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Abstract

With the devastating outbreak of COVID-19,
vaccines are one of the crucial lines of de-
fense against mass infection in this global pan-
demic. Given the protection they provide, vac-
cines are becoming mandatory in certain social
and professional settings. This paper presents
a classification model for detecting COVID-
19 vaccination related search queries, a ma-
chine learning model that is used to gener-
ate search insights for COVID-19 vaccinations.
The proposed method combines and lever-
ages advancements from modern state-of-the-
art (SOTA) natural language understanding
(NLU) techniques such as pretrained Trans-
formers with traditional dense features. We
propose a novel approach of considering dense
features as memory tokens that the model can
attend to. We show that this new model-
ing approach enables a significant improve-
ment to the Vaccine Search Insights (VSI) task,
improving a strong well-established gradient-
boosting baseline by relative +15% improve-
ment in F1 score and +14% in precision.

1 Introduction

Though COVID-19 continues to be a challenge
worldwide, vaccines have provided the much
needed hope. Countries and governments have
significantly ramped up their efforts to improve
the reach of the vaccines including booster shots.
As such, it is important to understand how users
search for vaccine related information such as vac-
cine efficacy, safety, and regional availability as
this information can be very useful to inform pol-
icy decision making, create effective public service
announcements, implement more efficient distribu-
tion of vaccines, etc. To this end, we released a pub-
lic tool for COVID-19 Vaccination Search Insights,
an interactive report that provides insights on user
searches for COVID-19 vaccinations. For an ex-
ample please see Figure 1. On the backend, this
tool performs privacy preserving classification of

user search queries and clusters them based on the
region they were issued from to present a timeline
of how these searches have changed over time. A
core task in the VSI tool is the problem of classify-
ing search query intent, and one of them is whether
users are seeking information on vaccine access,
i.e. queries related to the eligibility, availability,
and accessibility of COVID-19 vaccines.

The task is a challenging one since simply match-
ing for COVID related terms is insufficient, as
queries such as fully vaccinated travel or proof of
covid vaccination are negative classes. Hence, this
problem is nuanced and may benefit from a coali-
tion of advanced language understanding systems
and traditional search-related feature engineering
methods. As such, the problem at hand crosses
two main modalities, i.e., text and traditional dense
features. In this problem, the text features are user
search queries that are short and/or lack context.
The dense features (discussed in more detail in sec-
tion 5) are hand crafted features from recent and
past activities, previous clicks, and named entities
that play a critical role in understanding the user’s
intent. However, dense features alone fail to cap-
ture important contextual language cues, such as
those that state-of-the-art natural language under-
standing systems (Devlin et al., 2018; Raffel et al.,
2019) have been shown to handle well. We find
that both modalities are highly complementary and
it is difficult to achieve strong performance using
only a single modality.

Our Contributions The overall contributions of
this paper can be summarized as follows:

• We propose a new model and framework
for search query intent classification for our
COVID-19 Vaccination Search Insight tool.

• We propose a paradigm of exploiting the bene-
fits of text inputs through state-of-the-art NLU
models, along with traditional dense features
found in large-scale systems.
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Figure 1: VSI tool presenting vaccination intent search query statistics segmented by location and time respectively.

• We propose a novel method of fusing
dense features with Transformers that enables
queries to retrieve from a dense memory store,
in similar spirit to a contextual key-value
store. Memory tokens here are used in sim-
ilar manner as memory-based methods de-
scribed in (Tay et al., 2020) and models such
as Set Transformer (Lee et al., 2019), Memory
Transformers (Sukhbaatar et al., 2019; Burt-
sev et al., 2020; Wu et al., 2020), and Global
Memory tokens in ETC (Ravula et al., 2020)
and BigBird (Zaheer et al., 2020). Notably,
this is the first proposal for constructing global
memory tokens using dense features.

• We conduct extensive experiments on real
production data from three geographical re-
gions. Our experiments show that the pro-
posed method significantly outperforms a
strong gradient boosting baseline by +15%
and outperforms a SOTA Transformer by
+5% on F1 score achieving very strong F1
score of over 98% on the US dataset with sim-
ilar strong performance for other regions.

2 Related Works

This section presents related works and the back-
ground for this paper.

