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Abstract

In Romanian language there are some re-
sources for automatic text comprehension,
but for Emotion Detection, not lexicon-based,
there are none. To cover this gap, we extracted
data from Twitter and created the first dataset
containing tweets annotated with five types of
emotions: joy, fear, sadness, anger and neu-
tral, with the intent of being used for opinion
mining and analysis tasks. In this article we
present some features of our novel dataset, and
create a benchmark to achieve the first super-
vised machine learning model for automatic
Emotion Detection in Romanian short texts.
We investigate the performance of four clas-
sical machine learning models: Multinomial
Naive Bayes, Logistic Regression, Support
Vector Classification and Linear Support Vec-
tor Classification. We also investigate more
modern approaches like fastText, which makes
use of subword information. Lastly, we fine-
tune the Romanian BERT for text classifica-
tion and our experiments show that the BERT-
based model has the best performance for the
task of Emotion Detection from Romanian
tweets.

Keywords: Emotion Detection, Twitter, Roma-
nian, Supervised Machine Learning

1 Introduction

Romanian language is a very little explored lan-
guage in terms of Natural Language Process-
ing (NLP) and Natural Language Understanding
(NLU), but social media is full of data and people
sharing their opinions about diverse topics, thus
some opinion mining tools would be very useful.

Opinion mining is defined in Ravi (2015) as “the
task of detecting, extracting and classifying opin-
ions, sentiments and attitudes concerning different
topics, as expressed in textual input”. In NLP tasks,
there are two major subcategories of opinion min-
ing: Sentiment Analysis (SA) and Emotion Detec-

tion (ED). The main difference between these two
is that sentiment analysis categorizes opinions be-
tween positive or negative, while emotion detection
aims to extract the specific emotion a text gives to
the reader.

English language is rich in NLP resources - we
can see not only that there are many manually la-
belled datasets, with a large variety of emotions,
but there also exist datasets with tweets labeled by
emotion intensity (for example, WASSA dataset by
Mohammad and Bravo-Marquez (2017) which was
first presented at the 2017 Shared Task on Emotion
Intensity). Detecting emotions can be a subjective
task, even psychologists didn’t agree upon what
the main emotions of a human being are. Plutchik
(1973) identified eight primary emotions: ecstasy,
admiration, terror, amazement, grief, loathing, rage
and vigilance, while Ekman (2005) said that the
primary emotions are: joy, sadness, fear, disgust,
surprise and anger. Inspired by the work of Mo-
hammad and Bravo-Marquez (2017), we decided
to collect tweets from Twitter and manually an-
notate them for four emotions: fear, anger, joy,
sadness, and also add a neutral class. We show the
quality of the overall dataset by computing statistic
descriptors and finally we train machine learning
classifiers in order to create the first qualitative
Romanian tool for emotion detection.

The usefulness of having a tool that detects
emotions from texts varies from exploring cus-
tomer opinions in order to ensure business growth,
to improving human-computer interactions (HCI)
in applications like onboarding chatbots and per-
sonal digital assistants (Strapparava and Mihalcea
(2008)).

2 Recent Works

It has been shown by Acheampong et al. (2020) that
text based ED research studies have been given less
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attention than other methods of ED, for instance
multimodal emotion detection including speech,
body language, facial expressions, and so on.

There are two principal ways of assessing the
ED problem: by using rule construction techniques
to identify emotive words and word combinations,
and machine learning approaches, which can be
supervised or unsupervised. While unsupervised
methods learn from unstructured data and could
provide important clustering insights in opinion
mining tasks, supervised methods give better de-
tection rates (Canales and Martinez-Barco (2014)),
but only if there exist some quality labeled data
to give as input to the classifier. Combining these
two main approaches gives a third way of detecting
emotions from text - the hybrid approach, which
takes the advantages of rule-construction and am-
plifies them with the power of machine learning.
The latter was used in this paper.

Alotaibi (2019) used the ISEAR dataset to train a
supervised model of emotion detection with Logis-
tic Regression. The ISEAR (International Survey
on Emotion Antecedents and Reactions) dataset
was first introduced in the work of Scherer and
Wallbotth (1994) and contains 7666 emotional sen-
tences labelled with 7 types of emotions: anger,
disgust, fear, sadness, shame, joy and guilt. Ab-
del Razek and Frasson (2017) used the same dataset
to test their dominant meaning approach in detect-
ing emotions in chat messages.

