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Abstract

Translated texts have been used for malicious

purposes, i.e., plagiarism or fake reviews. Ex-

isting detectors have been built around a spe-

cific translator (e.g., Google) but fail to de-

tect a translated text from a strange transla-

tor. If we use the same translator, the trans-

lated text is similar to its round-trip translation,

which is when text is translated into another

language and translated back into the origi-

nal language. However, a round-trip translated

text is significantly different from the original

text or a translated text using a strange trans-

lator. Hence, we propose a detector using text

similarity with round-trip translation (TSRT).

TSRT achieves 86.9% accuracy in detecting

a translated text from a strange translator. It

outperforms existing detectors (77.9%) and hu-

man recognition (53.3%).

1 Introduction

A reader may misunderstand the original meaning

of a translated text1. For example, Facebook trans-

lated “good morning” into “attack them,” leading to

an arrest2. Adversaries can use a translator for ma-

licious tasks such as round-trip translation used in

plagiarism (Jones and Sheridan, 2015) to avoid hu-

man recognition or in adversarial text (Iyyer et al.,

2018) to fool AI.

Existing work has investigated the detection

of translated texts in various approaches. The

parse tree approach (Chae and Nenkova, 2009;

Li et al., 2015) exploits text structure. The N -

gram approach (Aharoni et al., 2014; Arase and

Zhou, 2013) estimates text fluency. The text com-

plexity approach uses complex words (Nguyen-

1When we mention a translated text, translation, translator,
and Google, all are related to machine translation systems

2www.theguardian.com/technology/2017/oct/24/facebook-
palestine-israel-translates-good-morning-attack-them-arrest

Son and Echizen, 2017) and phrases (Nguyen-

Son et al., 2017). The text coherence approach

is based on matching similar words on a paragraph

level (Nguyen-Son et al., 2018, 2019b). A three-

layer CNN (Riley et al., 2020) is trained on ei-

ther one-way or round-trip translated texts. Our

previous work (Nguyen-Son et al., 2019a) com-

bined round-trip translation with BLEU scores.

All these approaches fail to detect a text translated

by another translator or from a different language.

Motivation The first translation round induces a

low similarity between the translated and original

texts, whereas the extent of similarity increases in

later rounds (Vanmassenhove et al., 2019). Let us

consider an example in Fig. 1. We randomly se-

lected an English text t from an English-Russian

pair3; the Russian text was translated into En-

glish by Google, called t′(Go,RU→EN). We mea-

sured the similarity between a text and its round-

trip translation using the minimum edit distance

(MED) (Levenshtein, 1966). The translated text

t′ is the result of using the translator once, and the

similarity between t′ and its round-trip translation

t′(Go,RU→EN→RU ) is high (MED = 1). Other-

wise, the similarity between the original text t with

t(Go,RU→EN→RU) is low (MED = 5). Based on

the difference in similarity, we can distinguish the

original from the translated text.

In reality, a translator’s source language is of-

ten unknown. The similarity decreases when using

another language. For example, the similarity be-

tween t′(Go,RU→EN) translated from Russian and

its round-trip translation t′(Go,RU→EN→DE→EN)

from German is low (MED = 6). It

is close to the similarity in the original pair

3This pair belongs to a Commentary News corpus (Barrault
et al., 2019)
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𝒕′(𝑮𝒐,𝑹𝑼→𝑬𝑵): The actions
of the chief banker, their

every word or hint

suddenly take on

tremendous significance.

𝒕 : Their actions, their
every word or wink,

suddenly assumes

immense importance.

𝑡′(𝐺𝑜,𝑅𝑈→𝐸𝑁→𝑅𝑈→𝐸𝑁) :

The actions of the chief

banker, their every word

or hint suddenly take on

great significance.

𝑡′(𝐺𝑜,𝑅𝑈→𝐸𝑁→𝐷𝐸→𝐸𝑁) :

The actions of the chief

banker, every word or

every hint suddenly gain

enormous importance.

𝑡(𝐺𝑜,𝐸𝑁→𝐷𝐸→𝐸𝑁) :

Your actions, every word

or wink are suddenly of

immense importance.