Classification with Feature-based ML. Building
machine learned (ML) systems that operate across
dense hand-crafted features is a well-established
method. It is common to consider this class of
ML methods as tabular machine learning whereby
tree-based methods (Chen and Guestrin, 2016;
Wikipedia, 2022) are dominant1. Within the con-
text of text classifiers, feature engineering typically

1https://www.kaggle.com/shivamb/
data-science-trends-on-kaggle

leverages stemming, lemmatization, part-of-speech
tags, tf-idf vectors, entities, salient terms, and other
features that are relevant to the task at hand. It is
also popular to use semantic representations from
Glove (Pennington et al., 2014) or BERT (Devlin
et al., 2018) as input dense features to a model.

NLU with Pretrained Transformers. Transform-
ers (Ashish Vaswani, 2017), characterized by in-
terleaved self-attention and MLP blocks, have be-
come the dominant sequence model for language
processing and understanding (NLU) (Devlin et al.,
2018; Raffel et al., 2019; Brown et al., 2020). The
key idea behind self-attention is to perform token-
to-token alignment where the joint interaction of
queries and keys retrieve from a memory store
(value). To this end, it is also common for advanced
Transformer architectures to leverage global mem-
ory tokens (Zaheer et al., 2020; Lee et al., 2019;
Jaegle et al., 2021) that act as a parameter store for
the query to attend to (Tay et al., 2020). A corner-
stone of these systems is the pretraining task that
learns general purpose language representations,
which have been shown to be extremely beneficial
(Tay et al., 2021) due to the gains from transfer
learning (Pan and Yang, 2010).

Joint Learning of Textual and Dense Features.
Performing feature extraction to convert text into
dense features (e.g. TF-IDF (Salton and Buck-
ley, 1988), word2vec (Mikolov et al., 2013), etc.)
for the purpose of learning classifiers jointly with
other non-textual (numerical) dense features has
been common practice in machine learning for
some time (Kowsari et al., 2019; Macskassy et al.,
1999; Richardson et al., 2007). Previous research in
the multi-modal domain adopt a strategy of early
fusion or late fusion: joining the two modalities
(in this case textual and numerical) either in fea-
ture space early in the architecture or in seman-

https://www.kaggle.com/shivamb/data-science-trends-on-kaggle
https://www.kaggle.com/shivamb/data-science-trends-on-kaggle
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tic/decision space late in the architecture, respec-
tively (Snoek et al., 2005). Perhaps most related to
our approach is a recent work on joint representa-
tion of text and tabular data (Yin et al., 2020; Zhu
et al., 2021) that pass a flattened representation of
a table alongside text during encoding. Our work
instead provides a method for jointly encoding text
with dense features of a more generic, unstructured
form.

COVID-19 Vaccine Search Insights. An impor-
tant distinction of Query classification from generic
text classification is that the former are significantly
shorter, and may be underspecified (He et al., 2000;
Beitzel et al., 2005). Due to this nature, some previ-
ous works in this area have augmented queries with
additional context to improve query classification
performance (Broder et al., 2007; Shen et al., 2006;
Li et al., 2008; Jiang ).

Analyzing user queries and social interactions
in health settings has been well studied. Sadilek
et al. (2020) presents an analysis of user search
queries for Lyme disease forecasting. Similarly,
Sadilek et al. (2018) uses a machine-learned model
for real-time detection of foodborne illness using
web search and location data.

3 Problem Description

Given a search query q, the objective is to clas-
sify whether the query was issued with the intent
of seeking information related to vaccine access.
Notably, q is short in length and may or may not
contain all the information needed to make the cor-
rect prediction.

Additionally, each q is supplemented with nu-
merical features in the form of a dense feature vec-
tor Xf ∈ Rdfeatures , where dfeatures can be any
number of features. Details about how Xf is con-
structed for our setup is present in section 5, but in
short Xf represents the topicality scores of phrases
related to the query with dfeatures being 60k. How-
ever, it is important to note that all methods de-
scribed in this paper are agnostic to the source of
Xf and can be applied to any vector of numerical
features.

4 VSI Transformer

This section describes the proposed method.

4.1 Pretrained Transformer Encoder

The main backbone of the proposed architecture
is a Transformer (Ashish Vaswani, 2017) encoder.

We leverage the state-of-the-art T5 (Raffel et al.,
2019) model as a starting point. Since T5 is a
seq2seq model, we only utilize the T5 encoder as
the Transformer model and discard the decoder
of the pretrained model for our classification task.
This is done by pooling the output of the encoder
stack followed by a dense classification layer.

4.2 Input formulation
Given a query q, the input to the model is a discrete
integer sequence representing the tokens (Google,
2021) of q, i.e., X` where ` is the number of tokens
in the query from the subword vocabulary V . The
input sequence is selected from an embedding ma-
trix of R|V |×dmodel to form a tensor of R`×dmodel .