For detecting emotions in tweets, Shah et al.
(2019) proposed a hybrid approach consisting
of lexical based approaches that use WordNet-
Affect and EmoSenticNet with supervised classi-
fiers trained on AIT-2018 dataset for English. This
dataset was introduced in Semeval-2018 Task 1:
Affect in Tweets by Mohammad et al. (2018) and
consists of tweets annotated in 3 languages, for
anger, fear, joy and sadness.

Ghanbari-Adiv and Mosleh (2019) presented an
ensemble classifier based on NLP techniques like
Doc2Vec and 1500 k-Nearest Neighbor, Multilayer
Perceptron and Decision Tree basic classifiers opti-
mized with Parzen Tree Estimator (TPE), to detect
emotions from ISEAR and OANC datasets, and
also from an unstructured dataset of tweets from
Crowdflower. Their results show an outstanding ac-
curacy of 99.49% for regular sentences and 88.49%
for irregular sentences.

Polignano et al. (2019) tried emotion detection in
text using word-embeddings like Word2Vec, GloVe

and FastText on their designed model, having as
training datasets ISEAR, AIT-2018 and SemEval-
2019 Task3 dataset. Their research concluded that
FastText had slightly better performances.

Huang et al. (2019) investigated fine-tuning
BERT (Bidirectional Encoder Representations
from Transformers) on two datasets: EmotionLines
with dialogues from Friends Sitcom, and Emotion-
Push containing Facebook messenger chats. Their
model obtained a micro f-score of 0.815 on Friends
and 0.885 on EmotionPush. Acheampong et al.
(2020) fine-tuned BERT with a Bi-LSTM classi-
fier and obtain an average f-score of 0.73 on the
ISEAR dataset. Chiorrini et al. (2021) also inves-
tigated the use of BERT for both sentiment anal-
ysis and emotion detection in Twitter data, using
WASSA dataset (Mohammad and Bravo-Marquez
(2017)), a shorter version of AIT-2018 containing
6755 tweets annotated for: sadness, fear, anger and
happiness.

For more exotic languages, however, researchers
had to manually annotate sentences or words in
order to have a high quality dataset to work on. For
Arabic, Almanie et al. (2018) developed a dataset
of 4000 emotional words, including emojis, which
they used to classify real-time tweets into 5 types
of emotions (happy, sad, angry, scared, surprised).
Grover and Verma (2016) used a hybrid approach
to detect emotions from Punjabi texts - first they
consider a rule-based engine to detect if the sen-
tence has an emotion or not, and then they applied
Support Vector Machine (SVM) and Naı̈ve Bayes
(NB) classifiers to detect 6 emotions: happy, fear,
anger, sadness, disgust and surprise. Jayakrishnan
et al. (2018) created a corpus of manually labelled
Malayalam texts (an Indian dialect) into emotions
like: sad, happy, anger or fear. Further they used a
SVM classifier to create emotion detection models.

For Romanian language, there were some studies
conducted on speech datasets with annotated emo-
tions. For instance, Feraru and Zbancioc (2015)
presented a method for emotion detection in Roma-
nian speech that use Largest Lyapunov exponent
of the Mel-frequency energy bands, with SVM and
WKNN (Weighted K-Nearest Neighbors) classi-
fiers, trained on the SRoL dataset (developed by
Feraru et al. (2010)). Frant,i et al. (2017) created a
deep learning model of Convolutional Neural Net-
works (CNN) trained on a set of recordings in Ro-
manian language. Pavaloi et al. (2014) used three
sets of recordings in Romanian language, annotated
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for positive and negative emotions, and trained
models using k-NN and SVM classifiers. In terms
of text data, Lupea et al. (2021) present an unsuper-
vised clustering approach used to mine emotional
patterns in Mihai Eminescu’s poetry, based on the
Romanian Emotion Lexicon created by Lupea and
Briciu (2019) for feature extraction. In terms of
sentiment analysis for Romanian language, Istrati
and Ciobotaru (2021) created a dataset of tweets an-
notated for positive/negative sentiment and trained
several classifiers on it, both classical and modern.
There also exist some lexicon based approaches
for Romanian sentiment analysis, like BabelSentic-
Net, a multilingual concept-level knowledge base
described in Vilares et al. (2018).

