasets, the accuracy in the split and extended
tasks increases as models are trained on more and
more argument schemes, far exceeding the base
model’s performance. Once CRiPT has seen all
schemes (TRAIN03), accuracy levels reach 100%
for in-domain and 70%-90% for out-of-domain
tests. However, the TRAIN01 and TRAIN02 models
do also generate more incorrect completions than
the BASE model (inverted task). But the frequency
of such incorrect completions increases much less
than the frequency of correct ones (the gap between
blue and gray curve widens), and it actually falls
back to almost zero with the TRAIN03 model. Out-
of-domain performance of CRiPT (right-hand plot)
is qualitatively similar and only slightly less strong
than in-domain performance (left-hand and mid-
dle plot). CRiPT models trained on a given domain
are able to effectively exercise the acquired skill in
other domains, and have hence gained topic-neutral,
universal reasoning ability.

The strong performance of TRAIN01 models
(Fig. 3) indicates that training on a few argument
schemes positively affects performance on other
schemes, too. To further investigate transfer learn-
ing, Table 2 contrasts (a) CRiPT’s accuracy on
schemes it has not been trained on – averaged over
TRAIN01 and TRAIN02 models – with (b) its accu-
racy on schemes present in the respective train-
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BASE (A) UNSEEN SCH. (B) SEEN SCH.

Task oos para ood oos para ood

split 21.4 85.4 82.0 69.4 99.9 99.2 89.0
ext. 10.7 60.3 59.3 45.8 99.9 99.2 76.2
inv. 1.5 16.9 18.0 22.1 0.0 0.0 3.2

Table 2: Accuracy of CRiPT models in three conclusion
completion tasks and on different test datasets (out of
sample: oos, paraphrased: para, out of domain: ood).
Columns report, separately, the performance (A) on
schemes the model has not been trained on (TR01–02),
and (B) on schemes that are covered by the model’s
training data (TR01–03). For comparison, column BASE
reports the performance of pre-trained GPT-2, averaged
over all schemes.

ing corpus – averaged over TRAIN01, TRAIN02, and
TRAIN03 models. The upshot is that CRiPT performs
much more strongly than the base model not only
on argument schemes it has been trained on, but
also on those schemes not seen yet. We take this to
be a promising result as it strengthens the analogy
between teaching critical thinking and training lan-
guage models: intermediary pre-training on high-
quality texts that exemplify a specific, basic reason-
ing skill – namely, simple deductive argumentation
– improves other, more complex reasoning skills.

Moreover, a closer look at the scheme-specific
performance suggests important variations in
CRiPT’s ability to generalize, for it seems to strug-
gle with unseen schemes which involve negations
(e.g., CRiPT-TRAIN02 generates more incorrect than
correct completions of the negation_variants of
generalized modus ponens, see Appendix C). This
is consistent with the finding that some NLMs
seemingly fail to understand simple negation (Kass-
ner and Schütze, 2020; Talmor et al., 2020).

To further understand transfer learning effects,
we next examine CRiPT’s zero-shot performance
in other NLP reasoning tasks (i.e., without task-
specific fine-tuning).

GLUE AX The GLUE datasets (Wang et al.,
2018) represent standard benchmarks for natural
language understanding (NLU). We evaluate our
models’ NLU skill in terms of accuracy on the
curated GLUE diagnostics dataset (Fig. 4).

Training on the artificial argument corpus sub-
stantially boosts accuracy on the GLUE diagnostics.
Accuracy increases by at least 5 and up to 17 per-
centage points, depending on model size. Remark-
ably, training on the core scheme alone suffices to
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Figure 4: Gains in accuracy due to fine-tuning on the
AAC (accuracy TRAIN model – accuracy BASE model)
for differently sized models and different NLP bench-
mark tasks: the GLUE diagnostics data, and the SNLI
dataset.

bring about these improvements.
This is a major finding and our clearest evidence

so far that critical thinking pre-training involves
substantial transfer learning effects.

SNLI Our assessment of CRiPT with respect to
SNLI data (Bowman et al., 2015) proceeds in close
analogy to the GLUE benchmark. The results
(Fig. 4) are consistent with, albeit less definite
than our previous findings for the GLUE bench-
mark: First and foremost, training on all schemes
(TRAIN03) improves the performance by up to 8
percentage points. Training on fewer schemes is
slightly less effective. However, only small and
medium sized CRiPT profit from pre-training on the
AAC; while the performance of the 762M model
drops. This might be due to a coincidentally strong
performance of the corresponding BASE model (see
Appendix D), or suggest that large GPT-2 has al-
ready learned during general pre-training whatever
is of relevance for SNLI in argumentative texts.
(Further experiments, preferably involving more
model versions, are required to clarify this.)

