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Abstract

Uncertainty estimation (UE) of model
predictions is a crucial step for a variety of
tasks such as active learning, misclassification
detection, adversarial attack detection, out-of-
distribution detection, etc. Most of the works
on modeling the uncertainty of deep neural
networks evaluate these methods on image
classification tasks. Little attention has been
paid to UE in natural language processing.
To fill this gap, we perform a vast empirical
investigation of state-of-the-art UE methods
for Transformer models on misclassification
detection in named entity recognition and
text classification tasks and propose two
computationally efficient modifications, one
of which approaches or even outperforms
computationally intensive methods1.

1 Introduction

Machine learning methods are naturally prone to
errors as they typically have to deal with ambiguous
and incomplete data during both training and
inference. Unreliable predictions hinder the
application of these methods in domains, where
the price of mistakes is very high, such as clinical
medicine. Even in more error-tolerant domains
and tasks, such as intent recognition in general-
purpose chatbots, one would like to achieve a better
trade-off between expressiveness of a model and
its computational performance during inference.

Since mistakes are inevitable, it is crucial
to understand whether model predictions can
be trusted or not and abstain from unreliable
decisions. Uncertainty estimation (UE) of model
predictions aims to solve this task. Ideally,
uncertain instances should correspond to erroneous

1The code for experiments is available online
at https://github.com/AIRI-Institute/
uncertainty_transformers

♦ Equal contribution, corresponding authors

objects and help in misclassification detection.
Besides misclassification detection, UE is a crucial
component for active learning (Settles, 2009),
adversarial attack detection (Lee et al., 2018),
detection of out-of-distribution (OOD) instances
(Van Amersfoort et al., 2020), etc.

Some classical machine learning models, e.g.
Gaussian processes (Rasmussen, 2003), have
built-in UE capabilities. Modern deep neural
networks (DNNs) usually take advantage of a
softmax layer, which output can be considered
as a prediction probability and be used for
UE. However, the softmax probabilities are
usually unreliable and produce overconfident
predictions (Guo et al., 2017). Some previously
proposed techniques such as deep ensemble
(Lakshminarayanan et al., 2017) are known for
producing good UE scores but require a large
additional memory footprint for storing several
versions of weights and multiply an amount of
computation for conducting several forward passes.
Reliable UE of DNN predictions that does not
introduce high computational overhead is an open
research question (Van Amersfoort et al., 2020).

In this work, we investigate methods for UE
of DNNs based on the Transformer architecture
(Vaswani et al., 2017) in misclassification detection.
We consider two of the most common NLP tasks:
text classification and named entity recognition
(NER). The latter has been overlooked in the
literature on UE. To our knowledge, this work is
the first to consider UE for NER.

We propose two novel computationally cheap
methods for UE of Transformer predictions. The
first method is the modification of the Monte
Carlo dropout with determinantal point process
sampling of dropout masks (Shelmanov et al.,
2021). We introduce an additional step for
making masks more diverse, which helps to
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achieve substantial improvements and approach
the performance of computationally-intensive
methods on NER. The second method leverages
Mahalanobis distance (Lee et al., 2018) but also
adds a spectral normalization of the weight matrix
in the classification layer (Liu et al., 2020). This
method achieves the best results on most of the
datasets and even outperforms computationally-
intensive methods. We also investigate recently
proposed regularization techniques in combination
with other UE methods. The contributions of this
paper are the following:

• We propose two novel computationally cheap
modifications of UE methods for Transformer
models. The method based on Mahalanobis
distance with spectral normalization
approaches or even outperforms strong
computationally intensive counterparts.

• This work is the first to investigate UE
methods on the NER task.

• We conduct an extensive empirical evaluation,
in which we investigate recently proposed
regularization techniques in combination with
other UE methods.

2 Related Work

It is well known that reliable uncertainty scores can
be obtained simply by constructing an ensemble
of decorrelated neural networks (deep ensemble)
(Lakshminarayanan et al., 2017). However,
such a straightforward approach is coupled with
substantial computational and memory overhead
during training an ensemble, performing inference
of all its components, and storing multiple versions
of weights. This overhead is a serious obstacle to
deploying ensemble-based uncertainty estimation
methods in practice.

Uncertainty estimation is a built-in capability
of Bayesian neural networks (Blundell et al.,
2015). However, such models have similar issues
as ensembles and also require special training
procedures. Recently, it was shown by Gal and
Ghahramani (2016) that dropout, a well-known
regularization technique, is formally equivalent
to approximate variational inference in a deep
Gaussian process if it is activated during prediction.
This method, known as Monte Carlo (MC) dropout,
uses the approximating variational distribution with
Bernoulli variables related to network units. MC
dropout does not impose any overhead during

training, introduces no additional parameters, and
thus does not require any additional memory.
The main disadvantage of this method is that it
usually requires many forward-pass samplings for
approximating predictive posterior, which makes it
also computationally expensive.

Recently, many works have investigated
the approximate Bayesian inference for neural
networks using deterministic approaches: Lee et al.
(2018); Liu et al. (2020); Van Amersfoort et al.
(2020); Mukhoti et al. (2021); Shen et al. (2021),
etc. These methods do not introduce notable
overhead for inference, storing weights, and usually
require compatible training time. However, most
of the research in this area is accomplished for
computer vision tasks.

For text classification, a series of works
investigates UE methods for the OOD detection
task (Liu et al., 2020; Podolskiy et al., 2021;
Zeng et al., 2021; Hu and Khan, 2021). In this
work, we focus on a more challenging task –
misclassification detection. While OOD detection
requires to model only the epistemic uncertainty
inherent to the model and caused by a lack
of training data, misclassification detection also
requires to model aleatoric uncertainty caused by
noise and ambiguity in data (Mukhoti et al., 2021).
We consider recently proposed methods in this area
that are evaluated in text processing.

Three recent works propose techniques for
misclassification detection based on an additive
regularization of a training loss function. Zhang
et al. (2019) suggest adding a penalty that reduces
the Euclidean distance between training instances
of the same class and increases the distance
between instances of different classes. He et al.
(2020) suggest using two components in the
loss function that reduce the difference between
outputs from two versions of a model initialized
with different weights. They also use mix-up
(Thulasidasan et al., 2019) to generate additional
training instance representations that help to
capture aleatoric uncertainty, self-ensembling, MC
dropout, and a distinctiveness score to measure the
epistemic uncertainty. Xin et al. (2021) introduce a
regularizer that penalizes overconfident instances
with high loss. In another recent work, Shelmanov
et al. (2021) propose to combine MC dropout with
a Determinantal Point Process (DPP) to improve
the diversity of predictions by considering the
correlations between neurons and sampling the
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diverse neurons for activation in a dropout layer.
In this work, we conduct a systematic empirical

investigation of UE methods on NLP tasks. We
evaluate combinations of methods that have not
been tested before and propose two modifications,
one of which achieves the best results among
computationally cheap methods. The previous
work focuses on text classification tasks, while this
work is the first to investigate UE also for NER.

3 Background and Methods

In this section, we describe the baselines and
propose novel uncertainty estimation techniques.

3.1 Softmax Response
Softmax Response (SR) (Geifman and El-Yaniv,
2017) is a trivial baseline for UE that uses the
probabilities generated via the output softmax layer
of the neural network. SR is based on the maximum
probability p(y|x) over classes y = c ∈ C. The
smaller this probability is, the more uncertain
model is:

uSR(x) = 1−max
c∈C

p(y = c|x). (1)

3.2 Monte Carlo Dropout
Standard Monte Carlo Dropout (MC Dropout)
Consider we have conducted T stochastic forward
passes with activated dropout. In this work, we use
the following ways to quantify uncertainty with
methods based on MC dropout:

• Sampled maximum probability (SMP) is:

uSMP = 1−max
c∈C

1

T

T∑
t=1

pct , (2)

where pct is the probability of the class c for
the t-th stochastic forward pass.

• Probability variance (PV; Gal et al. (2017);
Smith and Gal (2018)) is:

uPV =
1

C

C∑
c=1

(
1

T

T∑
t=1

(pct − pc)2
)
, (3)

where pc = 1
T

∑
t p
c
t is the probability for a

class c averaged across T stochastic forward
passes.

• Bayesian active learning by disagreement
(BALD; Houlsby et al. (2011)) is:

uBALD = −
C∑
c=1

pc log pc +
1

T

∑
c,t

pct log pct .