𝑡(𝐺𝑜,𝐸𝑁→𝑅𝑈→𝐸𝑁) :

Their actions, their every

word or wink suddenly

take on great

significance.

Original text Translated text by Google from Russian

MED=5 MED = 4 MED = 1 MED = 6

Round-trip with Russian Round-trip with GermanRound-trip with GermanRound-trip with Russian

Figure 1: Round-trip translations from an original text t and a translated text t′. The superscripts indicate the

translator—Google(Go)—and the language—Russian(RU) or German(DE)—that are used to generate the round-

trip translations.

{t, t(Go,EN→DE→EN)} (MED = 4). A change

in a translator induces a similar phenomenon. We

thus detected the translator and the language before

detecting the translated text.

Contributions We propose a novel translation

detector that utilizes text similarity with round-trip

translation (named TSRT). This detector can be

used as a warning to prevent the risk of translated

texts in a certain region where people are familiar

with few languages and translators. First, we create

round-trip translations from multiple configuration

translator and language tuples. Second, we use

each tuple’s round-trip translations to train indi-

vidual subclassifiers. Then, we use the tuple with

the highest similarity between a suspicious text

and its round-trip translation to choose a suitable

subclassifier. Finally, we use the subclassifer to

determine if the text is an original or translated text.

Experiments demonstrate that TSRT efficiently de-

tects different kinds of translated texts (round-trip

and one-way) when the translation translator and

language is changed.

2 Text Similarity with Round-Trip

Translation

Training Phase First, we collect original texts

Ti and translated texts T ′

i , which are translated

with a configuration tuple πi = {language λi,

translator τi} (see Fig. 2). Second, we generate

round-trip translations T
πi

i and T
′πi

i for Ti and

T ′

i , respectively. Finally, Ti and T ′

i are combined

with T
πi

i and T
′πi

i to train a subclassifier χπi by

fine-tuning the BERT model (Devlin et al., 2019).

We repeat the procedure with other subclassifiers.

In Fig. 1, t, t′, t(Go,RU), and t′(Go,RU) belong to

T , T ′, T (Go,RU), and T ′(Go,RU), respectively, with

π = (Go,RU).

Testing Phase For a suspicious text s, we aim

to determine if s is an original or a translated text.

First, we generate round-trip translated texts sπi

with all configuration tuples in the training phase.

Next, we calculate the similarity σπi between t and

all sπi using the minimum edit distance (MED).

Finally, we process s with the subclassifier asso-

ciated with the best similarity σb corresponding

to the lowest MED. In the case of t′ in Fig. 1,

two round-trip translations t′(Go,RU) and t′(Go,DE)

are generated with respect to σ(Go,RU) = 1 and

σ(Go,DE) = 6. The subclassifier χ(Go,RU) associ-

ated with the lower MED is chosen for classifying

t′.

3 Evaluation

3.1 Unchanged Translator and Language

Round-trip translation detection: We collected

11, 748 distinct movie reviews from the Sen-

timent Treebank (Socher et al., 2013) (19.1

words/review). We chose 9, 000/1, 000 reviews

for training/developing and used the remaining

pairs for testing. This ratio is reused in further

experiments. We used the original reviews to

generate round-trip translations by using config-

uration tuples of two translators and three lan-

guages (Table 1). In addition to Google, we

chose Fairseq4 (Ng et al., 2019), the winner in the

WMT’19 shared task. We compare TSRT5 with

4Fairseq is only supported for Russian and German, so we
cannot use it for Japanese.