Besides GLUE AX and SNLI, we have assessed
CRiPT on the semantically more demanding Argu-
ment Reasoning Comprehension task (Habernal
et al., 2018) or the critical thinking assessment com-
piled in LogiQA (Liu et al., 2020), but found no
performance increase compared to the base model.

6 Conclusion

This paper has taken a first step towards the cre-
ation of a critical thinking curriculum for neural
language models. It presents a corpus of deduc-
tively valid, artificial arguments, and uses this arti-
ficial argument corpus to train and evaluate CRiPT
– a Transformer language model based on GPT-2.
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As our main finding, we observe strong transfer
learning effects/generalization: Training CRiPT on
a few central core schemes allows it to accurately
complete conclusions of different types of argu-
ments, too. The language models seem to connect
and to generalize the core argument schemes in a
correct way. Moreover, CRiPT is equally able to
apply learned argument patterns beyond the do-
main it has been trained on, and there is evidence
that generic language modeling skill facilitates the
successful generalization of learned argument pat-
terns as randomly initialized models fail to acquire
any inference skill by critical thinking pre-training.
(Accordingly, we expect our approach to scale to
even larger versions of GPT-2.) These findings are
consistent with previous work on rule reasoning
(Clark et al., 2020). Moreover, CRiPT has been
tested on different reasoning benchmarks. We ob-
tain clear and promising results for the GLUE AX
and SNLI benchmarks. All this suggests that there
exist (learning-wise) fundamental reasoning skills
in the sense that generic intermediary pre-training
on texts which exemplify these skills leads to spill-
over effects and can improve performance on a
broad variety of reasoning tasks. The synthetic ar-
gumentative texts might be a good starting point
for building such a “critical thinking curriculum for
language models.”

There are different directions for advancing the
approach adopted in this paper and further improv-
ing the general reasoning skill of neural language
models:

• The syllogistic argument text corpus might be
complemented with corpora of arguments that
instantiate different kinds of correct schemes,
e.g., propositional inference schemes, modal
schemes, argument schemes for practical rea-
soning, complex argument schemes with in-
termediary conclusions or assumptions for the
sake of the argument, etc. (Technically, we
provide the infrastructure for doing so, as all
this might be achieved through adjusting the
argument corpus configuration file.)

• To succeed in NLI tasks, it doesn’t suffice
to understand ‘what follows.’ In addition, a
system needs to be able to explicitly discern
contradictions and non sequiturs (relations of
logical independence). This suggests that the
artificial argument corpus might be fruitfully
supplemented with corpora of correctly identi-
fied aporetic clusters (Rescher, 1987) as well

as corpora containing correctly diagnosed fal-
lacies.

• In addition, the idea of curriculum learning
for ML (Bengio et al., 2009) might be given
a try. Accordingly, a critical thinking curricu-
lum with basic exemplars of good reasoning
would not only be used to fine-tune a pre-
trained model, but would be employed as start-
ing point for training a language model from
scratch.

In conclusion, designing a critical thinking cur-
riculum for pre-training neural language models
seems to be a promising and worthwhile research
program to pursue.
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texts used to train and test CRiPT – specifically
the various domains covered in the corpus. Links
to the entire dataset and source code for gener-
ating synthetic arguments are released at https:
//github.com/debatelab/aacorpus.

Domain: female_relatives. Base scheme group:
Generalized modus tollens. Scheme variant: base
scheme. Text: It is not always easy to see who is re-
lated to whom – and in which ways. The following
argument pertains to this question: To start with,
Daisy is not a sister of Melissia. Now, being an
ancestor of Kerstin is sufficient for being a sister of
Melissia. Hence, it is false that Daisy is an ancestor
of Kerstin.

Domain: male_relatives. Base scheme group:
Hypothetical Syllogism 1. Scheme variant: nega-
tion_variant. Text: Is Fred a cousin of Robert? Is
Joe related to Bob? In large families, it is some-
times difficult to keep track of all one’s relatives.
The following argument seeks to clarify some such
relations: First of all, no schoolmate of Erik is a
classmate of Andy. Next, whoever is not a class-
mate of Andy is a schoolmate of Marvin. We may
conclude that every schoolmate of Erik is a school-
mate of Marvin.

Domain: consumers_personalcare. Base
scheme group: Disjunctive Syllogism. Scheme
variant: negation_variant. Text: Consumer re-
search aims at understanding whether users of some
products also tend to consume other ones, or not.
The following argument seeks to clarify some such
relations: Everyone who is an occasional purchaser
of Bio Ionic shampoo is a rare consumer of The
Body Shop soap, too. Every occasional purchaser
of Bio Ionic shampoo is not a rare consumer of
The Body Shop soap or a frequent consumer of
Shiseido shampoo. It follows that everyone who is
an occasional purchaser of Bio Ionic shampoo is a
frequent consumer of Shiseido shampoo, too.

