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Abstract

Existing image captioning systems are dedi-
cated to generating narrative captions for im-
ages, which are spatially detached from the
image in presentation. However, texts can also
be used as decorations on the image to high-
light the key points and increase the attractive-
ness of images. In this work, we introduce a
new task called captioning on image (CapOn-
Image)', which aims to generate dense captions
at different locations of the image based on con-
textual information. For this new task, we in-
troduce a large-scale benchmark called CapOn-
Image2M, which contains 2.1 million product
images, each with an average of 4.8 spatially lo-
calized captions. To fully exploit the surround-
ing visual context to generate the most suitable
caption for each location, we propose a multi-
modal pre-training model with multi-level pre-
training tasks that progressively learn the corre-
spondence between texts and image locations
from easy to hard. To avoid generating redun-
dant captions for nearby locations, we further
enhance the location embedding with neighbor
locations . Compared with other image cap-
tioning model variants, our model achieves the
best results in both captioning accuracy and
diversity aspects.

1 Introduction

Building upon the advances in computer vision and
natural language processing areas, the new research
direction called vision-and-language has attracted
more and more attentions, which pushes to tackle
new problems that need to bridge the two areas to
advance the concept comprehension and reasoning
capabilities.

The image captioning task, as one of the most
classic vision-and-language tasks, aims to generate
natural language descriptions for images (Vinyals
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Figure 1: Illustration of descriptive texts on image sce-
narios. The captions and images in existing tasks (e.g
visual genome (a) (Krishna et al., 2017b)) are spatially
detached, without any mutual association. In contrast,
our CapOnImage task aims to generate descriptive text
on the image, which has strong necessity and broad ap-
plication prospects in some scenarios ((b) and (c)).

et al., 2015; Anderson et al., 2018; Zhang et al.,
2021; Johnson et al., 2016). However, the captions
and the images in this task are spatially detached in
presentation, without any association between each
other (Figure 1(a)). In fact, there are many scenar-
ios where the image and text are tightly associated.
For example, the product images on e-commercial
website (Figure 1(b)) usually contain descriptive
texts, explaining multiple perspectives of the prod-
uct (e.g., product characteristics, selling points, etc)
, which makes the image more informative and at-
tractive. On the social media platform, users usu-
ally upload daily pictures with descriptive texts as
decorations (Figure 1(c)). Therefore, it is signif-
icant to explore captioning on the image, which
requires to consider not only the visual description,
but also the text description placement on the im-
age. Besides, to generate the informative captions
in these scenarios, additional textual knowledge
is usually needed, such as the product informa-
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tion and the background story about the image etc.
Therefore, in this work, we introduce a new task
called CapOnlmage, which aims to generate dense
captions at different locations of the image based
on contextual information. The CapOnlmage task
involves two steps, where the model needs to first
predict a reasonable and aesthetic text layout (Ar-
royo et al., 2021; Gupta et al., 2020; Jyothi et al.,
2019), and then generates a phrase or sentence for
each text box. In this work, we simplify this task
to generate captions for a provided list of text box
locations, thereby removing the requirement for
layout prediction. Therefore, the main focus of this
work is to generate captions that are most suitable
for the corresponding image locations.

The CapOnlmage task involves two new chal-
lenges: (i) Better understanding of context: the cap-
tions at different locations can be greatly diverse.
As shown in Figure 1(b), the texts around the prod-
uct are descriptive captions describing the product
features, while those at the bottom introduce the
selling points. Therefore, the model needs to fully
exploit the visual context around the text box to
determine what caption is suitable to generate here.
Since our task aims to generate captions on image,
location context is vital for our task which is also
validated on Table 2 . Overall, compared with tra-
ditional caption task, the CapOnlmage task needs
better understanding of context. (ii) Caption re-
dundancy: some texts can be suitable for adjacent
locations. Therefore, if the model can only “see”
the isolated text box without surrounding ones, it
tends to generate the same caption for nearby text
boxes because it suits all of them, thus causing the
problem of caption redundancy.

To solve the aforementioned challenges, we pro-
pose a multi-modal pre-training and fine-tuning
framework which contains multi-level pre-training
tasks to effectively exploit multi-modal contextual
information. First, to better exploit context, we de-
sign multi-level pre-training tasks to help the model
“feel” the context. It explicitly equip the model with
the ability to distinguish which captions are ap-
propriate for the current location and image while
which are not. Besides, inspired by the learning
progression of easy to complex biological vision
systems, we further propose a progressive training
strategy which learns multi-level pre-training tasks
from easy to hard. Second, to solve the problem
of caption redundancy, we introduce a neighbor-
enhanced location encoding module, which utilizes

the surrounding text box locations as context, so
that our model can “see” the adjacent context. We
show the captioning diversity results with differ-
ent ranges of adjacent text boxes involved in the
location encoding module, and demonstrate the
importance of such neighbor context.