(4)

The two former techniques are specifically
designed for estimation of the epistemic (model)
uncertainty arising from the lack of knowledge and
ignore the aleatoric uncertainty related to ambiguity
and noise in the data, while the latter method can
be seen as a measure of total uncertainty (Malinin
and Gales, 2018).

Transformers contain multiple dropout layers
(after the embedding layer, in each attention head,
and before the last classification layer). It is
shown in previous work that the standard MC
dropout outperforms the baseline SR only when all
dropout layers are activated in a model (Shelmanov
et al., 2021). Therefore, we follow this setting
for experiments in this work. We note that due to
activating all dropout layers, multiple stochastic
predictions are required for the whole network,
which introduces a large computational overhead.

Similar UE scores are used in deep ensemble
(Lakshminarayanan et al., 2017), where instead
of multiple stochastic predictions we train and
infer several model versions with different sets of
weights.

Diverse Determinantal Point Process Monte
Carlo Dropout (DDPP MC dropout) (Ours)
Determinantal point processes (DPPs; Kulesza and
Taskar (2012)) are used for sampling a subset
of diverse objects from a given set. Recently,
Shelmanov et al. (2021) have combined the
MC dropout with a determinantal point process
(DPP) for sampling neurons in a dropout layer
and demonstrated that using stochasticity in the
last dropout layer (in a classification head of
Transformer) only is enough to improve upon SR
in misclassification detection. This method is
less computationally expensive than the standard
MC dropout since it requires multiple stochastic
predictions only for the top classification layer of
the network with a small number of parameters,
while all other layers are inferred only once.

Consider the similarity matrix Ch between
neurons of the h-th hidden layer (in particular, we
use a correlation matrix between output values of
neurons on the training set). Then one can construct
the DPP-based dropout masks MDPP

h using Ch
as a likelihood kernel for the DPP: MDPP

h ∼
DPP (Ch). That gives the following probability to
select a set S of activations on the layer h:

P
[
MDPP
h = S

]
=

det(CSh )

det(Ch + I)
, (5)
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where CSh is the square submatrix of Ch obtained
by keeping only rows and columns indexed by the
sample S.

In this work, we improve this method by
increasing the diversity of the sampled DPP masks.
After multiple dropout masks are pre-generated
via DPP in the inference step as in the original
DPP MC dropout, we make an additional step, in
which we select a diverse set of masks from this
pre-generated pool using one of two strategies:

• DDPP (+DPP): We sample a set of “diverse”
masks that activate different sets of neurons.
For this purpose, we apply DPP sampling
again to the pool of pre-generated masks. As
a similarity kernel in this step, we use an RBF-
similarity matrix of mask vectors.

• DDPP (+OOD): We sample a set of masks
that generate diverse predictions. For this
purpose, we select the masks that yield the
highest PV scores on the given OOD dataset.

After a new set of T masks is selected, we use
them as in the standard MC dropout to obtain
stochastic predictions. Increasing the diversity of
masks in the proposed modification is motivated
by the finding of Jain et al. (2020) that improving
the diversity of elements in an ensemble leads to
better uncertainty estimates.

We note that in masks generated with DPP,
usually, less than 50% of neurons are activated,
which makes predictions poorly calibrated. To
mitigate this problem, for each constructed mask,
we perform a temperature-scaling calibration (Guo
et al., 2017) using a held-out dataset.

3.3 Deterministic Uncertainty Estimation

Spectral-normalized Neural Gaussian Process
(SNGP) Liu et al. (2020) suggest replacing the
typical dense output layer of a network with a
layer that implements a Gaussian process with
an RBF kernel, whose posterior variance at a
given instance is characterized by its L2 distance
from the training data in the hidden vector space
constructed by underlying layers of a network. The
authors propose an approximation based on random
Fourier feature expansion, which enables end-to-
end training and makes the inference feasible.

However, this method requires hidden
representations to be distance-preserving in order
to make it work. While the distance between
instances in the hidden space does not always

have a meaningful correspondence to the distance
in the input space, authors prove that to keep
hidden representations distance-preserving, the
transformation should satisfy the bi-Lipschitz
condition. For ResNets (He et al., 2016), this
requirement is satisfied if weight matrices for the
nonlinear residual blocks have a spectral norm
(i.e., the largest singular value) bounded from
above by a constant. Therefore, to enforce the
aforementioned Lipschitz constraint, they apply a
spectral normalization (SN) on weight matrices.
For Transformers, they normalize the matrix of the
penultimate classification layer only.

Mahalanobis Distance (MD) Mahalanobis
distance is a generalisation of the Euclidean
distance, which takes into account the spreading
of instances in the training set along various
directions in a feature space. Lee et al. (2018)
suggest estimating uncertainty by measuring the
Mahalanobis distance between a test instance and
the closest class-conditional Gaussian distribution:

uMD = min
c∈C

(hi − µc)TΣ−1(hi − µc), (6)

where hi is a hidden representation of a i-th
instance, µc is a centroid of a class c, and Σ is
a covariance matrix for hidden representations of
training instances.

Recently, the Mahalanobis distance has been
adopted for out-of-distribution detection with
Transformer networks by Podolskiy et al. (2021).

Mahalanobis Distance with Spectral-
normalized Network (MD SN) (Ours) Since
the UE method based on the Mahalanobis distance
utilizes the idea of a proximity of a tested
instance hidden representation to the training
distribution, we expect this method to benefit from
distance-preserving representations. Therefore,
we propose the modification of the method of
Lee et al. (2018) and Podolskiy et al. (2021)
that enforces the bi-Lipschitz constraints on
transformation implemented by the network. We
perform spectral normalization of the weight
matrix of the linear layer in the classification head
of Transformer as it is suggested in SNGP (Liu
et al., 2020). At each training step, a spectral norm
ν is estimated using the power iteration method
ν = ‖W‖2, and a normalized weight matrix is
obtained: W̃ = W

ν . At the inference step, hidden
representations are calculated using the normalized
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matrix h̃(x) = W̃x+b and are used for computing
the Mahalanobis distance.

3.4 Training Loss Regularization
Additive regularization is another approach to
improving UE of neural network predictions.
Usually, the training loss combines the original
task-specific loss Ltask (e.g. cross-entropy) and
a regularization component Lreg that facilitates
producing better calibrated UEs:

L = Ltask + λLreg, (7)

where λ is a hyperparameter that controls the
regularization strength.

The positive side of such techniques is that,
besides SR, they can be used to improve other
methods like MC dropout and deterministic
methods. The drawback is that regularization
affects the training procedure and can decrease the
model quality.

Confident Error Regularizer (CER) Xin et al.
(2021) propose a regularizer that adds a penalty for
an instance with a bigger loss than other instances
and, at the same time, bigger confidence:

Lreg =
k∑

i,j=1

∆i,j1[ei > ej ], (8)

∆i,j = max{0,max
c
pci −max

c
pcj}2, (9)

where k is the number of instances in a batch and
ei is an error of the i-th instance: ei is 1 if the
prediction of the classifier matches the true label,
and ei is 0 otherwise. The authors evaluate this
type of regularization only in conjunction with the
SR baseline.

Metric Regularizer Zhang et al. (2019) propose
a regularizer that aims to shorten the intra-class
distance and enlarge the inter-class distance:

Lreg=
C∑
c=1

{
Lintra(c)+ε

∑
k 6=c

Linter(c, k)
}
, (10)

Lintra(c) =
2

|Sc|2 − |Sc|
∑

i,j∈Sc,i<j

D(hi, hj),

(11)

Linter(c,k)=
1

|Sc|·|Sk|
∑

i∈Sc,j∈Sk

[γ−D(hi,hj)]+,

(12)

D(ri, rj) =
1

d
||hi − hj ||22, (13)

where hi is a feature representation of an instance
i from a penultimate layer of a model with a
dimension d, Sc is the set of instances from class
c, |Sc| is the number of elements in Sc, ε and γ are
positive hyperparameters, [x]+ = max(0, x).