Domain: chemical_ingredients. Base scheme
group: Generalized Contraposition. Scheme vari-
ant: complex_predicates. Text: Here comes a per-
fectly valid argument: No ingredient of Eyeshadow
Quad is an ingredient of Midnight Black or an in-
gredient of Bubble Gum Laquer. We may conclude
that no ingredient of Bubble Gum Laquer and no
ingredient of Midnight Black is an ingredient of
Eyeshadow Quad.

Domain: football_fans. Base scheme group:
Generalized Dilemma. Scheme variant: base
scheme. Text: Is Fred a fan of Liverpool? Are

supporters of Real Madrid devotees of PSG? In
European football, it is sometimes difficult to keep
track of the mutual admiration and dislike. The
following argument seeks to clarify some such re-
lations: Every friend of FC Olexandriya is either
a backer of The New Saints FC or an ex-fan of
Olympique Lyonnais, or both. Everyone who is
an ex-fan of Olympique Lyonnais is a devotee of
RC Celta de Vigo, too. Everyone who is a backer
of The New Saints FC is a devotee of RC Celta de
Vigo, too. In consequence, being a devotee of RC
Celta de Vigo is necessary for being a friend of FC
Olexandriya.

Domain: dinos. Base scheme group: Modus bar-
bara. Scheme variant: base scheme. Text: Consider
the following argument: If someone is a predator
of Iguanodon, then they are a prey of Stegosaurus.
Parasaurolophus is a predator of Iguanodon. Thus,
Parasaurolophus is a prey of Stegosaurus.

Domain: philosophers. Base scheme group:
Hypothetical Syllogism 3 Scheme variant: nega-
tion_variant Text: Here comes a perfectly valid
argument: If someone is not a teacher of Diodorus
of Adramyttium, then they are a teacher of Dexip-
pus. Moreover, someone is a student of Alexicrates
and not a teacher of Dexippus. Thus, someone is a
student of Alexicrates and a teacher of Diodorus of
Adramyttium.

B Appendix: Training Parameters

We train differently sized versions of GPT-2 with
causal language modeling objective (using default
training scripts by Wolf et al. (2019)) on each of the
12 enhanced, differently sized training sets. This
gives us 36 fine-tuned CRiPT models plus the three
BASE models to evaluate. Unless explicitly stated
otherwise, the main article reports results of the
762M parameter model trained on 72K items. We
train the models on 8 GPUs for 2 epochs with batch
size = 2, learning rate = 5×10−5, gradient accumu-
lation steps = 2, and default parameters of the Hug-
gingFace implementation otherwise (Wolf et al.,
2019).

C Appendix: Performance Metrics on
Different Argument Schemes

Fig. 5 displays CRiPT’s accuracy on conclusion
completion tasks on specific argument schemes.
Its subplots are arranged in a grid that mirrors the
organisation of argument schemes as presented in
the main article. Each subplot visualizes the abil-

https://github.com/debatelab/aacorpus
https://github.com/debatelab/aacorpus
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ity of CRiPT to correctly complete arguments of
the corresponding scheme (given the out-of-sample
test dataset). Reported accuracy values that fall
within gray background areas are attained by mod-
els which have seen the corresponding scheme dur-
ing training. Vice versa, thick lines on white back-
ground visualize model performance on unknown
schemes. Fig. 5 reveals, first of all, that even the
BASE models (only pre-training, no fine-tuning)
display a significant ability to correctly complete
conclusions of some kinds of arguments. For ex-
ample, GPT-2-762M achieves 50% accuracy (split
task) in completing contrapositions, 30% accuracy
in completing generalized modus ponens, and still
20% accuracy in completing disjunctive syllogism
and dilemma arguments. These findings further
corroborate the hypothesis that NLMs learn (ba-
sic) linguistic and reasoning skills “on the fly” by
training on a large generic corpus (Radford et al.,
2019).

D Appendix: Performance Metrics for
Differently Sized Training Sets

Fig. 6 displays accuracy values on conclusion com-
pletion tasks for models trained on differently sized
datasets.

Fig. 7 reports perplexity and NLU accuracy met-
rics for models trained on differently sized datasets.
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Figure 5: Accuracy of CRiPT in three conclusion completion tasks and on different test datasets (out of sample,
paraphrased, out of domain) by argument scheme.

Figure 6: Accuracy on three conclusion completion tasks as a function of training corpus size.
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Figure 7: Perplexity and NLI metrics as a function of training corpus size.