In order to evaluate our model and benchmark
progress in the CapOnlmage task, we introduce
the CapOnlmage2M dataset. It contains 2.1 mil-
lion product images crawled from an e-commercial
website, and each image contains multiple spatially
localized captions describing the associated prod-
uct. We automatically acquire the text contents and
their spatial locations from the image via OCR (Li
et al., 2017; Liu et al., 2018), and finally collect 4.8
captions for each image on average. We also crawl
the product title and attributes as additional context
information for caption generation. With the empir-
ical analysis on CapOnlmage2M dataset, we show
that the visual context, location information and the
additional product information are beneficial for
the caption generation, and our model can generate
corresponding types of captions at different spatial
locations (Figure 3). Furthermore, we demonstrate
that our proposed neighbor-enhanced location en-
coding module and multi-level pre-training tasks
significantly improve the captioning accuracy and
diversity.

The main contributions of this work are as fol-
lows:

* We introduce a new vision-and-language task
called CapOnImage, which requires the model
to tightly associate image and texts as a whole.

* We analyze the challenges of CapOnlmage
task and propose a context enhanced model
with progressive training strategy, which
achieves the best result compared with other
image captioning model variants.

* We propose a large-scale multi-modal dataset
called CapOnlmage2M, with 50 categories
images and localized captions to support the
CapOnlmage research.

2 Related Work

In recent years, significant progress has been made
in the image captioning task (Vinyals et al., 2015;
Anderson et al., 2018; Huang et al., 2019; Pan et al.,
2020; Zhang et al., 2021), which aims to describe
the image content in one natural sentence. With
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the advances in visual understanding abilities, re-
searchers are not satisfied with generating dull and
less informative captions and extend the traditional
image captioning task along two directions.

The first direction is called dense captioning
(Johnson et al., 2016; Melas-Kyriazi et al., 2018;
Krishna et al., 2017a; Wang et al., 2021; Song et al.,
2021), which targets to describe detailed visual con-
tent with a set of sentences. Johnson et al. (Johnson
et al., 2016) propose a fully convolutional local-
ization network to unify the object detection (Ser-
manet et al., 2014; Girshick et al., 2014; Ren et al.,
2015) and image captioning in one framework to
predict a set of descriptions across object regions.
Krishna et al. (Krishna et al., 2017a) migrate it to
the video, which aims to predict sequential event
proposals and generate description for each clip.
In these works, the dense captions deliver more
details of visual content than traditional single sen-
tence. The second direction is called text-aware
image captioning (Biten et al., 2019; Sidorov et al.,
2020; Yang et al., 2021), where the model gener-
ates captions not only according to the image, but
also utilizes additional textual information as con-
text. Besides , Sidorov et al. (Sidorov et al., 2020)
and Gurari et al. (Gurari et al., 2020) propose to
generate image captions with scene texts, which
exploit OCR tokens as the textual context.

Although impressive progresses have been made
along the two directions, they still remain separate.
The proposed CapOnlmage task can be considered
as a combination of the two directions, where the
model needs to first predict the text layout (spatial
locations on the image) and then generate caption
for each location conditioned on both the image
and textual information.

There are several key distinctions between our
proposed CapOnlmage task and dense captioning:
1) Dense image captioning aims to generate cap-
tions for subregions within an image, and there is
no length limitation of captions. However, our task
is to generate text and affix it to specific regions
within an image, and the text length should be con-
trolled according to the region size. 2) The visual
content is the only input of dense captioning. While
for our task, there are three inputs: visual content,
additional textual information, and the specified
location to affix. All of them will impact the gener-
ated text content. 3) The generated text is a plain
description of the visual content for dense caption-
ing. But for our task, the generated text is on the

Table 1: Comparisons of different datasets. CI, IC
and FC refer to Caption on /mage, Image Caption and
Fashion Caption.

dataset #image  #text avg len dense task
CapOnlmage 2.1IM 10.07M 4.9 v CI
Flickr30K 30K 150K 12.3 - IC
MSCOCO 123K 616K 104 - IC
VG 108K M 5.7 v IC
TextCaps 28K 142K 12.4 - IC
FACAD 993K 130K 21.0 - FC

image, making it more informative, together with
the visual content.