Inspired by some of the works presented in this
section, we created the first dataset of Romanian
tweets labelled with five different emotions (anger,
fear, sadness, hapiness and neutral), in order to
obtain a solid tool for detecting emotions in texts.

3 Data

In this section we present in detail our novel dataset,
RED (Romanian Emotion Detection).

3.1 Scrapping Process

We considered the work of Mohammad and Bravo-
Marquez (2017) where they explained their method-
ology of creating the first annotated datasets for
fear, anger, joy and sadness, and we create a simi-
lar dataset, but for the Romanian language. In our
work we construct the same four classes of emo-
tions and also add a neutral class, as it has been
previously shown by Al-Rubaiee et al. (2016) the
importance of having a neutral class when classify-
ing sentiments or emotions. This way, the classifier
will not be forced to classify information he wasn’t
trained to recognize, in one of the four classes cre-
ated.

First, we create lists of query words correspon-
dent to each of the class of emotions, which are:

• synonyms of the word defining the class - syn-
onyms for “fear”, “anger”, “joy”, “sadness”
and “neutral”, extracted from two synonym
sources: an online dictionary1 and the work
of Bulgar (1995), and

• jargon and commonly used words that express
a certain feeling matching the class of emotion
for which the scraping process is conducted.

1https://www.sin0nime.com/dex

The total number of query words gathered for
each class is detailed in Table 1. These main words
are further expanded into their word families by
adding prefixes and suffixes to their stem-words.
Moreover, all morphological variants are generated
for each resulted word. In this way, for each query-
word a list or words is generated, and the resulted
lists of words were further used for scraping tweets,
using Snscrape2 python library.

Tweets were gathered from Twitter in the time-
frame: 1st of February 2020 - 1st of February 2021,
and checked for Romanian language using langde-
tect3 python library.

All gathered tweets were scrapped from pub-
lic accounts. Still, to protect confidentiality and
anonymity of Twitter users, we removed usernames
and also all proper nouns from tweets in the final
dataset, using preprocessing techniques described
in Section 3.3.

3.2 Annotation Process

The annotation process involved 3 annotators: An-
notator 1 and Annotator 2, native Romanian speak-
ers who decided over the same tweets, and Annota-
tor 3, a psychologist, also native Romanian speaker,
who tipped the scales regarding the tweets where
Annotator 1 and Annotator 2 did not agree upon.

The result of the scraping process for each query
word was a spreadsheet containing all the tweets
found in the mentioned time-frame, having in their
composition at least one word expanded from the
query word. These spreadsheets were shuffled and
manually checked by Annotator 1 if tweets indeed
represented the emotion conveyed by the class they
were scrapped for. Maximum 50 tweets were kept
for each query word, in order not to bias the classi-
fication process. An important rule for annotating
was to annotate tweets that clearly expressed the
researched emotion.

After the work of Annotator 1 was done, a num-
ber of approximately 1000 tweets resulted per class.
In order the create a high quality dataset, these
tweets were double-checked by Annotator 2 in or-
der to make sure that the tweets indeed represent
the emotion labelled by the first annotator. The two
annotators disagreed upon 223 tweets for Anger,
251 for Fear, 309 for Joy, 279 for Sadness and
210 for Neutral class. These selected tweets were

2https://github.com/
JustAnotherArchivist/snscrape

3https://pypi.org/project/langdetect/
version 1.0.8

https://www.sin0nime.com/dex
https://github.com/JustAnotherArchivist/snscrape
https://github.com/JustAnotherArchivist/snscrape
https://pypi.org/project/langdetect/
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checked by Annotator 3, who gave his verdict re-
garding their conveyed emotion. Further, tweets
were checked for duplicates and shuffled. The final
number of remaining tweets is shown in Table 1.
It can be observed that classes remain balanced
after the quality check involved in the annotation
process.