4.3 Dense Feature Memory
For each input-target example, the input to the
Dense Feature Memory module is a dense feature
Xf ∈ Rdfeatures . Given this dense feature of di-
mensions dfeatures, we transform it into memory
tokens of dimension dmodel via:

Mi = ReLU(WiXf + bi)

where Wi ∈ Rdfeatures×dmodel and Mi is the i-th
memory token. We consider the number of mem-
ory tokens to be a hyperparameter. To this end,
we then concatenate [M1; · · ·MNmemory ] to the in-
put query sequence X ∈ R`×dmodel . Along with
the input query, we also pass in dense features cor-
responding to the query to the main body of the
network. We note that memory tokens participate
in the rest of the computation in a similar spirit to
query tokens, i.e., they go through the same MLP
and self-attention layers. The dense features are of
dfeatures dimensions and are passed into the dense
memory module. The dense features used in our
setup is explained in section 5.

4.4 Attention Blocks: Querying & Retrieving
from Dense Feature Memory Tokens

The dense feature memory token is appended to the
input sequence and participates in the self-attention
mechanism of the Transformer model. Concretely,
the QK matrix of the Transformer can be now writ-
ten as:

A`,h = Softmax([Q`,h;m`,h][K`,h;m`,h]
>
`,h)

Y`,h = A`,h[V`,h; v`,hm`,h]

where Y`,h is the h-th head of the output at layer
`, Q,K, V are the standard transformations of the



534

query input sequence, and m`,h is the dense feature
memory token for layer `. Since Q and V are both
augmented with dense features, this provides an
opportunity for both the dense features to align
with query tokens and vice versa.

4.5 Output layer and Optimization
The final output layer of the Transformer stack is
then passed into a pooling and MLP layer.

Yout =MLP (ψ(YL)) (1)

where ψ(.) is a pooling operator that maps
Rn×dmodel → Rdmodel . Our MLP (.) function
maps Rdmodel → RNclass to the number of classes.
Our model then optimizes the Softmax cross en-
tropy loss between the true classes and the pre-
dicted values. L =

∑L∑n
i=1 yi log(πi) + (1 −

yi) log(1− πi), where πi is the prediction of class
i and yi is the ground truth label of the class i.

5 COVID-19 Vaccine Access Dataset

Due to the novel nature of COVID-19, no previ-
ous datasets exist to accurately learn a model for
the purpose of vaccine access query classification.
Thus, in this section we outline the process we used
to create this dataset.

Collection. To collect a dataset of queries to be
labeled for vaccine access, we sample anonymized
queries from real search traffic. Since a small mi-
nority of our search queries are for COVID-19 vac-
cination topics, we leveraged Google’s Knowledge
Graph entities to find queries that included high
confidence positives, potential positives, and close
negatives. For example, for high precision candi-
dates we sample top and random queries associated
with the entity “COVID-19 Vaccination”, while
for high recall low precision candidates, we sam-
ple queries that are only associated with the entity
“COVID-19” or with “Vaccination”.

Labeling. To label this dataset for the specific
purpose of vaccine access, we rely on a large pool
of search quality raters who have deep experience
with how health-related information needs are re-
flected in search queries. These raters were un-
known to and independent of the developers of the
classifiers. Each query is rated by three indepen-
dent raters.

Label Expansion. We expand our dataset using
label propagation to queries that are very similar to
labeled queries. We include examples of positive
and negative vaccine access queries in Table 5.

Dense Feature Augmentation. We augment our
dataset by supplementing each query using dense
features. To generate these dense features we use a
combination of (1) entities mentioned in the query
via a proprietary library analogous to Google Cloud
Entity Analysis (goo, 2019) and (2) related search
queries determined by a proprietary algorithm. We
pool these two sources and use the 60,000 most
common words and phrases to create a dense fea-
ture representation with dimension 60,000. At each
dimension, we assign a relevance score for the
phrase. For mentioned entities, this is analogous
to salience in the Google Cloud Entity Analysis
API. Table 6 shows some of the top features that
are generated for each classification split.

6 Experiments

Below, we dive into experiment setups and results.

6.1 Baselines

We compare our proposed approach with three com-
petitive baselines. The choice of baselines serves
two primary purposes, i.e., (1) to show our method
is competitive against well-established methods,
and (2) to confirm certain scientific hypothesis by
ablation-like studies. Please see Section A.1 in
the Appendix for further implementation details on
how we configure and train our models.