3 CapOnlmage2M Dataset

In this section, we introduce our proposed CapOn-
Image2M dataset, which is the benchmark for the
CapOnlmage task. We first present an overview of
the dataset collection and statistics, and then com-
pare it with other related image captioning datasets.
A more detailed datasheet describing the motiva-
tion, composition, and recommended uses of our
CapOnlmage2M dataset following (Gebru et al.,
2018) can be found in the Appendix A.

3.1 Dataset Collection and Statistics

The CapOnlmage2M dataset contains 2.1 mil-
lion product images crawled from a Chinese e-
commercial website?, where each image contains
both the product and descriptive captions describ-
ing the product features, efficacy, brand and so
on.(detail information, e.g word cloud, can be
found in Appendix A.) For each image, we em-
ploy an OCR toolkit to recognize the texts and
their spatial locations on the image, and remove the
noise with high perplexities by a pre-trained GPT.

3.2 Comparison with Other Datasets

In Table 1, we compare our CapOnlmage2M
dataset with other image captioning datasets. The
CapOnlmage2M dataset is substantially larger in
both the number of images and texts. Unlike
VG(Krishna et al., 2017b), where the dense cap-
tions independently describe different regions of
the image, the CapOnlmage2M dataset contains
dense captions that describe the same product from
different aspects. In addition to the dense captions
on the image, each image also comes with a prod-
uct title and attributes with an average length of

Zhttps://taobao.com
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34.8 characters as the textual context in the CapOn-
Image2M dataset. Therefore, it can also support the
fashion captioning research as the FACAD(Yang
et al., 2020) dataset does.

4 Model

In this section, we introduce our CapOnlmage
method based on the pre-training and fine-tuning
framework as illustrated in Figure 2. First, we in-
troduce the multi-modal representation of visual,
location coordinates, and product information of
the given input images. Then, a progressive train-
ing strategy with multi-level pre-training tasks is
proposed to enhance the correspondence learning
between textbox locations and captions for caption
generation with a multi-layer transformer.

4.1 Input Representation

The inputs of our model include three parts from
different modalities: the visual image, the textbox
location coordinate and the textual product informa-
tion. We independently encode each modality input
as a sequence of d-dimensional feature vectors as
follows.

Image representation. Given the image, we ex-
tract the grid features with standard ResNet-50 (He
et al., 2016) backbone, which is further end-to-end
fine-tuned with our model. We flatten the k X k fea-
ture map into a sequence and add spatial position
embedding similarly as DETR (Carion et al., 2020).
Specifically, for the ¢-th grid whose horizontal and
vertical indexes are x; and y;, we add learnable
spatial embedding and segment embedding which
indicates the image modality to the appearance fea-
ture v; as follows:

0; = v; + [Emby(z;); Emb,(y;)] + SE,, (1)

where Emby,(-) and Emb,(-) are horizontal and
vertical embedding layers with the output dimen-
sion of ¢, [;] denotes concatenation and SE de-
notes segment embedding. Finally, we represent
the image with a sequence of patch features V=
{1, , gk}

Neighbor-enhanced location representation. We
represent a text box location with 2D co-
ordinates {(Zmin, Ymin), (Tmaz, Ymaz)},» Where
(Tmin, Ymin) 1s the top left corner coordinate and
(Tmazs Ymaz) 1S the bottom right corner coordinate.
We map the real value coordinates into the k& x k
grid and represent them with the same spatial posi-

tion embeddings as image:

ecur = [Embp (xi); Emby (y:); Embn(z;); Embv(yj)](,z)
where {(x;,:), (x,y;)} is the corresponding grid
index.

Furthermore, to avoid the problem of caption
redundancy for adjacent locations, we enhance the
location representation with neighbor locations as
context. We define the distance of two text boxes
as the distance of their centers, the text boxes
whose upper left corner are with smaller value of
x-coordinate plus y-coordinate than the current one
as the previous text boxes, and those larger than
the current one as the next text boxes. Then, we
employ the nearest previous textbox location and
the nearest next textbox location as the neighbor
context, and encode them similarly as e.,,. After
encoding, we concatenate them with the current
location embedding and add a segment embedding
indicating the location modality as follows:

1= Wi - [eprev; encatl; W3 - ecur] +SE;,  (3)

where W7 € R4* 5 and Wy € R2%% 3 are learned
martrices, €prey and ey,¢¢ are the neighbor location
embeddings, SE is the segment embedding.
Product information representation. To generate
informative product descriptions, we also exploit
product information as the textual context, which
is the product title and attribute in this work. We
concatenate them with a special < SEP > token.
Given the product information X = {z1,--- ,zx}
with K words, we embed these words via the same
word embedding matrix as the target caption words,
and add positional and segment embeddings as
follows:

wi™® = W, - 2; + PE; + SE,, 4)
where W, is the word embedding matrix, PE de-
notes sequence positional embedding as in BERT
(Devlin et al., 2019) and SE denotes segment em-
bedding. Finally, we represent the product title

with a sequence of d-dimensional feature vectors
info __ infol K
as W0 = {w™h .