5The source code is available at https://

github.com/quocnsh/machine_translation_

https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
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T1 𝑇1𝜋1 𝜒𝜋1

s

𝑠𝜋1
𝑠𝜋𝑏

𝜎𝜋1
𝜎𝜋𝑏

𝜋𝑖 : configuration tuple= (language 𝜆𝑖, translator 𝜏𝑖)𝑇𝑖 : original texts𝑇𝑖′ : translated texts𝑇𝑖𝜋𝑖 ,𝑇′𝑖𝜋𝑖 : round-trip texts𝜒𝜋𝑖 : sub-classifier𝑠𝜋𝑖 : round-trip text𝜎𝜋𝑖 : similarity𝜎𝜋𝑏 : best similarity𝜎𝜋𝑏
𝜓

…

𝑇1′ 𝑇′1𝜋1
…𝑇𝑏 𝑇𝑏𝜋𝑏 𝜒𝜋𝑏𝑇𝑏′ 𝑇′𝑏𝜋𝑏

Train set 1

Train set 2

Suspicious 

text

Original/translated

Best similarity

Figure 2: Text similarity with round-trip translation process (training phase: solid lines, testing phase: dashed

lines).
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Figure 3: Top three round-trip translation detectors.

existing methods using the accuracy metric (accu-

racy and F -score are equivalent in this balanced

corpus). BERT and TSRT have the same optimized

hyperparameters6. The first four methods do not

work well with this parallel corpus. The round-trip

translation (Nguyen-Son et al., 2019a) based on

BLEU and BERT (Devlin et al., 2019) improves

by approximately 10%. TSRT provides the highest

performance, as it captures round-trip information

using deep learning.

We analyzed the text lengths of the top three

detectors on the whole (Go,RU) test set (Fig. 3).

BERT surpasses round trips in only short length

ranges, while TSRT outperforms the others in all

ranges.

Human recognition: We selected 100 random

reviews from the test set for human recognition7.

We sent them to 14 raters (6 were native English

detection
6We optimize hyperparameters with recommended values

from BERT (maximum size of 128, batch size of 32, learning
rate of 2e-5, and epoch of 3). Since the development accuracy
is equivalent to the test accuracy, we use the test accuracy for
further experiments.

7The survey is available at https://forms.gle/
L8EkZxXuEH9Co3UB7.

speakers), who decided whether each review was

an original or a translated text. The average ac-

curacy was 53.3% (55.0% for the native speakers

and 52.0% for the nonnative speakers), which was

close to random. The low Fleiss’ κ = 0.13 implied

slight agreement in the native speakers’ ratings. For

nonnative speakers, κ was even lower (κ = −0.07).

This indicates that the translated texts were indis-

tinguishable by humans.

One-way translation detection: We collected

parallel sentences from the Commentary News

corpus (Barrault et al., 2019). We randomly se-

lected 11, 748 pairs with 21.9 words on average

per sentence (same as the movie reviews). We ex-

perimented with two languages (Russian and Ger-

man) and two translators (Google and Fairseq) (see

Fig. 4). Since one-way translation is more chal-

lenging to detect, the accuracy is decreased for all

methods. In the top three detectors, while BERT

and round-trip translation yield unstable results,

TSRT remains consistent.

3.2 Changed Translator and Language

Comparison: Humans are familiar with limited lan-

guages and translators. Normally, they use their

mother tongue and English (international language)

and translate by choosing a popular translator such

as Google or an open-source translator such as

Fairseq. Table 2 presents the translation detec-

tion with translator and language changes. While

the existing methods are trained with (Go,DE) or

(Fa,RU), TSRT is trained on (Go,DE)+(Go,RU) or

(Fa,RU)+(Go,RU), respectively. We tested all of

them in (Go,RU). Our results showed that the ex-

isting methods were significantly downgraded in

terms of accuracy, but TSRT remained stable.

https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://github.com/quocnsh/machine_translation_detection
https://forms.gle/L8EkZxXuEH9Co3UB7
https://forms.gle/L8EkZxXuEH9Co3UB7
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Method (Go,RU) (Fa,RU) (Go,DE) (Fa,DE) (Go,JA)

Complexity (Nguyen-Son et al., 2017) 52.7 54.9 52.2 51.5 53.6
Parse tree (Li et al., 2015) 58.3 55.5 56.0 53.6 58.1
Coherence (Nguyen-Son et al., 2019b) 60.7 60.1 57.7 55.0 62.4
N -gram (Aharoni et al., 2014) 74.7 69.0 68.0 64.9 72.6
Round trip (Nguyen-Son et al., 2019a) 86.4 82.2 82.9 83.8 80.3
BERT (Devlin et al., 2019) 85.2 80.4 77.7 72.9 86.8

TSRT 90.2 87.6 85.5 85.2 89.8

Table 1: Round-trip translation detection with a combination of a translator—Google(Go) or Fairseq(Fa)—and a

language—Russian(RU), German(DE), or Japanese(JA).