Adaboost A technique used to create an ensem-
ble of weak learners that begins by fitting an esti-
mator on the original dataset and then repeatedly
fits additional estimators focusing more on exam-
ples that are misclassified by the combination of all
the existing set of estimators. Mathematically, the
ensembled AdaBoost classifer can be represented
as: FN (x) =

∑N
n=1 fn(x) which consists of N

weak learners (fn(x)) that are combined to create
the ensemble model FN (x).

Query-only Transformer This baseline, simply
a VSI Transformer without any dense features, is
added to evaluate the upper bound of a language
only state-of-the-art classifier.

Late Fusion Transformer This is an ablative
baseline for the VSI Transformer. Instead of em-
ploying dense feature memory, we combine the
dense features with the Transformer output at the
final layers. Hence, we call this baseline Late Fu-
sion, representing how the fusion of modalities is
done at the final stages. Concretely, we concatenate
the dense features to the pooled output from the
transformer layer stack and then add a few layers
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of MLP before adding the classification head. See
figure 2 for setup details.

6.2 Results & Analysis

Table 2 presents the F1 and precision metrics from
the vaccine intent classification tasks. VSI Trans-
former outperforms Adaboost models by relative
+15.1% gain on the US locale, +17.7% gain on
the CA locale, and +7.6% gain on the GB locale
on F1 metric. The gains against traditionally strong
ML models are substantial and compelling. When
compared with NLU-only approaches (e.g., query-
only Transformer), VSI Transformer again strongly
outperforms the baseline. Finally, there are modest
(but consistently strong) gains against the best and
strongest baseline considered of up to +2.1% F1
score.

6.2.1 Importance of Text and Dense Features
We study text-only NLU models and feature-only
state-of-the-art ML based Adaboost models. Gener-
ally, it is not clear if NLU-only models outperform
Adaboost models (or vice versa). Both modalities
have their fair share of wins and loses across the
three datasets and six metrics. To this end, we find
that the well-established version of combining text
and dense feature to outperform both Adaboost
and the Query-only Transformer, signifying the im-
portance of having both modalities for building a
successful model.

6.2.2 Dense Feature Memory vs Late Fusion
Late fusion is a well-established way to combine
end-to-end deep learning with real world tabular
features (Severyn and Moschitti, 2015; Tay et al.,
2017). Our results show that, while the Trans-
former with Late Fusion performs the best out of
all baselines, the VSI Transformer still comfortably
outperforms the Late fusion method , whereby we
show that our proposed integration is more effec-
tive. In regards to the problem space and domain,
this also seems to imply that a deeper fusion of text
and dense features can be key in obtaining better
model quality.

6.2.3 Increasing depth of MLP network
The experiments described above used a single
layer in the MLP networks in both the architec-
tures present in Figure 2. Adding a single layer
means that we have almost the same number of ad-
ditional parameters added in both the architectures
for a fair comparison.

In this ablation, we study the impact of using
multiple layers in the MLP network. Note the each
of these layers have a dimension size of 768 and
use GeLU activation function. We see a consistent
increase in performance as we increase the number
of layers in the MLP network. This increase is
more prominent in the Late Fusion architecture
which starts to catch up (at the cost of increasing the
depth of the model) but still performs worse than
the VSI Transformer indicating that for the same
number of model parameters, VSI Transformer is
a better architecture.

6.2.4 Using multiple memory tokens
Table 3 presents the results on increasing the num-
ber of memory tokens (Nmemory) to up to 4 tokens.
Though intuitively, it might seem that the perfor-
mance will improve, experiments show that the
correlation is not that straightforward.

The metrics seem to improve slightly but there
is a consistent degradation observed with the F1
metric as we increase Nmemory to 4 tokens. When
increasing Nmemory from 3 to 4 tokens, all three
regions show a degradation. Given the sequence
length is constant, our hypothesis is that as we
increase the number of memory tokens allocated
to the dense features, we are using up tokens that
could have otherwise been allocated to the query
text. This reduces the length of query that can be
seen by the model for large queries thereby impact-
ing the overall performance of the model. Hence,
in general, a single memory token might be suf-
ficient, but the optimal number might differ from
task to task.

6.2.5 Analyzing improvement patterns
Given the improvement in metrics, we looked at
some of the examples where VSI Transformer
model provides large gains over a query only model.
An example pattern is "covid vaccine" followed by
some noun. If the noun represents a location, the
intent is to search for vaccine availability in that
region. The query only Transformer model can
only guess whether this represents a location un-
less it can recall from locations memoized during
pretraining. Given that VSI transformer also uses
dense features, it has additional signals that provide
information like whether the query includes a loca-
tion by sources like Google Cloud Entity analysis.
Hence, using this additional signal, the model is
able to cut down on a lot of false positives of this
pattern.