4.2 Pre-training Tasks and Strategy

After encoding each input modality into the com-
mon embedding space, we employ transformer
layers on the multi-modal input to fuse the multi-
modal information. To generate appropriate and
diverse descriptions at different textbox locations,
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Progressive training strategy
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Figure 2: Illustration of our model with four input modalities: image patches, location coordinates, product
information, and the predicted text tokens. Two pre-training tasks are employed to optimize the model with a

@_9

progressive learning strategy from easy to difficult.

denotes parameter sharing and “+” denotes addition. We add

English translation for product information for better understanding.

we pre-train the model with two pre-training tasks,
including Caption Generation (CG) and Caption
Matching (CM). We first pre-train the model with
both CG and CM tasks, and then fine-tune it only
with the CG task for the final caption generation.
Task #1: Caption Generation (CG). We generate
captions using the same multi-modal transformer
layers as decoder following the prefix LM (Raffel
et al., 2020; Dong et al., 2019). Each word predic-
tion can attend to all the image features, neighbor-
enhanced location and product information embed-
dings, as well as previous generated words. We
adopt the auto-regressive training objective for the
CG task, which can be expressed as follows:

T
1 * |k 9 i
Loo =7 ;mgp@t [V VoL W5 6),
5)

where y; denotes the ¢-th word of ground-truth cap-
tion for the current textbox location, and © denotes
all learnable parameters of the pre-training model.
During the inference phase, we first encode the im-
age, location and product information embeddings,
and then feed a special start token [SOS] to predict
the caption word by word.

Task #2: Caption Matching (CM). To help the
model learn which captions are appropriate for
the current image and location while which are
not, we further introduce another pre-training task
called Caption Matching. It is similar to the [TM
task commonly used in vision-and-language pre-
training models (Chen et al., 2020; Li et al., 2020;
Lu et al., 2019; Zhuge et al., 2021), which requires
the model to predict if the image and caption are

semantically aligned. A score s between 0 and
1 is predicted by the hidden output of the [SOS]
token. The positive examples of this task are cor-
responding pairs in the dataset, while the negative
examples can be diverse. In this work, we design
three levels of negative example construction and
progressively learn the task from easy to difficult.
Level-I: Image caption matching. The first nega-
tive level is to randomly replace the correct caption
with descriptions of other images. Therefore, it is
not consistent with the current image content. We
expect the model can recognize such negative ex-
amples according to the visual image and product
information, which are the easiest negative cases.
Level-II: Location caption matching. The second
negative level is to replace the caption with those
in other locations of the same image. It is more
difficult than the Level-I because the negative cap-
tion exactly describes the current image but is not
suitable for the current location. For example, the
product efficacy descriptions may be inappropriate
to appear on the left corner of the product image,
while the product brand is more suitable. We ex-
pect the model can learn the relationship of texts
and textbox locations according to the surrounding
visual context.

Level-III: Neighbor-location caption matching.
Since the captions in neighbor locations are the
most confusing samples, we further introduce the
third negative level, where we randomly replace the
caption with those in neighbor locations, including
the nearest previous location and the nearest next
location defined in Section 4.1. It can be seen as a
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Table 2: We report BLEU (B), METEOR (M), CIDEr and Diversity (D) scores for the captioning on image task
on the CapOnlmage2M dataset. Since the CapOnlmage task is a newly proposed task in this work, we adapt
conventional state-of-the-art image captioning models to this task by introducing text location and textual knowledge
for comparison. We run our experiments 5 times under different random seed and report the average value.