Table 1: Number of query words and final number of
labelled tweets per class

Class name Query words Labelled tweets
Anger 35 807
Fear 25 778
Joy 32 876
Sadness 29 781
Neutral 24 805

3.3 Dataset Preprocessing

In order to have a high quality dataset, suitable for
machine training, we performed some text prepro-
cessing by removing unnecessary information from
tweets that could potentially bias the classification:

• usernames in the form of @username;

• hiperlinks;

• hashtag sign (#), but the hashtag word was pre-
served, as it can contain relevant information
for the classification problem;

• artefacts like &amp and \n;

• proper nouns, using Named Entity Recog-
nition pipeline for Romanian from spacy4

(ro core news sm).

The first four preprocessing steps were per-
formed using regex. Emoticons, emojis, as well
as all punctuation marks were left untouched by
preprocessing techniques, as they convey emotions
per se.

Final dataset was created by gathering all la-
belled tweets and shuffling them all. Further, the
dataset was split into 3237 tweets for training, 405
tweets for validation and 405 tweets for testing,
and this split was used for training all classifiers
presented in Section 4.

3.4 Dataset Analysis

In Figure 1 we show the distribution of tokens
per tweets for each class of emotions, in order to
make sure all five classes have approximately the
same distribution. As it can be seen, Fear, Joy and

4https://spacy.io/models/ro

Neutral have approximately the same distributions,
while Anger differs the most.

In Table 2 we compute descriptive statistics us-
ing R function aggregate. It can be seen that the
longest tweet pertains to the Joy class, with 75
tokens, while the majority of tweets lie under 35
tokens, as the highest median is of 30 tokens, be-
longing to the Anger class. For this class it can also
be observed that it has the highest mean an median,
which could mean that Twitter users express anger
using longer phrases in Romanian. Lowest mean
and median are observed in Sadness and Neutral
classes, which could mean that Twitter users ex-
press sadness and neutral feelings using less words
in Romanian.

Table 2: Descriptive statistics of token distributions in
tweets.

Emotion Min Median Mean Max
Anger 2.00 30.00 31.97 68.00
Fear 2.00 21.00 24.18 70.00
Joy 2.00 21.00 25.27 75.00
Neutral 1.00 11.00 21.34 67.00
Sadness 1.00 16.00 28.36 74.00

Figure 1: Distribution of tokens per tweet for each class
of emotions.

4 Models

In this section we describe the tried models in order
to generate the first supervised emotion detector for
Romanian short texts. First, we create a benchmark

https://spacy.io/models/ro
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composed of classical machine learning models,
and second we try two more modern approaches,
which make use of word embeddings: one that
uses Facebook’s fastText word embeddings and a
fine-tuned BERT classifier.

4.1 Classical Machine Learning Models

Classical machine learning models can sometimes
have good results for modern problems. Thus, be-
fore diving into more modern solutions we first
investigate Support Vector Classification (SVC),
Linear Support Vector Classification (LinearSVC),
Logistic Regression and Multinomial Naive Bayes
(MultinomialNB) algorithms.

For feature extraction we use Term Frequency -
Inverse Document Frequency (tf-idf ) to represent
tweets in vector form, which is a measure that tries
to estimate the importance of tokens in the dataset
by computing two statistics: term frequency (the
number of appearances of a word in the whole
dataset - see Eq.1) and inverse document frequency
(the number of tweets in relation to the number of
tweets containing the word - see Eq.2), as explained
in Sammut (2010).

tf =
No. Of Word Appear. in Tweet

No. of Words in Tweet
(1)

idf =
No. Of Tweets

No. of Tweets with Word
(2)

The final result of the tf-idf is obtained by multi-
plying Eq.1 and Eq.2 (AlZoubi et al. (2020)):

tf − idf = tf × idf (3)

Practically, we convert tweets into a matrix of
tf-idf features using TfidfVectorizer5, with the fol-
lowing characteristics:

• sublinear df parameter is set to True in order
to use a logarithmic form for term frequency,
because it seems unlikely that twenty occur-
rences of a term in a document truly carry
twenty times the significance of a single oc-
currence (Manning Christopher (2008)). Thus,
Eq. 3 becomes:

wf − idft,d = wft,d × idft (4)

where:

wft,d =

{
i+ logtft,d if tft,d > 0
0 otherwise

(5)

5https://scikit-learn.org/stable/
modules/generated/sklearn.feature_

• min df parameter is set to 5, being the mini-
mum number of tweets a word must be present
in to be kept in the feature vector;

• ngram range parameter is set to (1, 2) to indi-
cate that we want to consider both unigrams
and bigrams in our vector representation.