4 Experimental Setup

In the experiments, we train a model on a given
dataset and perform inference on a separate test
set to compute both predictions and UE scores u.
We are interested in how the scores correlate with
the mistakes ẽ of the model on the test set. For
text classification, mistakes are computed in the
following way:

ẽi =

{
1, yi 6= ŷi,
0, yi = ŷi,

(14)

where yi is a true label, ŷi is a predicted label.
For NER, we use two evaluation options: token-

level and sequence-level. For the token-level
evaluation, individual tokens are considered as
separate instances as in the text classification.
For the sequence-level evaluation, mistakes are
computed in the following way:

ẽi =

{
1, ∃j ∈ {1, . . . , n}, yij 6= ŷij ,
0, ∀j ∈ {1, . . . , n}, yij = ŷij ,

(15)

where n is a sequence length, yij is a true label, ŷij
is a predicted label of a j-th token in a sequence. In
the sequence-level evaluation, UE of a sequence is
aggregated from UEs of tokens by taking maximum
(for MD methods) or by summation (for others).

4.1 Metrics
El-Yaniv and Wiener (2010) suggest evaluating
the quality of UE using the area under the risk
coverage curve (RCC-AUC). The risk coverage
curve demonstrates the cumulative sum of loss due
to misclassification (cumulative risk) depending
on the uncertainty level used for rejection of
predictions. The lower area under this curve
indicates better quality of the UE method.

Xin et al. (2021) propose a reversed pair
proportion (RPP) metric. They note that instances
with higher confidence should have a lower loss l.
RPP measures how far the uncertainty estimator ũ
is to ideal, given the labeled dataset of size n:

RPP =
1

n2

n∑
i,j=1

1[ũ(xi)>ũ(xj), li<lj ]. (16)
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Method Reg.
Type

UE
Score

MRPC SST-2 CoLA CoNLL-2003 (token level) CoNLL-2003 (seq. level)
RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓

MC - PV 13.97±1.16 1.68±0.09 12.90±1.92 0.82±0.11 44.35±4.90 2.06±0.16 6.32±1.66 0.10±0.02 16.05±3.78 1.93±0.43
MC - BALD 14.21±1.04 1.69±0.09 12.98±1.87 0.82±0.10 45.06±4.90 2.08±0.17 6.44±1.86 0.10±0.02 16.28±4.00 1.96±0.45
MC - SMP 14.38±2.07 1.76±0.19 14.00±2.20 0.91±0.15 42.95±5.98 2.01±0.15 6.04±1.03 0.09±0.02 15.79±3.34 1.80±0.35
MC CER PV 12.82±1.89 1.60±0.13 12.18±1.20 0.80±0.10 46.84±9.19 2.11±0.23 6.92±1.22 0.10±0.02 17.05±3.14 1.91±0.36
MC CER BALD 12.89±1.89 1.60±0.13 12.39±1.23 0.81±0.09 47.34±8.30 2.14±0.24 7.16±1.15 0.11±0.02 17.25±3.05 1.93±0.35
MC CER SMP 12.91±2.15 1.67±0.15 12.22±1.31 0.82±0.09 46.10±11.07 2.05±0.22 6.69±1.38 0.10±0.02 16.81±1.61 1.81±0.14
MC metric PV 14.21±1.95 1.73±0.23 12.28±1.77 0.80±0.11 42.35±0.69 2.04±0.07 6.69±0.89 0.10±0.01 17.17±1.90 1.93±0.31
MC metric BALD 14.55±2.31 1.73±0.23 12.08±1.79 0.79±0.10 43.76±0.55 2.08±0.07 6.91±1.02 0.10±0.01 17.47±1.85 1.98±0.30
MC metric SMP 13.39±1.19 1.72±0.20 13.55±1.65 0.90±0.14 40.88±1.25 2.01±0.09 6.30±0.98 0.10±0.01 16.81±1.40 1.80±0.23

DDPP (+DPP) (ours) - PV 22.30±7.15 2.58±0.65 16.70±1.38 1.12±0.12 49.75±3.96 2.44±0.29 6.12±0.71 0.10±0.01 16.78±2.44 1.93±0.20
DDPP (+DPP) (ours) - BALD 23.08±7.00 2.63±0.63 16.08±2.37 1.05±0.18 49.59±5.40 2.48±0.31 6.39±0.64 0.10±0.01 21.53±4.77 2.63±0.45
DDPP (+DPP) (ours) - SMP 21.79±7.72 2.57±0.68 17.55±3.03 1.19±0.23 47.86±5.51 2.39±0.31 6.08±0.62 0.10±0.01 17.71±2.77 2.05±0.23
DDPP (+DPP) (ours) CER PV 15.12±2.27 2.03±0.24 13.56±1.37 0.91±0.14 54.51±8.80 2.58±0.22 6.98±0.98 0.11±0.02 19.44±1.15 2.13±0.17
DDPP (+DPP) (ours) CER BALD 15.94±3.77 2.07±0.36 14.87±2.22 0.96±0.13 55.11±7.42 2.61±0.31 7.90±1.95 0.12±0.01 26.20±6.41 3.11±0.56
DDPP (+DPP) (ours) CER SMP 14.75±1.43 2.02±0.16 14.47±1.63 0.99±0.11 54.01±9.79 2.55±0.18 6.91±1.13 0.11±0.02 20.66±1.53 2.31±0.08
DDPP (+DPP) (ours) metric PV 19.51±3.40 2.47±0.28 15.79±1.67 1.07±0.14 43.82±1.82 2.17±0.14 7.33±1.53 0.12±0.02 18.93±2.09 2.11±0.25
DDPP (+DPP) (ours) metric BALD 20.54±4.72 2.52±0.34 15.48±1.81 1.03±0.08 43.95±1.68 2.17±0.12 8.01±2.08 0.13±0.03 22.44±4.78 2.67±0.49
DDPP (+DPP) (ours) metric SMP 18.45±2.88 2.41±0.26 16.78±3.43 1.14±0.26 43.61±1.61 2.16±0.11 6.92±1.32 0.11±0.02 19.11±2.14 2.16±0.22

DDPP (+OOD) (ours) - PV 22.73±7.45 2.65±0.59 19.05±2.95 1.29±0.23 51.11±12.03 2.37±0.34 6.32±0.72 0.10±0.01 16.75±2.31 1.94±0.21
DDPP (+OOD) (ours) - BALD 23.85±8.39 2.69±0.58 18.27±3.05 1.22±0.23 52.59±12.08 2.42±0.34 6.59±0.69 0.11±0.01 20.56±3.09 2.50±0.26
DDPP (+OOD) (ours) - SMP 22.31±7.80 2.60±0.65 19.86±3.83 1.36±0.29 50.14±9.73 2.32±0.30 6.09±0.67 0.10±0.01 17.76±2.75 2.06±0.23
DDPP (+OOD) (ours) CER PV 14.83±1.42 2.05±0.17 14.98±1.36 1.01±0.09 59.14±11.27 2.56±0.24 7.08±1.37 0.11±0.02 19.66±1.25 2.17±0.15
DDPP (+OOD) (ours) CER BALD 15.03±1.85 2.08±0.24 14.37±2.22 0.96±0.14 57.48±9.37 2.54±0.26 7.41±1.29 0.12±0.02 25.30±3.36 3.00±0.24
DDPP (+OOD) (ours) CER SMP 14.34±1.15 1.99±0.16 15.88±1.96 1.08±0.13 59.32±11.86 2.53±0.20 6.88±1.24 0.11±0.02 21.06±1.96 2.35±0.14
DDPP (+OOD) (ours) metric PV 19.03±3.97 2.41±0.34 17.75±5.20 1.10±0.17 48.54±11.38 2.23±0.24 6.92±1.32 0.11±0.02 18.36±1.90 2.05±0.26
DDPP (+OOD) (ours) metric BALD 19.33±4.78 2.41±0.40 16.71±7.13 1.02±0.20 49.31±11.87 2.24±0.25 7.21±1.49 0.11±0.02 21.35±4.47 2.54±0.45
DDPP (+OOD) (ours) metric SMP 18.55±3.06 2.42±0.27 17.08±3.78 1.14±0.26 43.67±1.77 2.15±0.11 6.71±1.18 0.10±0.02 19.01±2.30 2.16±0.25

SR CER MP 14.62±1.62 2.02±0.19 14.56±2.14 1.00±0.14 56.97±9.69 2.53±0.15 6.84±1.41 0.11±0.02 21.31±1.63 2.49±0.25
SR metric MP 18.39±2.94 2.40±0.27 16.90±3.12 1.16±0.24 44.54±2.11 2.22±0.15 6.51±1.07 0.10±0.02 20.32±1.68 2.32±0.23
SR (baseline) - MP 22.32±8.08 2.58±0.65 17.93±3.84 1.22±0.28 49.48±3.71 2.35±0.25 6.08±0.62 0.10±0.01 18.81±3.35 2.21±0.29

Table 1: Results for methods based on MC dropout and regularization techniques (ELECTRA model). The best
results are shown in bold, the best results for each method are underlined.