| Validation | Test
Methods ‘ B@l1 B@4 M CIDEr D@1 D@2 ‘ B@1 B@4 M CIDEr D@1 D@2
Up-down w/o TAtt | 15.51 9.79 7.93 108.11 48.73 41.22 | 13.48 8.71 7.89 99.52 46.53 39.51
M2 w/o TALtt 2432 2096 14.58 200.32 54.83 49.29 | 23.19 18.74 12.16 18434 54.11 47.23
RSTNet w/o TAtt 25.18 2046 14.73 19691 56.17 50.85 | 22.87 19.35 11.81 180.50 55.36 46.86
Up-down w/ TAtt 2049 1354 11.52 181.04 6524 56.27 | 1894 1230 10.81 16626 65.72 56.48
M2 w/ TAtt 34.18 2431 18.14 27335 6329 5343 | 31.63 2211 17.71 26522 62.81 54.19
RSTNet w/ TAtt 3342 2391 1728 267.60 64.12 54.53 | 30.54 2094 1720 259.29 63.10 53.84
M4C w/o copying 3646 27.08 20.19 296.73 65.69 55.69 | 35.73 26.24 19.8 287.61 6431 55.01
M4C w/ copying 3598 28.35 2058 29931 6598 55.03 | 36.23 27.15 20.01 28835 64.03 55.23
baseline 3646 27.08 20.19 296.73 65.69 55.69 | 35.73 2624 19.78 287.61 64.31 55.01
w/o locations 17.78  9.36 10.03 99.08 2294 1724 | 17.29 11.04 9.73 95.52 23.05 17.28
no-info (w/o info) 20.81 13.88 11.53 13326 5587 47.32 | 19.94 13.19 10.10 12551 53.84 46.31
no-image 2225 1632 13.51 15559 5871 49.85 | 21.83 1533 11.82 14732 5842 48.61
context 37.69 2798 2191 313.64 7025 60.54 | 37.02 27.23 21.14 30550 70.98 60.90
full 41.77 3220 2452 357.03 74.05 63.20 | 4095 3145 2349 34541 7487 63.70
human |- i - - 9013 7553 | - - - - 8991 7418

special case of Level-1I, which limits the negative
location to the neighboring locations and makes it
more difficult to distinguish.

Progressive training strategy. Since the three lev-
els of CM task are from easy to difficult, inspired
by the human learning procedure, we propose a
progressive training strategy to dynamically adjust
the proportion of each level. Specifically, we ran-
domly replace captions with 60% probability to
form negative samples and leave 40% unchanged
as positive ones. The negative captions come from
the three levels with py, p2 and p3 probabilities re-
spectively, where p; + p2 + p3 = 1. We vary the
probabilities over the course of training, according
to the following formula:

0 (6)

p3 = min(1, step_num - 5000~ %), (7)
po = max(0,1 — p; — p3). (&)

p1 = min(1,2 - step_num

It corresponds to rapidly decreasing the probability
of Level-I from 1 at the beginning and then slowly
decreasing to 0, while linearly increasing the proba-
bility of Level-III from a very small value to 1. As a
result, the probability of Level-II will increase first,
and then decrease. Overall, the training objective
of the CM task can be expressed as follows:

label indicating whether it is a negative or positive
sample.

5 Experiments

We carry out experiments to evaluate the ability of
models for captioning on image given a provided
text layout on the CapOnlmage2M dataset. We
evaluate the caption generation qualities from mul-
tiple aspects, including the accuracy measurement
against the references, and the diversity measure-
ment within an image. Since the correct caption
for each textbox location is not unique, we further
evaluate the firness of generated captions to the cor-
responding textbox locations with respect to the
caption length and type. Besides, we also conduct
human evaluations. More results can be found in
supplementary materials.

5.1 Experimental Setup

Evaluation metrics. For the accuracy measure-
ment, we evaluate the generated captions against
the ground-truth with standard metrics used in the
image captioning task, including BLEU (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014) and CIDEr (Vedantam et al., 2015). For
the diversity measurement, we concatenate the
dense captions within an image as a paragraph

Lovy = _E(V LWint Yy~ D [rlog s+(1—r)log(1—s)],and compute the ratio of unique n-grams, called

©))
where s refers to the predicted matching score of a
training sample and r € [0, 1] is the ground-truth

Div@n (Shetty et al., 2017). For the fitness mea-
surement, we show the relationship of generated
caption length to the aspect ratio of text box, and
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Table 3: Captioning results with different pre-training tasks and strategies. fixed denotes training the multi-level CM
task with a fixed proportion, while progressive denotes varying the proportion according to the degree of difficulty

and training steps.