For label encoding we used Sklearn LabelEn-
coder6.

4.2 FastText Based Model
FastText7 is an open-source library, developed by
Facebook AI Research lab with the purpose of text
classification and representation. As Bojanowski
et al. (2016) described in their work, fastText cre-
ates word representations based on the skipgram
model, where each word is represented as a bag
of character n-grams. A vector representation is
associated to each character n-gram, words being
represented as the sum of these representations. Us-
ing character level information helps capture the
meaning of shorter words and allows the embed-
dings to map suffixes and prefixes.

The character n-gram selection is done using a
sliding window between the minimum value of the
character n-gram and the maximum value of the
character n-gram. The word is stored in memory
like the sum of character n-grams. For classifica-
tion, word representations are averaged into a text
representation to form a hidden variable, which is
in turn fed to a linear classifier (Joulin et al. (2016)).

4.3 BERT Based Model
Another modern approach for text encoding is us-
ing pretrained vector representations. BERT (Bidi-
rectional Encoder Representations from Transform-
ers), introduced by Devlin et al. (2019) in their
work, is considered state-of-the-art in many natural
language processing tasks that use language repre-
sentation. We fine-tune BERT model in order to
obtain an emotion detection classifier.

BERT-base model contains an encoder with 12
Transformer blocks, 12 self-attention heads, and
the hidden size of 768 (Chi et al. (2019)). To use a
pre-trained BERT model, we first need to convert
the input data into an appropriate format so that
each sentence can be sent to the pre-trained model
in order to obtain the corresponding embedding.

extraction.text.TfidfVectorizer.html
6https://scikit-learn.org/stable/

modules/generated/sklearn.preprocessing.
LabelEncoder.html

7https://fasttext.cc/

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://fasttext.cc/


296

For this task we use HuggingFace’s transformers
package, and in particular the tokenizer for Roma-
nian and the BERT pretrained model for Roma-
nian8 described by Dumitrescu et al. (2020). The
Romanian model was trained on three Romanian
corpuses: OPUS, OSCAR and Wikipedia.

BERT tokenizer adds special tokens to the input
text, converts all tokens into their corresponding
IDs in the model, and adds the attention mask. The
attention mask is a vector of 1 and 0 which tells the
model which tokens should be taken into consider-
ation and which should not. The resulted vectors
are used to train the model.

5 Experiments and Results

In this section we present the results obtained on
the test set for the previously described models.

5.1 Classical Machine Learning
The investigated algorithms are SVC, LinearSVC,
Logistic Regression and Multinomial NB. For train-
ing we use sklearn off-the-shelf functions, without
any other parameter modification. The accuracies
we obtained for each model are shown in Table 3.

Table 3: Comparison between four classical machine
learning models

Model Accuracy
LinearSVC 82.96%

LogisticRegression 78.77%
MultinomialNB 76.79%

SVC 76.30%

According to the results, LinearSVC has the best
accuracy, 82.96%, second comes Logistic Regres-
sion with an accuracy of 78.77%, third Multinomi-
alNB with 76.79% accuracy and fourth SVC with
an accuracy of 76.30%. For LinearSVC, the best
among the classical models analyzed, we compute
the confusion matrix and the normalised confusion
matrix and show our results in Appendix, Figure
2. Normalization of the confusion matrix is useful
in the case of not such perfectly balanced classes,
to be able to visual interpret which class is being
misclassified the most. It can be seen in the nor-
malized confusion matrix in Appendix, Figure 2,
that Sadness class is being missclassified most fre-
quently, and the Neutral class is being classified
correctly most often.

We also analyze precision, recall and f-score for
8https://huggingface.

co/dumitrescustefan/
bert-base-romanian-cased-v1

each class, which are computed in Table 4, using
classification report9 method. In accordance with
the confusion matrix, Neutral class has the highest
precison, recall and F-score scores (not surpris-
ingly, these values are also equal), while Sadness
class has lowest scores.