This metric has an upper bound of 1; for
convenience, the reported values are multiplied by
100. Similar to Xin et al. (2021), for both metrics,
l is an indicator loss function.

We conduct each experiment six times
with different random seeds, obtaining the
corresponding metric values, and report their mean
and standard deviation.

We also present the results using the accuracy
rejection curve. This curve is drawn by varying
the rejection uncertainty level (horizontal axis) and
presenting the corresponding accuracy obtained
when all rejected instances are labeled with an
oracle (vertical axis). This emulates the work of
a human expert in conjunction with a machine
learning system. The higher the curve, the smaller
amount of labor is needed to achieve a certain level
of performance and the better is the UE method. A
similar evaluation approach in a table form is used
in (Zhang et al., 2019). A similar curve but without
oracle labeling is used in (Lakshminarayanan et al.,
2017; Filos et al., 2019).

4.2 Datasets

For experiments with text classification, we use
three datasets from the GLUE benchmark (Wang
et al., 2018) that were previously leveraged
by Shelmanov et al. (2021) and Xin et al.
(2021) for the same purpose: Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett,

2005), Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2019), and Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013). Similar to
(Shelmanov et al., 2021), we randomly subsample
SST-2 to 10% to emulate a low-resource setting.

The experiments with NER were performed
on the widely-used CoNLL-2003 task (Tjong
Kim Sang and De Meulder, 2003). For this dataset,
we also subsample the training part to 10%.

As an out-of-domain dataset for DDPP MC
dropout, we use the IMDB binary sentiment
classification dataset (Maas et al., 2011). We
randomly select 5,000 instances from its test part
and use them to select DPP-generated masks.

The dataset statistics are provided in Table 4 in
Appendix A.

4.3 Model Choice and Hyperparameter
Selection

For experiments, we use two modern Transformers:
the pre-trained ELECTRA model (Clark et al.,
2020) with 110 million parameters and DeBERTa
(He et al., 2021) with 138 million parameters.
They achieve higher performance on the GLUE
benchmark in comparison with previous models,
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019).

The optimal hyperparameter values for each
triple <Dataset, Regularization Type, Spectral
Normalization Usage> are presented in Table 6
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Method Reg.
Type

UE
Score

MRPC SST-2 CoLA CoNLL-2003 (token level) CoNLL-2003 (seq. level)
RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓

MD - MD 13.69±1.25 1.88±0.13 13.08±2.58 0.86±0.15 41.73±1.45 1.96±0.04 10.33±3.55 0.15±0.04 17.05±5.07 2.05±0.45
MD CER MD 13.61±1.82 1.87±0.22 14.10±2.69 0.96±0.16 42.50±2.65 2.00±0.07 6.82±0.90 0.10±0.01 16.92±2.51 1.87±0.23
MD metric MD 13.91±2.35 1.89±0.29 12.03±2.04 0.85±0.15 40.29±2.09 2.02±0.09 10.01±2.56 0.15±0.03 17.67±3.92 2.09±0.36

MD SN (ours) - MD 13.44±1.28 1.85±0.20 11.77±1.33 0.83±0.08 40.07±3.62 1.95±0.16 7.21±1.34 0.11±0.02 17.29±3.58 2.01±0.37
MD SN (ours) CER MD 14.41±1.96 1.94±0.21 12.32±1.37 0.85±0.10 37.82±2.91 1.90±0.12 6.95±1.50 0.11±0.02 17.76±4.00 2.06±0.42
MD SN (ours) metric MD 12.04±1.33 1.56±0.12 12.05±1.42 0.84±0.07 39.37±2.00 1.97±0.15 6.90±1.21 0.11±0.02 17.02±3.39 2.01±0.40

SNGP - SNGP 14.52±2.48 2.00±0.35 16.08±4.18 1.02±0.18 51.96±1.89 2.64±0.07 56.43±23.03 0.60±0.22 44.80±11.00 5.06±1.01

SR SN - MP 18.83±3.89 2.46±0.46 19.02±6.07 1.21±0.35 81.25±12.56 3.40±0.33 7.46±1.39 0.12±0.02 20.13±3.50 2.30±0.26
SR CER MP 14.62±1.62 2.02±0.19 14.56±2.14 1.00±0.14 56.97±9.69 2.53±0.15 6.84±1.41 0.11±0.02 21.31±1.63 2.49±0.25
SR metric MP 18.39±2.94 2.40±0.27 16.90±3.12 1.16±0.24 44.54±2.11 2.22±0.15 6.51±1.07 0.10±0.02 20.32±1.68 2.32±0.23
SR (baseline) - MP 22.32±8.08 2.58±0.65 17.93±3.84 1.22±0.28 49.48±3.71 2.35±0.25 6.08±0.62 0.10±0.01 18.81±3.35 2.21±0.29

Table 2: Results of deterministic methods with different types of regularization (ELECTRA model). The best
results are highlighted with the bold font, the best results for each method are underlined.

in Appendix A. For the optimal hyperparameter
search, we split the original training data into
training and validation subsets in a ratio of 80
to 20 and apply Bayesian optimization with early
stopping. For text classification, we use accuracy
as an objective metric, and for sequence tagging,
we use span-based F1-score (Tjong Kim Sang and
De Meulder, 2003). Sets of pre-defined values
for each hyperparameter are given in the caption
of Table 6. After the hyperparameter search is
completed, we train the model on the original
training set using the optimal values.

The hyperparameters for UE methods are
presented in Table 9 in Appendix A. The values
for the DDPP MC dropout and MD SN are chosen
using a grid search, while validating on the held-out
validation dataset with RCC-AUC as an objective.
For deep ensemble, we use random subsampling of
the training set with a fixed ratio of 90%.

The hardware configuration for experiments is
provided in Table 5 in Appendix A.

5 Results and Discussion

5.1 Monte Carlo Dropout and Regularization

The results of methods based on MC dropout
and loss regularization are presented in Table 1
(for ELECTRA). The standard computationally
intensive MC dropout achieves big improvements
over the SR baseline on all text classification
datasets and the sequence-level CoNLL-2003
benchmark. For token-level CoNLL-2003, none of
the considered methods substantially outperform
the baseline. Uncertainty estimation scores BALD
and PV have similar results, outperforming SMP
on SST-2, while SMP has a slight advantage over
them on CoLA and CoNLL-2003.

The DDPP MC dropout method does not
outperform the MC dropout. However, DDPP
(+DDPP) demonstrates a notable advantage over

the SR baseline on text classification datasets SST-
2 and CoLA, while both DDPP (+DDPP) and
DDPP (+OOD) outperform the baseline on the
sequence-level CoNLL-2003 benchmark. The
main advantage of the proposed DDPP MC dropout
method consists in its much faster inference
compared to the computationally expensive
standard MC dropout. The DDPP MC dropout has
the same computational overhead during inference
as the original DPP MC dropout, which is only
less than 0.5% of the overhead introduced by the
standard MC dropout (Shelmanov et al., 2021).

We conduct an ablation study of the proposed
modifications for the original DPP MC dropout.
The experimental results of this study presented in
Table 12 in Appendix C demonstrate the benefits of
using calibration and introducing diversity in mask
generation.

Both metric regularization and CER achieve a
substantial advantage over the baseline on text
classification datasets SST-2 and MRPC. However,
regularization appears to be malignant for NER.
Adding loss regularization to MC dropout usually
helps to achieve better results on text classification.
The best results on SST-2 and CoLA are achieved
using metric regularization, while the best result
for MRPC is obtained using CER. Regularization
and DDPP MC dropout usually complement each
other, the results of their combination are slightly
better than when they are applied individually for
all datasets except CoNLL-2003.