50%

70%

90%

(Go,Ru) (Fa,Ru) (Go,Ge) (Fa,Ge)

A
cc

u
ra

cy

Complexity Parsing tree Coherence N-gram Round-trip BERT TSRT

Figure 4: Detecting one-way translation with various translators and languages.

Method
Round-trip One-way

(Go,DE) (Fa,RU) (Go,DE) (Fa,RU)

Complexity 52.2 54.2 55.3 54.0
Parse tree 57.1 56.4 57.1 54.9
Coherence 59.4 58.9 58.5 59.3
N -gram 67.8 68.1 61.8 63.9
Round trip 61.8 56.2 61.7 60.3
BERT 77.9 75.5 67.1 75.4

TSRT 86.9 86.6 81.9 82.2

Table 2: Translation detection with translator and lan-

guage changes.

Ablation Studies: We trained TSRT on various

configuration tuples and tested it on (Go,RU) (Ta-

ble 3). Training TSRT on the combination with

the correct configuration tuple (Go,RU) boosts the

performance.

Configuration identification: We identify the

translator and language on round-trip translation de-

tection while the one-way approach obtains similar

results. For translator change (Table 4’s second col-

umn), we used (Go,RU) and (Fa,RU). For the lan-

guage change (the third column), we used (Go,RU)

and (Go,DE). All were tested on (Go,RU). We used

BERT as the identification baseline. We replaced

MED with BLEU in TSRT. All the metric-based

approaches outperformed the baseline. The trans-

Training data Acc(Red.)

(Go,RU) 90.2(-00.0)

(Fa,RU) 70.2(-20.0)

(Fa,RU) 70.2(-20.0)

(Go,DE) 73.4(-16.8)

(Fa,DE) 66.6(-23.6)

(Go,RU)+(Fa,RU) 86.9(-03.3)

(Go,RU)+(Go,DE) 86.6(-03.6)

(Go,RU)+(Fa,RU)+(Go,DE)+(Fa,DE) 81.5(-08.7)

Table 3: TSRT’s results with individuals and combi-

nations of configuration tuples of translators and lan-

guages.

lator detection outperformed language detection.

While a specific translator often uses the same

architecture for all languages, various translators

have different architectures. Therefore, a translator

change was more apparent than a language change.

MED (designed for structure similarity) was bet-

ter than BLEU (designed for corpus levels).

4 Conclusion

This paper proposed a one-way and round-trip

translation detection mechanism using text simi-

larity with round-trip translation (TSRT), which

is robust to language and translator changes.

First, we trained subclassifiers on specific lan-
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Method Translator Language

BERT 63.4% 70.0%

BLEU -1 92.4% 84.5%
BLEU -2 92.3% 84.6%
BLEU -3 92.3% 84.4%
BLEU -4 92.2% 85.0%
MED 93.3% 85.6%

Table 4: Translator and language identification.

guages/translators using round-trip translation.

Then, we identified the language and translator

using the highest similarity between the suspicious

and round-trip translation texts. Finally, we chose

the corresponding subclassifier for translation de-

tection. The evaluation results show that TSRT

outperforms other methods, with an accuracy of

up to 90.2%. Moreover, TSRT could also iden-

tify the original translator and translation language

with 93.3% and 85.6% of accuracy, respectively.

In future work, we will exploit saturation after re-

peatedly using the same AI system to detect other

artificial texts such as fake COVID-19 news.

Acknowledgments

We would like to thank you very much for the

anonymous reviewers to provide useful comments.

References

Roee Aharoni, Moshe Koppel, and Yoav Goldberg.
2014. Automatic detection of machine translated
text and translation quality estimation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL), pages 289–
295.

Yuki Arase and Ming Zhou. 2013. Machine translation
detection from monolingual web-text. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (ACL), pages 1597–
1607.
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