Table 4: Classification report for Linear SVC

Emotion Precision Recall F-score Support
Joy 0.83 0.78 0.80 89
Fear 0.79 0.85 0.82 72
Anger 0.85 0.84 0.85 83
Neutral 0.89 0.89 0.89 81
Sadness 0.78 0.80 0.79 80
Macro avg 0.82931 0.83095 0.82972 405

Combining the results from Appendix, Figure 2
and Table 4 we see that out of 80 tweets labelled
with Sadness, the model correctly classified only
64, 8 being classified as Joy, and out of 89 tweets
labelled with Joy, the model correctly classified
only 69, 7 being classified as Sadness. This means
that the model confuses Joy with Sadness and vice-
versa, which is counter-intuitive.

5.2 FastText Based Model

To train the fastText based model we used the
train supervised method from fasttext library, with
the word n-grams parameter set to 2, because for
the classical machine learning models considered
previously we have also used word n-grams of 2
during encoding. We conducted a set of four ex-
periments for the fastText based model, two exper-
iments using pretrained vectors for the Romanian
language, and another two experiments where we
let the model autotune on the validation set, without
taking into consideration pretrained word vectors.
Results are shown in Table 5, along with the hyper-
parameters used for each model, which are:

• lr - learning rate;
• vectors - fastText pretrained vectors for Ro-

manian were trained on Common Crawl
and Wikipedia using CBOW with position-
weights, in dimension 300, with character n-
grams of length 5, a window of size 5 and 10
negatives10;

• ws - size of the context window;
• wNgms - maximal length of word n-gram;
• epoch - number of epochs used for training;
9https://scikit-learn.org/stable/

modules/generated/sklearn.metrics.
classification_report.html

10https://fasttext.cc/docs/en/
crawl-vectors.html

https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1
https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1
https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
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• tune - time set for autotuning on the validation
file;

• minn - minimum length of character n-gram;
• maxn - maximum length of character n-gram.

As seen in Table 5, models trained without mak-
ing use of pretrained vectors for Romanian had
better performances than the models trained with
these vectors, but this can be due to the fact that
experiments without pretrained vectors were done
using hyperparameter autotuning on the validation
set, and might not be necessarily related to using
pretrained vectors or not. At the time these exper-
iments were conducted, train supervised method
from fastText library didn’t allow autotuning of
hyperparameters using pretrained vectors.

Table 5: Hyperparameters and performance of tried
fastText models

Model lr vectors ws wNgms epoch minn maxn tune Acc.
Model1 0.001 yes 2 2 1000 - - - 0.733
Model2 0.001 yes 2 2 1000 2 3 - 0.795
Model3 - no - 2 - 1 3 600s 0.795
Model4 - no - 2 - - - 600s 0.847

For Model 4 we compute the confusion matrix
(Appendix, Figure 3), both classic and normalized.
We can see from the normalized confusion matrix
that the model has an overall best performance
on the Anger class, and worst performance on the
Neutral class. But if we examine performance in
detail, we see in the classification report (Table
6) that although Anger class has the highest re-
call, it lacks precision, and while the Neutral class
has high precision, it lacks recall. Also, analyz-
ing the confusion matrix we observe many high
values of missclassification, for each class: from
89 tweets labelled Joy the model classified 6 as
Sadness; from 72 tweets labelled Fear, the model
classified 7 as Anger; from 83 tweets labelled as
Anger, the model classified 6 as Sadness; from 81
tweets labelled Neutral the model classified 8 as
Joy, and from 80 tweets labelled Sadness the model
classified 6 as Anger. We can conclude that the
fastText based model may have an overall good
performance taking into account all classes at once,
but behaves poorly in discrete mode.