5.2 Deterministic Methods

The results for deterministic methods are presented
in Table 2 (for ELECTRA). SNGP gives substantial
improvements on the text classification datasets
MRPC and SST-2 but significantly falls behind
the trivial baseline on CoNLL-2003. The low
performance of SNGP for NER can be attributed to
the fact that it is initially designed for classification
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Method Reg.
Type

UE
Score

MRPC SST-2 CoLA CoNLL-2003 (token level) CoNLL-2003 (seq. level)
RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓

MC - SMP 14.38±2.07 1.76±0.19 14.00±2.20 0.91±0.15 42.95±5.98 2.01±0.15 6.04±1.03 0.09±0.02 15.79±3.34 1.80±0.35
MC CER PV 12.82±1.89 1.60±0.13 12.18±1.20 0.80±0.10 46.84±9.19 2.11±0.23 6.92±1.22 0.10±0.02 17.05±3.14 1.91±0.36
MC metric BALD 14.55±2.31 1.73±0.23 12.08±1.79 0.79±0.10 43.76±0.55 2.08±0.07 6.91±1.02 0.10±0.01 17.47±1.85 1.98±0.30
MC metric SMP 13.39±1.19 1.72±0.20 13.55±1.65 0.90±0.14 40.88±1.25 2.01±0.09 6.30±0.98 0.10±0.01 16.81±1.40 1.80±0.23
Deep Ensemble - PV 20.70±4.24 2.10±0.35 12.02±1.63 0.71±0.07 50.15±5.57 2.21±0.19 4.02±1.24 0.06±0.02 13.18±4.60 1.54±0.57
Deep Ensemble - SMP 13.01±2.57 1.68±0.27 12.13±1.27 0.79±0.08 43.73±4.25 2.05±0.19 4.16±1.37 0.06±0.02 13.93±4.88 1.57±0.58
MSD MSD DS 12.70±1.61 1.74±0.25 11.17±1.03 0.78±0.06 39.21±2.18 1.90±0.12 12.34±4.19 0.18±0.05 16.83±3.92 1.94±0.25

DDPP (+DPP) (ours) - PV 22.30±7.15 2.58±0.65 16.70±1.38 1.12±0.12 49.75±3.96 2.44±0.29 6.12±0.71 0.10±0.01 16.78±2.44 1.93±0.20
DDPP (+DPP) (ours) - SMP 21.79±7.72 2.57±0.68 17.55±3.03 1.19±0.23 47.86±5.51 2.39±0.31 6.08±0.62 0.10±0.01 17.71±2.77 2.05±0.23
DDPP (+DPP) (ours) CER PV 15.12±2.27 2.03±0.24 13.56±1.37 0.91±0.14 54.51±8.80 2.58±0.22 6.98±0.98 0.11±0.02 19.44±1.15 2.13±0.17
DDPP (+DPP) (ours) CER SMP 14.75±1.43 2.02±0.16 14.47±1.63 0.99±0.11 54.01±9.79 2.55±0.18 6.91±1.13 0.11±0.02 20.66±1.53 2.31±0.08
DDPP (+DPP) (ours) metric SMP 18.45±2.88 2.41±0.26 16.78±3.43 1.14±0.26 43.61±1.61 2.16±0.11 6.92±1.32 0.11±0.02 19.11±2.14 2.16±0.22
DDPP (+OOD) (ours) - PV 22.73±7.45 2.65±0.59 19.05±2.95 1.29±0.23 51.11±12.03 2.37±0.34 6.32±0.72 0.10±0.01 16.75±2.31 1.94±0.21
DDPP (+OOD) (ours) - SMP 22.31±7.80 2.60±0.65 19.86±3.83 1.36±0.29 50.14±9.73 2.32±0.30 6.09±0.67 0.10±0.01 17.76±2.75 2.06±0.23
DDPP (+OOD) (ours) CER BALD 15.03±1.85 2.08±0.24 14.37±2.22 0.96±0.14 57.48±9.37 2.54±0.26 7.41±1.29 0.12±0.02 25.30±3.36 3.00±0.24
DDPP (+OOD) (ours) CER SMP 14.34±1.15 1.99±0.16 15.88±1.96 1.08±0.13 59.32±11.86 2.53±0.20 6.88±1.24 0.11±0.02 21.06±1.96 2.35±0.14
DDPP (+OOD) (ours) metric SMP 18.55±3.06 2.42±0.27 17.08±3.78 1.14±0.26 43.67±1.77 2.15±0.11 6.71±1.18 0.10±0.02 19.01±2.30 2.16±0.25
MD CER MD 13.61±1.82 1.87±0.22 14.10±2.69 0.96±0.16 42.50±2.65 2.00±0.07 6.82±0.90 0.10±0.01 16.92±2.51 1.87±0.23
MD metric MD 13.91±2.35 1.89±0.29 12.03±2.04 0.85±0.15 40.29±2.09 2.02±0.09 10.01±2.56 0.15±0.03 17.67±3.92 2.09±0.36
MD SN (ours) - MD 13.44±1.28 1.85±0.20 11.77±1.33 0.83±0.08 40.07±3.62 1.95±0.16 7.21±1.34 0.11±0.02 17.29±3.58 2.01±0.37
MD SN (ours) CER MD 14.41±1.96 1.94±0.21 12.32±1.37 0.85±0.10 37.82±2.91 1.90±0.12 6.95±1.50 0.11±0.02 17.76±4.00 2.06±0.42
MD SN (ours) metric MD 12.04±1.33 1.56±0.12 12.05±1.42 0.84±0.07 39.37±2.00 1.97±0.15 6.90±1.21 0.11±0.02 17.02±3.39 2.01±0.40
SR CER MP 14.62±1.62 2.02±0.19 14.56±2.14 1.00±0.14 56.97±9.69 2.53±0.15 6.84±1.41 0.11±0.02 21.31±1.63 2.49±0.25
SR metric MP 18.39±2.94 2.40±0.27 16.90±3.12 1.16±0.24 44.54±2.11 2.22±0.15 6.51±1.07 0.10±0.02 20.32±1.68 2.32±0.23

SR (baseline) - MP 22.32±8.08 2.58±0.65 17.93±3.84 1.22±0.28 49.48±3.71 2.35±0.25 6.08±0.62 0.10±0.01 18.81±3.35 2.21±0.29

Table 3: Comparison of the best results for all methods (ELECTRA model). The computationally intensive
methods are at the top of the table; the computationally cheap methods are at the bottom. The best results overall
are highlighted with the bold font, the best results for computationally cheap methods are underlined.
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Figure 1: RCC-AUC↓ of the best UE methods for the ELECTRA model.

tasks rather than sequence tagging. MD yields
much bigger improvements over the SR baseline
on all datasets and significantly outperforms SNGP.
MD SN is able to improve the misclassification
detection performance even further for MRPC,
SST-2, and CoLA.

We also conduct an ablation study (Table 2), in
which we use the spectral normalization without
MD. We see that SN on its own, as expected, mostly
does not improve the UE performance; the results
usually are even slightly worse than the baseline.

Regularization also helps to improve the results
of methods based on the Mahalanobis distance.
For both MD and MD SN, regularization helps on
CoLA and CoNLL-2003. For MD, it also helps on
SST-2, while for MD SN, regularization improves
the results on MRPC. We note that regularization
reduces the gap between MD and MD SN on
text classification datasets and even gives a slight

advantage to MD over MD SN on CoNLL-2003.
The best results across all deterministic methods

for text classification datasets are achieved by MD
SN. The biggest improvements are obtained on
MRPC, where regularized MD SN reduces RCC-
AUC by more than 46% compared to the baseline.

5.3 Best Results

Table 3 and Figure 1 compare results of the best
methods in each group for ELECTRA. Table 11
and Figure 3 in Appendix B show the best
results for DeBERTa. In these tables and figures,
we also present the results of deep ensemble
(Lakshminarayanan et al., 2017), which is a strong
yet computationally intensive baseline (Ashukha
et al., 2020), and results of another recently
proposed computationally intensive method called
MSD (He et al., 2020) that leverage “mix-up”
(Thulasidasan et al., 2019), “self-ensembling”, MD,
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Figure 2: Median values of accuracy rejection curves
for selected methods on MRPC (ELECTRA model).

and the MC dropout (all layers are activated).
We can see that it is possible to substantially

improve misclassification detection performance
and achieve even better results than MC dropout,
deep ensemble, or MSD almost with no overhead
in terms of memory consumption and amount
of computation. For text classification and for
both models, computationally cheap methods
are either better or on par with the expensive
counterparts. However, for NER, we see that
the latter methods seriously fall behind deep
ensemble and MC dropout. On the token-level
CoNLL-2003 benchmark, only deep ensemble
substantially outperforms the SR baseline. On
the sequence-level CoNLL-2003 benchmark, MD
with CER, DDPP (+DDP) PV, and DDPP (+OOD)
PV improve upon SR, but only approach the
performance of computationally intensive methods.