536

Model Input Features US CA GB
Query-only Transformer Q only 0.9395 / 0.9060 0.8715 / 0.8059 0.8896 / 0.8159
AdaBoost 20 estimators DF only 0.8288 / 0.8399 0.7830 / 0.7918 0.8909 / 0.9019
AdaBoost 50 estimators DF only 0.8570 / 0.8598 0.8315 / 0.8678 0.9132 / 0.9128
Transformer Late Fusion Q + DF 0.9780 / 0.9698 0.9585 / 0.9289 0.9719 / 0.9519
VSI Transformer Q + DF 0.9868 / 0.9809 0.9784 / 0.9655 0.9824 / 0.9730
% Improvement (vs Query-only) - +5.0% / 8.3% +12.3% / +19.8% +10.4% / +19.3%
% Improvement (vs Adaboost) - +15.1% / +14.1% +17.7% / +11.3% +7.6% / +6.6%
% Improvement (vs best) - +0.8% / +1.1% +2.1% / +3.9% +1.1% / +2.2%

Table 1: F1 and Precision metrics on COVID-19 vaccination access search intent prediction. VSI Transformer
outperforms best Transformer baseline by +0.8% to +2.1% and Adaboost by up to +17.7% F1 score.

Figure 2: Depiction of adding transformed dense features to Transformer based models for a sample query. Ar-
chitecture on the left depicts late fusion of the dense features to the query embeddings while the one on the right
depicts addition of dense features to the query embeddings as a single memory token. Assumes that both the
models have sequence length of 8 and the tokenizer produces one token for every word.

Model N` US CA GB
Late Fusion 1 0.9780 0.9585 0.9719
Late Fusion 2 0.9827 0.9690 0.9817
Late Fusion 3 0.9846 0.9788 0.9822
VSI 1 0.9868 0.9784 0.9824
VSI 2 0.9870 0.9785 0.9840
VSI 3 0.9872 0.9789 0.9848

Table 2: Impact of increasing the number of layers (N`)
of the MLP networks on F1.

6.2.6 Using smaller Transformer models

The above experiments are performed with T5 1.1
Base model, but models of this size are often pro-
hibitive for online applications due to their resource
requirements and latency where smaller and shal-
lower models are preferred. But shallower models
tend not to perform as good and One possible rea-
son is that shallower models are limited in their
capability to extract complex features.

Nmemory US CA GB
0 0.9395 0.8715 0.8896
1 0.9868 0.9784 0.9824
2 0.9875 0.9784 0.9850
3 0.9871 0.9788 0.9849
4 0.9853 0.9785 0.9839

Table 3: Trend of F1 metric on increasing the number
of chosen memory tokensNmemory in VSI transformer
architecture.

Given that dense features can provide complex
features as inputs to the model in a preprocessed
format, using dense features can provide a large
boost in quality for shallow models. Additionally,
such features can provide exclusive information
that is not available in the text features (query).
Hence, we performed an ablation study on useful-
ness of dense features on the model size.
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Table 4 presents results on running the same ex-
periments as above, but using T5 1.1 Small instead
of the Base model. Overall, we see larger relative
improvements compared to the Base model. For ex-
ample, the VSI Transformer Small model has a rel-
ative F1 gain of 6.0% and precision gain of 10.4%
over query-only Transformer Small model, much
higher than the relative F1 gain of 5% and precision
gain of 8.3% observed with the Base model.

Model Small Base
Query-only 0.9308 / 0.8866 0.9395 / 0.9060
Late Fusion 0.9539/0.9336 0.9780 / 0.9698
% Imp. (vs Query-only) +2.5%/+5.3% +4.1% / 7.0%
VSI Transformer 0.9862/0.9788 0.9868 / 0.9809
% Imp. (vs Query-only) +6.0%/+10.4% +5.0% / 8.3%

Table 4: Comparison of F1 and precision metric be-
tween T5 1.1 small and base models on US dataset.

Even through shallow, the VSI Transformer’s
architecture is able to make better use of the atten-
tion layers for the dense features leading to pretty
high boost even over the Late Fusion architecture,
affirming that it is a better architecture for shallow
models as well.