R | Pretrain tasks | Pretrain strategy | Validation | Test
ow
| Level-I Level-Il Level-II | fixed progressive | B@1 B@4 M  CIDEr | B@1 B@4 M  CIDEr
1 ‘ - - - ‘ - - ‘ 37.69 2798 2191 313.64 ‘ 37.02 2723 21.14 305.50
2 v - - v - 38.87 29.23 2232 325.74 | 38.19 2848 21.69 316.46
3 v v - v - 40.22 30.36 22.88 339.72 | 39.36 29.54 22.03 329.77
4 v v v v - 40.55 30.71 23.34 347.30|39.40 29.57 2251 33549
5 ‘ v v v ‘ - v ‘ 41.77 32.20 24.52 357.03 ‘ 40.95 3145 2349 34541

the type distribution of generated captions.
Implementation details. We initialize the ResNet-
50 backbone pre-trained on ImageNet, and fine-
tune it with our model in an end-to-end manner.
Our model has L = 6 transformer layers with the
hidden dimension of d = 1024 and attention head
A = 8. In the pre-training stage, we sample the
batch of CG and CM tasks with a proportion of 3:1
for 200K steps. We adopt a warming-up strategy
for the first 4K steps. For text processing, we tok-
enize Chinese captions into characters and build a
vocabulary with 6263 tokens. We implement our
method using pytorch (Paszke et al., 2019). We
manually search hyper-parameter.

5.2 Comparison with Baseline Models

Since the CapOnlmage task is a newly proposed
task in this work, we adapt conventional state-of-
the-art image captioning models (Up-down (An-
derson et al., 2018), RSTNet (Zhang et al., 2021),
M2 (Cornia et al., 2020), M4C-Captioner (Sidorov
et al., 2020)) to this task as the baselines for com-
parison. The details of compared baseline methods
are expanded on the supplementary materials.

Variants of our model. We also compare with
different variants of our model. Since all the words
to be generated are already in the vocabulary, the
copy mechanism bring no significant improvement
(Table 2), so we remove it and use M4C-Captioner
w/o copying as our baseline model. The no-info
model adopts the same architecture as the baseline
model except that the product information input
is removed. Similarly, the no-image and the no-
locations model share the same baseline model
architecture but with the image and locations input
removed respectively. Our context model is the
baseline model enhanced with neighbor location
contexts, which is still trained only with the CG
task. The full model is our complete model with

progressive pre-training by both CG and CM tasks
on the same dataset.

Table 2 reports the captioning on image results
of different models on the CapOnlmage2M valida-
tion and test sets. It is shown that the conventional
image captioning model without any adaptation
perform poorly on the CapOnImage task. This is
because these models lack the textual context that
can provide rich information for caption genera-
tion. Enhancing the Up-down, M?, and RSTNet
with textual attentions on the additional product
information, the captioning results are significantly
improved. However, they are still inferior to the
adapted text-aware image captioning model, which
has a good ability of multi-modal fusion with the
cross transformer encoder. Therefore, it stands for
a strong baseline for our model. Compared with
the baseline model, our context model enhances
the text location embedding with neighbor location
contexts, which brings significant improvements
on both accuracy and diversity metrics. It demon-
strates the importance of location relationship mod-
eling especially for reducing caption redundancy.
Although good results have been achieved, the
model is only trained with caption generation objec-
tive against the ground-truth, which is not sufficient
to help the model learn complex correspondence be-
tween texts and image locations. Therefore, when
pre-training the context model with both CG and
CM tasks in a progressive manner, our full model
achieves the state-of-the-art results. Nevertheless,
there is still a gap with the human annotations on
the captioning diversity metrics.

To further explore the contribution of each input
modalities, we also report the captioning results
with some input removed(no-locations, no-info,
and no-image). It shows that the location infor-
mation is more important than the visual image
and the textual information for the CapOnlmage
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task. However, these three models are severely infe-
rior to the baseline model with multi-modal input,
which shows the necessity of multi-modal fusion
for this new task.

5.3 Ablative Analysis

Parameters determination.

In Figure 4, we conduct ablation studies to in-

vestigate the suitable parameters for our model.
We use our context model and operate our exper-
iment on test set. The parameter that need to be
determined are number of layers of transformer,
hidden dimension of transformer and grid feature
size of resnet backbone. In Figure 4(a), we study
the impact of these three parameters for caption
performance(BLEU @4 and CIDEr). We choose 6
layer transformer with hidden dimension 1024 and
8% 8 grid size resnet for the intuition of Accuracy-
Efficiency Trade-Offs.
Pre-training tasks and strategy. In Table 3, we
ablate the proposed multi-level pre-training tasks
and progressive training strategy. It shows that pre-
training with only Level-I of the CM task (row 2)
can significantly improve the non-pretrained model
with only CG objective (row 1). It demonstrates
the importance of multi-modal alignment to the
CapOnlmage task. Upgrading the CM task with
more difficult negatives in Level-II helps the model
better learn the relationship of captions and text
locations and thus yields better results (row 3). Fur-
ther incorporating negatives in Level-III bring addi-
tional gains (row4), which confirms the importance
of context information in CapOnIlmage task. How-
ever, since three levels of negative samples are built
from easy to difficult, we seek to boost the learn-
ing process of CM task in an adaptive fashion: the
ratio of pre-training tasks need to be adapted to the
training status and vary in a progressive manner(as
opposed to a fixed proportion of 30%:40%:30%).
Therefore, we propose a progressive training strat-
egy with the proportion of easy task decreased and
hard task increased in the training process. It boosts
the results stably (row 5).