5.3 BERT Based Model

To train the BERT model we preprocessed data
as explained in Section 4.3, using the tok-
enizer.encode plus method from Huggingface. We
fine-tuned BERT model by adding a classifier for
the task of emotion detection, comprised of:

Table 6: Classification report for fastText Model 4

Emotion Precision Recall F-score Support
Joy 0.89 0.85 0.87 89
Fear 0.88 0.85 0.87 72
Anger 0.78 0.88 0.82 83
Neutral 0.90 0.79 0.84 81
Sadness 0.80 0.86 0.83 80
Macro avg 0.85170 0.84666 0.84742 405

• a drop-out layer with probability 0.3. As ex-
plained in Hinton et al. (2012), drop-out layers
are used for regularization and preventing the
co-adaptation of neurons;

• a fully connected layer that applies a linear
transformation to data;

• a transformation of the output using Softmax
function.

Training was done using Cross Entropy loss
function with an AdamW optimizer for the learning
rate. Although BERT authors have some recom-
mendations in their paper, Devlin et al. (2019), we
opted for a batch size of 8 and 5 epochs, because
our 16GB GPU card couldn’t handle a bigger batch
size, and in 5 epochs the model already reached its
highest accuracy. The maximum utterance length
was set to 100.

For fine-tuning BERT we chose Cross Entropy
loss function and Softmax activation function, as
these are usually used with multiclass clasification
problems.

The confusion matrices, both simple and normal-
ized, are shown in Appendix, Figure 4. It can be
observed on the normalized confusion matrix that
Sadness class has been missclassified most often,
while Joy and Fear have best accuracies per class.
On the simple confusion matrix we can see that
missclassifications don’t have such high values like
on the other tried models’ confusion matrices, none
exceeding 5 wrong classifications.

The overall accuracy for the BERT based model
is 90.37%, fact that can also be observed in the
confusion matrix, by summing up the values on
the diagonal and dividing to the whole number of
samples (405 tweets in the test set).

This model’s classification report is presented in
Table 7. The macro averaged precision, recall and
f-score are very similar, and to the overall accuracy
of the model as well. Best precision, recall and
F-score belong to the Joy class, worst precison and
f-score to Anger class, and worst recall to Sadness
class.
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Table 7: Classification report for BERT based model

Emotion Precision Recall F-score Support
Joy 0.95 0.93 0.94 89
Fear 0.93 0.89 0.91 72
Anger 0.85 0.89 0.87 83
Neutral 0.87 0.91 0.89 81
Sadness 0.90 0.86 0.88 80
Macro avg 0.90437 0.90354 0.90366 405

5.4 Comparisons

Retrospectively, although LinearSVC had a high
overall accuracy, it confused Joy and Sadness, but
had good performance on the Neutral class. On the
other hand, the fastText based model had worst per-
formances on the Neutral class, and performed best
when classifying Anger, but had an overall better
accuracy than LinearSVC. Lastly, our BERT-based
model outperforms all the other models considered,
as seen in Table 8, where we aggregate all our re-
sults and compare models using accuracy, macro
averaged precision, recall and F-score. We can see
that the BERT-based model came out best regard-
ing all measures, fastText based model came out
second, and classical LinearSVC on the last place.
A probable explanation for such good results is that
pre-trained BERT learned contextual relations be-
tween words and fine-tuning the model makes use
of these relations when classifying.

Table 8: Comparison between created ED models

Model Accuracy Precision Recall F-score
BERT 90.37% 90.44% 90.35% 90.37%

fastText 84.70% 85.17% 84.67% 84.74%
LinearSVC 82.96% 82.93% 83.10% 82.97%

6 Conclusions and Future Works
In this article, we presented our novel dataset for
emotion detection, the first dataset of its kind for
the Romanian language. We researched the state-
of-the-art and created a benchmark of machine
learning models in order to obtain an automatic
emotion detector from tweets, having the purpose
of being used in real-life tasks, adjacent to the field
of opinion mining.

Although the dataset is not very large, it provided
enough data to generate a text emotion detection
model with an accuracy of 90.37%. In the future,
we plan to enlarge this dataset with more tweets per
class, an action that most probably will increase
accuracy of the models. Also, we plan on adding
more classes of emotions, to generate an even more
fine-grained dataset for detecting emotions in Ro-
manian content.
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Appendix

Figure 2: Confusion matrix for linear SVC model.

Figure 3: Confusion matrix for fastText based model.

Figure 4: Confusion matrix for BERT based model.