7 Limitations

Though we have shown that just one memory to-
ken is sufficient, assigning tokens to dense features
means less number of tokens are available in the
sequence for the text input. Another limitation is
the use of locale specific vocabularies for dense fea-
tures for each regional dataset as present in table 5,
but that is not a limitation of the VSI Transformer
but instead how the dense features are generated.

8 Conclusion

This paper presented an important task of classi-
fying search queries with COVID-19 vaccination
access intent. With an extensive set of experiments
and comparing with strong baselines, we presented
VSI Transformer, a novel and generic approach that
consistently and strongly outperforms all existing
baselines that operate on either of the two modali-
ties, or late fusion of the modalities. With an abla-
tion study on model size, we show that for online
applications where shallower models need to be
deployed primarily due to latency constraints, mak-
ing use of dense features can help bridge the gap in
performance compared to deeper models. Future
work in this direction can help further understand
how to choose the optimal number of memory to-

kens, and explore more architectures to efficiently
combine sequential and dense features.

Ethics Statement

In our ongoing fight against the COVID-19 pan-
demic, understanding whether search queries ex-
hibit an intent to seek vaccine access is an im-
portant problem to study to be able to collect
search statistics about COVID-19 vaccination ef-
forts. These statistics are made public via an online
website, an interactive report that is accessible by
anyone. All data used to train these models are
anonymized and sampled, and labeled by a large
pool of search quality raters who are trained to
assess health-related information needs in search
queries. These raters are unknown to and indepen-
dent from the developers of the classifiers. This
dataset is not made public or used in any other
context.
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A Appendix

A.1 Implementation Details
The VSI Transformer is implemented in Mesh Ten-
sorflow (Shazeer et al., 2018), a Tensorflow-like

API that supports distributed model parallelism.
We initialize our model with the T5.1.1 Base check-
point, comprised of 12 encoder layers, dmodel size
of 768, dff of 2048. The model uses GEGLU-
based feed-forward layers as described in (Shazeer,
2020). The model has 12 heads. The overall num-
ber of non-embedding parameters is approximately
100M parameters. The model also utilizes the stan-
dard 32K SentencePiece that was trained on the C4
corpus. Our model is trained with 16 TPUv3 chips.
We finetune all models using a sequence length of
32 subword tokens using the Adafactor optimizer
(Shazeer and Stern, 2018). The learning rate is a
constant learning rate of 10−3 and the batch size is
128.

A.2 Top Search Queries
Figure 3 presents a view of the tool listing top
search queries associated with vaccination intent.

Figure 3: VSI tool presenting top search queries with
vaccination intent

A.3 Sample Queries
Table 5 presents a sample of some positive and
negative queries for vaccine acces present in our
dataset. The examples in the tabe shows how nu-
anced the problem is and why simply looking for
termsatches didn’t perform as good and a more
sophisticated approach was needed.

A.4 Dense Feature Vocabulary
As mention in section 5, the dataset consists of
dense features created from a vocabulary of 60,000
phrases. Table 6 presents a list of top phrases
present in the vocabulary of each of the 3 regions.
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Class Examples

Positive

covid vaccine appointment
where can i get covid vaccine
book covid jab
walk-in covid vaccine near me
nhs book covid vaccine

Negative

covid stats by country
covid vaccine effectiveness
fully vaccinated travel
proof of covid vaccination
how long does the vaccine last

Table 5: Examples of positive and negative COVID-19
vaccine access queries.

Category Top Features

Vaccination
access (US)

pharmacy, pfizer, vaccine appointment,
appointment, pharmacies, moderna,
dose, appointments, pfizer vaccine, cvs,
walgreens, second dose, vaccine ap-
pointments, cvs pharmacy, doses, shot,
cvs covid, walgreens pharmacy, vaccine
eligibility, moderna vaccine

Vaccination
access (GB)

appointment, appointments, book, book-
ing, vaccination centre, clinic, vaccina-
tion centres, vaccine appointment, clin-
ics, nhs uk, nhs, coronavirus covid, walk
in, coronavirus vaccination, covid vacci-
nation, vaccination clinic, vaccine clinic,
centres, vaccination appointment, vac-
cine centre, centre, book covid, pfizer,
astrazeneca

Vaccination
access (CA)

clinic, appointment, clinics, vaccine
clinic, vaccine appointment, vaccination
clinic, pharmacy, appointments, book,
booking, pharmacies, registration, pfizer,
drug mart, vaccination center, walk in,
vaccination appointment, vaccination
clinics, vaccine pop up

Table 6: Top features associated with a query in the
dense feature vector, for each split.