5.4 Caption length to textbox aspect ratio.

Given a textbox location, the generated caption
should exactly fit in with it for visual aesthetic. The
text length and font size are the influencing factors.
Since the short side of the textbox determines the
font size, the aspect ratio (long side length / short
side length) can reflect the most suitable text length.

Table 4: Human evaluation of our full model vs. base-
line model on the test set w.r.t. relevance, diversity and
informativeness.

Base wins (%) Full wins (%) Delta
relevance 31.2 68.8 +37.6
diversity 34.5 65.5 +31.0
informativeness 32.8 67.2 +34.4

Therefore, we show the relationship of our gener-
ated caption length with aspect ratio of the corre-
sponding textbox in the Figure 4(b). It shows that
with the textbox aspect ratio increased, our model
generates longer captions almost linearly, which
demonstrates the controllability of the text box size
to the length of the caption generated by our model.

5.5 Caption type to textbox location.

Besides the caption length, the types of captions
in CapOnlmage2M dataset are diverse at different
image locations. To explore whether the type of
our generated captions is suitable to the given loca-
tions, we visualize the caption type distribution on
the image. Since the caption type annotations are
not available, we automatically group the ground-
truth captions into 4 categories by k-means based
on their sentence-level BERT (Devlin et al., 2019)
embeddings. We then display the same type of cap-
tions using the same color on an image. As shown
in Figure 3(a), the captions with the same type are
located together, which shows that the caption type
is very related to its location. We assign our gener-
ated captions to the 4 clusters and visualize them in
the same way in Figure 3(b). It looks very similar
to the ground-truth type distribution map, which
shows that our model effectively learns the relation-
ship of text location and text type. The meaning of
each color are illustrated in Figure 3(c).

5.6 Human Evaluation

In addition to the objective evaluation, we also con-
duct human evaluation on 400 randomly sampled
images from the test set. We render the generated
dense captions from baseline model and our full
model on the image via opencv. We instruct 5
workers to choose which one is better or they are
not distinguishable based on relevance, diversity
and informativeness respectively and do the major-
ity voting. To avoid the prior bias, we anonymize
the model names and shuffle the predictions ran-
domly. Table 4 shows the human evaluation re-
sults. Our full model significantly outperforms

3456



-.

|

Color Tllustration E EN) E N)
duct brand Valida,Shiseido, Avene, Bk, BEZ,
roduct bran
P Clinique, ... wiE, HE, ...
Anti-robbery sawtooth,
[ | product name FHIOZFRL, FIEEL, .o
milk facial cleanser, ...
short description of Baby grade PP 2)LEPPHE, BRETIEE
| ] material, Strong load-bearing
product features | " T T
without dropping....
L -lastis f
long description of | S 1ASINE AN WAETPrOOT o, kiR B BRI
| ] design,compact and soft fiber
product features HRIF, ......

bristle, ...

(a) (b)

(©

Figure 3: (a):Distribution of the GT caption types. (b): Distribution of generated caption types. (c¢): Illustration of
the four caption types in CapOnlmage2M dataset via automatic clustering.

(al) (a2)

30 30 315
—@— BLEU@4 —8— BLEU@4

28 { —k— CIDEr I 310 284 —k— CIDEr . @310
® 26 5 ©26 305
2 F3008 > 8
=24 O 24 300 O
@ L2o0 *

22 22 295

20— . . —L 280 20— T — 290

2 4 6 8 500 1000 1500
Num of Layers Model Size
(a3) (b)
30 315
—@— BLEU@4
=

28 —k—CDEr _ _.—-® | o, g
< c
® 26 o 9
z F3050 ¢
224 o g

[=%
22 (300§
20 T T y 295 = T T T
6 8 10 25 50 7.5 10.0

Grid Size Aspect Ratio

Figure 4: (al): Ablation of number of transformer layer.
(a2): Ablation of the hidden dimension of transformer
model. (a3): Ablation of grid size of resnet backbone.
(b): The average captioning length of our model for the
text box with different aspect ratios.

the baseline model especially on all three aspects,
which demonstrates the effectiveness of the pro-
posed neighbor-enhanced location embedding and
multi-level progressive pre-training.