The proposed in this work MD SN method
outperforms all other computationally efficient
alternatives on text classification datasets. For
both models, it even substantially outperforms all
computationally expensive methods on the CoLA
dataset, while on other text classification datasets
it is on par with them. Another method proposed
in this work, DDPP MC dropout, empowered with
regularization techniques, is able to substantially
reduce the gap between the SR baseline and
computationally intensive UE methods, while
introducing only a fraction of their overhead.

Figure 2 also presents accuracy rejection curves
for selected methods on MRPC. The figure shows
that if we reject 20% of instances using UE
obtained with MC dropout and ask human experts
to label these uncertain objects, the accuracy score
of such a human-machine hybrid system will
increase from 88.4% to 96.0%, which is 1.3%

better than the SR baseline. Such an additional gain
over the SR baseline can be crucial for safe-critical
applications. Deep ensemble and MD SN are close
to each other and achieve 95.6% and 95.2% of
accuracy correspondingly. Rejecting 40% of most
uncertain instances gives 98.2% of accuracy for the
computationally-intensive deep ensemble, while
the proposed cheap MD SN method yields even
better result with 98.5% of accuracy, which is 1.7%
higher than the result of the SR baseline.

6 Conclusion

Our extensive empirical investigation on
text classification and NER tasks shows that
computationally cheap UE methods are able to
substantially improve misclassification detection
for Transformers, performing on par or even
better than computationally intensive MC dropout
and deep ensemble. The proposed in this work
method based on the Mahalanobis distance
and spectral normalization of a weight matrix
(MD SN) achieves the best results among
other computationally cheap methods on text
classification datasets and is on par with expensive
methods. This method does not require seriously
modifying a model architecture, extra memory
storage, and introduces only a little amount of
additional computation during inference.

We also show that our modification of
DPP MC dropout that leverages the diversity
of generated dropout masks, which is also
a computationally cheap method, is able to
outperform the softmax response baseline and
approach the computationally intensive methods
on NER. Finally, we find that regularization can
slightly improve the results of methods based on
MC dropout and the Mahalanobis distance in text
classification.

The spectral normalization is theoretically
proven to ensure bi-Lipschitz constraint on the
transformation defined by the standard residual
connection network (Liu et al., 2020). However,
the self-attention blocks in Transformers have
a more complicated architecture than the layers
of standard ResNets, which means that the
theoretical guarantees for them do not hold in
general. In future work, we are looking forward
to investigating other techniques to ensure bi-
Lipschitz constraint on self-attention blocks, which
might further improve deterministic methods for
uncertainty estimation of Transformers.
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A Dataset Statistics, Hyperparameter Values, and Hardware Configuration

Datasets Train Test # Labels

MRPC 3.7K 0.4K 2
CoLA 8.6K 1.0K 2
SST-2 67.3K 0.9K 2
CoNLL-2003 14.0K/203.6K 3.5K/46.4K 9

Table 4: Dataset statistics. The table presents the number of sequences for the training and test parts of the datasets.
For CoNLL-2003, the table presents both the number of sequences and tokens because for NER, we evaluate both
sequence-level and token-level UE scores. For the datasets from the GLUE benchmark (MRPC, CoLA, SST-2),
we used the available validation set as the test set.

CPU 2 Intel Xeon Platinum 8168, 2.7 GHz
CPU Cores 24
GPU NVIDIA Tesla v100 GPU
GPU Memory 32 GB

Table 5: Hardware configuration used in experiments.

Dataset Reg. Type Spect. Norm. Objective Score Reg. Lambda Margin Learning Rate Num. Epochs Batch Size Weight Decay
CoLA – 1.0 0.876 - - 3e-5 15 32 1e-1
CoLA – - 0.88 - - 1e-5 8 4 1e-1
CoLA CER 0.4 0.88 1.0 - 3e-5 11 32 1e-1
CoLA CER - 0.882 1e-2 - 9e-6 7 4 1e-2
CoLA Metric 0.4 0.868 1e-2/1.0 0.1 3e-5 11 32 1e-1
CoLA Metric - 0.878 1e-2/2e-2 0.25 9e-6 12 4 1e-1
CoLA MSD - 0.877 1e-1/6e-3 0.55 3e-5 7 64 1e-2

MRPC – 1.0 0.858 - - 3e-5 11 32 1e-1
MRPC – - 0.867 - - 5e-5 12 32 1e-1
MRPC CER 3.0 0.871 1.0 - 3e-5 12 4 0
MRPC CER - 0.871 2e-1 - 5e-5 7 16 1e-2
MRPC Metric 0.4 0.845 2e-3/1e-1 0.01 3e-5 10 32 0
MRPC Metric - 0.844 1e-2/1.0 0.1 3e-5 11 32 1e-1
MRPC MSD - 0.871 1e-1/6e-3 0.5 3e-5 11 8 1e-2

SST-2 – 0.8 0.939 - - 5e-5 7 64 1e-2
SST-2 – - 0.936 - - 1e-5 15 64 1e-1
SST-2 CER 0.8 0.938 1.0 - 3e-5 14 16 1e-1
SST-2 CER - 0.938 2e-2 - 3e-5 5 64 0
SST-2 Metric 2.0 0.939 8e-3/2e-2 10.0 3e-5 5 64 0
SST-2 Metric - 0.941 8e-3/2e-2 10.0 3e-5 5 64 0
SST-2 MSD - 0.942 1e-1/6e-3 0.55 3e-5 7 64 1e-2

CoNLL-2003 – 3.0 0.922 - - 5e-5 13 8 1e-2
CoNLL-2003 – - 0.909 - - 5e-5 6 8 1e-2
CoNLL-2003 CER 1.0 0.913 1e-1 - 5e-5 13 8 1e-2
CoNLL-2003 CER - 0.912 2e-3 - 2e-5 15 16 1e-2
CoNLL-2003 Metric 3.0 0.911 6e-3/1e-3 0.05 5e-5 15 8 0
CoNLL-2003 Metric - 0.909 1e-3/1e-1 0.025 5e-5 13 8 1e-2
CoNLL-2003 MSD - 0.928 1.0/5e-3 0.95 5e-5 9 8 0

Table 6: Optimal hyperparameters for the experiments with ELECTRA except SNGP. “Objective score” refers
to the accuracy score for classification / F1-score for sequence tagging on the validation sample. For the metric
regularization the reg. lambda column contains λ and ελ parameters. For the MSD method, the reg. lambda
column contains λ1 and λ2 parameters and the margin column contains Ω parameter. We select hyperparameter
values from the following pre-defined list:
Reg. lambda (λ) (and also (λ1) and (λ2)): [1e-3, 2e-3, 3e-3, 5e-3, 6e-3, 8e-3, 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 1];
Reg. lambda (for metric regularization): [1e-2, 2.5e-2, 5e-2, 1e-1, 2.5e-1, 5e-1, 1.0, 2.5, 5.0, 10.0];
Reg. ελ: [1e-3, 2e-3, 3e-3, 5e-3, 6e-3, 8e-3, 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 1];
Margin (γ): [1e-2, 2.5e-2, 5e-2, 1e-1, 2.5e-1, 5e-1, 1.0, 2.5, 5.0, 10.0];
Omega (Ω): [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0];
Spect. Norm.: [0.4, 0.6, 0.8, 1.0, 2.0, 3.0];
Learning rate: [5e-6, 6e-6, 7e-6, 9e-6, 1e-5, 2e-5, 3e-5, 5e-5, 7e-5, 1e-4];
Num. of epochs: {n ∈ N|2 ≤ n ≤ 15};
Batch size: [4, 8, 16, 32, 64];
Weight decay: [0, 1e-2, 1e-1].
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Dataset Objective Score Learning Rate Num. Epochs Batch Size Weight Decay

CoLA 0.879 6e-6 10 16 0
MRPC 0.867 3e-5 9 16 0
SST-2 0.917 2e-5 6 8 1e-1
CoNLL-2003 0.887 3e-5 85 4 1e-1

Table 7: Optimal hyperparameters for the experiments with SNGP and ELECTRA. For text classification datasets,
we use the same pre-defined list of possible values for each hyperparameter. For CoNLL-2003, the following value
ranges are used for the number of epochs and learning rate:
Learning rate: [9e-6, 1e-5, 2e-5, 3e-5, 5e-5, 7e-5, 1e-4];
Num. of epochs: {n ∈ N|10 ≤ n ≤ 100}.