5.7 Qualitative Results

Figure 5 visualizes some results of our ful/l model
and baseline model. The baseline model is shown
to generate repetitive captions due to the lack of
global layout awareness. For example, for adjacent
locations, the baseline model repeats the concept of
“mild”, while our model generates more informative
caption of “sensitive skin friendly”. Furthermore,
our model is also shown to better exploit the vi-
sual context to generate more suitable captions. In
the second example, our model generates the text
“suitable for large area makeup” for the down-right
region where a hand appears, while the baseline
model fails to distinguish it with the up-right re-
gion and generates similar descriptions about the
“oblique slop brush”. More visualization results can

Baseline model Ours Ground-Truth

(A
A
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p=t
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aiabl for
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Figure 5: Qualitative dense-captioning on image re-
sults of our full model and baseline model. We add the
English translation for each Chinese caption for better
comprehension.

be found in the supplementary material.

6 Conclusion

In this work, we propose a new vision-and-
language task called CapOnlmage, which aims to
generate dense captions at different locations on an
image with visual and textual context. We propose
a multi-modal pre-training and fine-tuning model
with multi-level pre-training tasks from easy to
difficult for the correspondence learning between
image location and text, and enhance the current
location embedding with neighboring locations to
reduce captioning redundancy. Experimental re-
sults shown that our model can generate control-
lable length and type of captions at different image
locations. In the future work, we will explore to
generate dense captions with self-predicted text lay-
out and combine the layout generation with caption
generation in one joint framework to benefit from
each other.
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Limitations

The definition of our proposed task, i.e., generating
text on image locations based on visual and textual
context, can be found in many scenarios, such as
billboard photos, posters, social platform images,
etc. In this paper, we only report performance on
our collected e-commercial dataset for the conve-
nience of validating our key idea and our proposed
task does not rely on any priors of specific inputs,
so it can be expanded to a wide range of scenar-
ios. In the future, we plan to collect more types of
datasets, which can help us to apply our approach
to more scenarios. Also, our dataset only contains
caption annotations in Chinese.
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A Appendix

In the appendix, we first conduct further analysis
of the choices of contextual locations and the di-
versity of our generated captions. Then claim the
motivation and the challenge for the novel CapOn-
Image task. At last, we take hierarchical presen-
tation of the CaptionOnlmage2M from different
perspectives.

A.1 Choice of contextual locations.

Table AS: Captioning results on the test set with dif-
ferent contextual locations. The number in () means
how many locations used as the context to enhance the
current location embedding.

Methods ‘B@l B@4 CIDEr D@1 D@2

w/o context (0) 35.73 26.24 287.61 69.31 59.01
w/ two random (2) |33.98 24.79 283.73 67.43 57.82
w/ top-1 nearest (2) | 37.02 27.23 305.50 70.98 60.90
w/ top-2 nearest (4) | 37.88 27.10 307.61 70.12 60.34

In Table A5, we take a further study on the
neighbor-enhanced location embedding module
with different contextual locations. With the near-
est neighbor (previous and next) locations used as
the context as described in Section 4.1, our model
significantly improves the accuracy and diversity
metrics. To figure out where the benefit comes
from, we compare with the model using the same
amount of randomly selected locations as context.
Experimental results show that the randomly se-
lected locations cannot improve the results and
may even bring noise, which demonstrates the ef-
fectiveness of our model in encoding neighboring
layout information to generate more appropriate
and diverse captions. When further expanding the
contextual range from the top-1 nearest to the top-2
nearest (top-2 previous and top-2 next), the model
achieves slightly better result on the accuracy met-
ric. To balance the efficiency and quality, we finally

use the top-1 nearest locations as the context in our
model.

A.2 Diversity from the textual input.

In Table A6, we calculate the Bleu score between
the input product information and our generated
captions. Results show that there is only a small
percentage of copy text in our generated captions,
demonstrating that our model is not just simply
“copying text from the input product information”,
but generating diverse captions conditioned on the
multi-modality input.

Table A6: Bleu score between the input product infor-
mation and our generated captions.

# Bleul Bleu2 Bleu3 Bleud4
Test | 0.032 0.021 0.013 0.007
A.3 Motivation

For what purpose was the dataset created? The
dataset was created to support the research on the
captioning on image (CapOnlmage) task, which
aims to generate informative captions at different
appropriate locations in the given image. CapOnlm-
age is a valuable task for both vision-and-language
research and industrial applications. We show the
pipeline of our task on Figure A6.

A4 Composition

What do the instances that comprise the dataset
represent? Each instance in the CapOnlmage2M
dataset contains 50 c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>