Dataset Reg. Type Spect. Norm. Objective Score Reg. Lambda Margin Learning Rate Num. Epochs Batch Size Weight Decay
CoLA – 0.4 0.854 - - 7e-6 8 4 1e-1
CoLA – - 0.86 - - 7e-6 13 4 0
CoLA CER 0.4 0.857 5e-2 - 2e-5 11 32 1e-2
CoLA CER - 0.854 2e-1 - 9e-6 15 16 1e-2
CoLA Metric 0.8 0.86 1.0/3e-3 0.1 6e-6 11 4 1e-2
CoLA Metric - 0.862 8e-3/6e-3 0.025 1e-5 12 4 1e-1
CoLA MSD - 0.857 5e-2/3e-3 0.65 3e-5 12 32 0

MRPC – 0.8 0.879 - - 9e-6 11 16 1e-1
MRPC – - 0.889 - - 3e-5 12 4 1e-1
MRPC CER 0.6 0.88 6e-3 - 2e-5 15 16 0
MRPC CER - 0.88 1.0 - 2e-5 10 16 1e-2
MRPC Metric 1.0 0.883 8e-3/5e-2 2.5 2e-5 14 16 1e-1
MRPC Metric - 0.885 6e-3/1.0 5.0 9e-6 13 8 1e-1
MRPC MSD - 0.876 1e-2/2e-2 0.5 9e-6 12 8 1e-1

SST-2 – 0.6 0.901 - - 9e-6 11 8 1e-1
SST-2 – - 0.906 - - 3e-5 5 16 1e-2
SST-2 CER 0.6 0.902 1.0 - 7e-6 12 16 1e-2
SST-2 CER - 0.902 1e-1 - 6e-6 6 4 0
SST-2 Metric 0.6 0.902 6e-3/5e-3 0.025 5e-5 6 64 1e-1
SST-2 Metric - 0.902 6e-3/8e-3 0.05 7e-6 8 16 1e-1
SST-2 MSD - 0.929 1e-2/3e-3 0.95 1e-5 11 4 1e-2

CoNLL-2003 – 1.0 0.897 - - 5e-5 3 4 1e-2
CoNLL-2003 – - 0.902 - - 5e-5 12 32 0
CoNLL-2003 CER 1.0 0.901 5e-2 - 1e-4 10 16 0
CoNLL-2003 CER - 0.899 2e-1 - 2e-5 13 4 1e-1
CoNLL-2003 Metric 2.0 0.898 2e-3/5e-3 5.0 7e-5 12 8 1e-2
CoNLL-2003 Metric - 0.908 2e-2/1e-1 0.5 3e-5 14 8 1e-2
CoNLL-2003 MSD - 0.935 1e-1/5e-3 0.95 3e-5 15 4 1e-1

Table 8: Optimal hyperparameters for all the experiments with DeBERTa except SNGP. “Objective score" refers
to the accuracy score for classification / F1-score for sequence tagging on the validation sample. For the metric
regularization the reg. lambda column contains λ and ελ parameters. For the MSD method, the reg. lambda
column contains λ1 and λ2 parameters and the margin column contains Ω parameter. We select hyperparameter
values from the following pre-defined list:
Reg. lambda (λ) (and also (λ1) and (λ2)): [1e-3, 2e-3, 3e-3, 5e-3, 6e-3, 8e-3, 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 1];
Reg. lambda (for metric regularization): [1e-2, 2.5e-2, 5e-2, 1e-1, 2.5e-1, 5e-1, 1.0, 2.5, 5.0, 10.0];
Reg. ελ: [1e-3, 2e-3, 3e-3, 5e-3, 6e-3, 8e-3, 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 1];
Margin (γ): [1e-2, 2.5e-2, 5e-2, 1e-1, 2.5e-1, 5e-1, 1.0, 2.5, 5.0, 10.0];
Omega (Ω): [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0];
Learning rate: [5e-6, 6e-6, 7e-6, 9e-6, 1e-5, 2e-5, 3e-5, 5e-5, 7e-5, 1e-4];
Num. of epochs: {n ∈ N|2 ≤ n ≤ 15};
Batch size: [4, 8, 16, 32, 64];
Weight decay: [0, 1e-2, 1e-1].
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Dataset Method Dropout Ratio Committee Size Max. Frac. Kernel Type DDPP
Mask Pool Size

DDPP
Kernel Type

CoLA DDPP (+OOD) - 50 0.45 corr. 100 -
CoLA DDPP (+DPP) - 50 0.4 corr. 100 RBF
CoLA MC dropout 0.1 20 - - - -
CoLA Deep Ensemble - 5 - - - -

MRPC DDPP (+OOD) - 50 0.4 corr. 100 -
MRPC DDPP (+DPP) - 50 0.55 corr. 100 RBF
MRPC MC dropout 0.1 20 - - - -
MRPC Deep Ensemble - 5 - - - -

SST-2 DDPP (+OOD) - 50 0.35 corr. 100 -
SST-2 DDPP (+DPP) - 50 0.45 corr. 100 RBF
SST-2 MC dropout 0.1 20 - - - -
SST-2 Deep Ensemble - 5 - - - -

CoNLL-2003 DDPP (+OOD) - 20 0.6 corr. 100 -
CoNLL-2003 DDPP (+DPP) - 20 0.6 corr. 100 RBF
CoNLL-2003 MC dropout 0.1 20 - - - -
CoNLL-2003 Deep Ensemble - 5 - - - -

Table 9: Optimal hyperparameter values for UE methods based on MC dropout and deep ensemble with the
ELECTRA model. These parameters denote the following:
Dropout Ratio – probability of a neuron to be zeroed during inference in a dropout layer;
Committee Size – a number of ensemble elements or stochastic forward passes in the MC dropout;
Max. Frac. – a maximum number of active neurons in a DPP mask;
Kernel Type – type of a kernel in a DPP mask;
DDPP Mask Pool Size – a number of masks in a pool, from which DDPP selects a diverse set of masks;
DDPP Kernel Type – a type of a kernel for a DDPP mask.

Dataset Method Dropout Ratio Committee Size Max. Frac. Kernel Type DDPP
Mask Pool Size

DDPP
Kernel Type

CoLA DDPP (+OOD) - 50 0.45 corr. 100 -
CoLA DDPP (+DPP) - 50 0.6 corr. 100 RBF
CoLA MC dropout 0.1 20 - - - -
CoLA Deep Ensemble - 5 - - - -

MRPC DDPP (+OOD) - 50 0.45 corr. 100 -
MRPC DDPP (+DPP) - 50 0.6 corr. 100 RBF
MRPC MC dropout 0.1 20 - - - -
MRPC Deep Ensemble - 5 - - - -

SST-2 DDPP (+OOD) - 50 0.45 corr. 100 -
SST-2 DDPP (+DPP) - 50 0.6 corr. 100 RBF
SST-2 MC dropout 0.1 20 - - - -
SST-2 Deep Ensemble - 5 - - - -

CoNLL-2003 DDPP (+OOD) - 20 0.45 corr. 100 -
CoNLL-2003 DDPP (+DPP) - 20 0.3 corr. 100 RBF
CoNLL-2003 MC dropout 0.1 20 - - - -
CoNLL-2003 Deep Ensemble - 5 - - - -

Table 10: Optimal hyperparameter values for UE methods based on MC dropout and deep ensemble with the
DeBERTa model. These parameters denote the following:
Dropout Ratio – probability of a neuron to be zeroed during inference in a dropout layer;
Committee Size – a number of ensemble elements or stochastic forward passes in the MC dropout;
Max. Frac. – a maximum number of active neurons in a DPP mask;
Kernel Type – type of a kernel in a DPP mask;
DDPP Mask Pool Size – a number of masks in a pool, from which DDPP selects a diverse set of masks;
DDPP Kernel Type – a type of a kernel for a DDPP mask.
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B Additional Experimental Results with DeBERTa

Method Reg.
Type

UE
Score

MRPC SST-2 CoLA CoNLL-2003 (token level) CoNLL-2003 (seq. level)
RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓

MC - SMP 15.06±3.93 1.85±0.40 13.59±2.30 0.91±0.14 55.17±3.76 2.62±0.16 4.91±0.95 0.07±0.01 14.29±3.50 1.74±0.37
MC CER PV 11.53±2.73 1.42±0.24 12.75±3.89 0.85±0.19 56.65±3.27 2.65±0.14 5.10±1.73 0.07±0.02 13.69±2.99 1.79±0.39
MC CER BALD 11.38±2.66 1.42±0.23 12.90±4.15 0.86±0.19 57.62±3.88 2.68±0.15 5.21±1.67 0.08±0.02 14.21±2.94 1.82±0.36
MC CER SMP 12.30±3.19 1.48±0.27 12.26±3.04 0.85±0.17 55.28±3.20 2.59±0.13 4.56±1.54 0.07±0.02 13.91±3.08 1.79±0.39
MC metric SMP 15.18±4.58 1.72±0.31 11.93±1.87 0.81±0.13 62.89±7.57 2.75±0.21 5.91±1.24 0.09±0.02 15.05±3.64 1.80±0.31
Deep Ensemble - PV 18.81±5.69 2.01±0.40 12.19±2.31 0.71±0.05 64.80±2.71 2.80±0.10 3.76±1.71 0.05±0.02 11.38±2.24 1.40±0.33
Deep Ensemble - SMP 14.32±3.51 1.77±0.30 10.83±0.94 0.70±0.04 58.03±0.90 2.70±0.07 3.23±1.56 0.05±0.03 11.77±2.42 1.40±0.32
MSD MSD DS 12.79±0.81 1.80±0.08 12.90±1.55 0.90±0.08 53.43±4.72 2.60±0.20 7.01±1.94 0.10±0.02 15.10±3.45 1.84±0.36

DDPP (+DPP) (ours) - PV 18.12±2.53 2.36±0.27 18.41±3.57 1.20±0.19 69.81±7.82 3.40±0.29 5.56±1.51 0.09±0.02 15.63±4.97 1.90±0.52
DDPP (+DPP) (ours) - SMP 18.13±3.27 2.30±0.34 17.74±4.17 1.17±0.24 68.12±6.34 3.29±0.23 5.44±1.49 0.08±0.02 17.56±4.97 2.15±0.54
DDPP (+DPP) (ours) CER PV 14.80±2.56 1.88±0.22 17.61±7.41 1.10±0.32 73.34±8.08 3.39±0.39 8.15±3.45 0.12±0.03 19.05±4.16 2.48±0.51
DDPP (+DPP) (ours) CER SMP 16.69±5.35 1.99±0.45 16.57±6.35 1.08±0.31 72.15±7.10 3.29±0.34 6.18±1.78 0.10±0.02 20.66±5.06 2.69±0.61
DDPP (+OOD) (ours) - PV 19.64±5.28 2.45±0.52 17.98±3.12 1.20±0.21 68.49±7.77 3.28±0.32 5.87±1.48 0.09±0.02 15.18±4.35 1.86±0.47
DDPP (+OOD) (ours) - SMP 18.86±3.04 2.37±0.36 18.52±3.49 1.23±0.23 65.77±7.82 3.13±0.35 5.45±1.38 0.08±0.02 17.25±4.60 2.09±0.50
DDPP (+OOD) (ours) CER BALD 15.59±2.41 2.07±0.30 18.44±4.44 1.23±0.25 71.75±8.22 3.23±0.36 6.45±1.77 0.10±0.02 22.64±5.74 2.90±0.66
DDPP (+OOD) (ours) metric BALD 18.96±3.24 2.30±0.26 17.41±4.85 1.14±0.31 94.05±24.27 4.30±0.75 7.69±3.18 0.10±0.02 21.42±2.41 2.57±0.16
MD - MD 14.66±3.65 1.98±0.40 12.51±1.97 0.86±0.13 55.30±4.70 2.68±0.19 4.83±1.45 0.07±0.01 14.43±4.17 1.75±0.45
MD CER MD 13.48±1.24 1.88±0.19 11.67±1.56 0.85±0.11 57.78±3.86 2.73±0.15 4.78±1.47 0.07±0.02 14.69±4.07 1.87±0.48
MD metric MD 12.12±1.42 1.64±0.17 11.81±1.84 0.85±0.13 57.35±4.35 2.74±0.20 5.42±1.28 0.08±0.02 14.51±3.96 1.70±0.30
MD SN (ours) - MD 12.40±1.14 1.78±0.18 11.10±1.03 0.78±0.09 52.49±1.44 2.42±0.09 5.06±1.22 0.08±0.01 14.67±4.00 1.79±0.19
MD SN (ours) CER MD 13.03±1.49 1.86±0.18 10.87±1.52 0.80±0.11 49.47±3.23 2.36±0.19 5.92±1.18 0.09±0.01 16.57±3.26 1.97±0.30
SR CER MP 17.54±5.60 2.10±0.41 16.50±4.66 1.11±0.26 71.28±6.73 3.22±0.30 5.19±1.34 0.08±0.02 19.01±5.09 2.44±0.64
SR metric MP 20.17±5.56 2.38±0.49 15.76±3.48 1.07±0.27 77.90±10.78 3.33±0.48 6.80±1.23 0.11±0.02 21.03±4.85 2.68±0.57

SR (baseline) - MP 19.42±3.58 2.44±0.33 17.83±3.89 1.18±0.23 64.05±7.42 3.05±0.30 5.32±1.36 0.08±0.01 17.01±4.44 2.06±0.39

Table 11: Comparison of the best results for all methods (DeBERTa model). The computationally intensive
methods are at the top of the table; the computationally cheap methods are at the bottom. The best results overall
are highlighted with the bold font, the best results for computationally cheap methods are underlined.
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Figure 3: RCC-AUC↓ of the best UE methods for the DeBERTa model.

C Additional Ablation Studies for DDPP

Method Reg.
Type

UE
Score

MRPC SST-2 CoLA CoNLL-2003 (token level) CoNLL-2003 (seq. level)
RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓ RCC-AUC ↓ RPP ↓

DDPP (+DPP) (ours) - PV 22.30±7.15 2.58±0.65 16.70±1.38 1.12±0.12 49.75±3.96 2.44±0.29 6.12±0.71 0.10±0.01 16.78±2.44 1.93±0.20
DDPP (+DPP) (ours) - BALD 23.08±7.00 2.63±0.63 16.08±2.37 1.05±0.18 49.59±5.40 2.48±0.31 6.39±0.64 0.10±0.01 21.53±4.77 2.63±0.45
DDPP (+DPP) (ours) - SMP 21.79±7.72 2.57±0.68 17.55±3.03 1.19±0.23 47.86±5.51 2.39±0.31 6.08±0.62 0.10±0.01 17.71±2.77 2.05±0.23

DDPP (+OOD) (ours) - PV 22.73±7.45 2.65±0.59 19.05±2.95 1.29±0.23 51.11±12.03 2.37±0.34 6.32±0.72 0.10±0.01 16.75±2.31 1.94±0.21
DDPP (+OOD) (ours) - BALD 23.85±8.39 2.69±0.58 18.27±3.05 1.22±0.23 52.59±12.08 2.42±0.34 6.59±0.69 0.11±0.01 20.56±3.09 2.50±0.26
DDPP (+OOD) (ours) - SMP 22.31±7.80 2.60±0.65 19.86±3.83 1.36±0.29 50.14±9.73 2.32±0.30 6.09±0.67 0.10±0.01 17.76±2.75 2.06±0.23

DPP - PV 23.96±9.77 2.63±0.60 18.60±3.59 1.20±0.23 53.49±4.30 2.43±0.26 6.31±0.56 0.10±0.01 16.23±2.23 1.87±0.21
DPP - BALD 24.94±10.22 2.68±0.58 19.39±4.99 1.21±0.31 54.59±4.09 2.49±0.26 6.49±0.56 0.10±0.01 19.09±3.59 2.27±0.32
DPP - SMP 21.83±7.92 2.59±0.65 18.19±3.44 1.23±0.25 51.06±4.51 2.40±0.28 6.18±0.54 0.10±0.00 17.28±2.53 1.98±0.21

Table 12: The comparison of original DPP MC dropout with its two modifications DDPP MC dropout (ELECTRA
model).
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