
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9496 - 9521
December 7-11, 2022 ©2022 Association for Computational Linguistics

Perturbation Augmentation for Fairer NLP

Rebecca Qian† Candace Ross† Jude Fernandes†
Eric Smith† Douwe Kiela‡, * Adina Williams†, *

† Facebook AI Research; ‡ Hugging Face
rebeccaqian,adinawilliams@fb.com

Abstract
Unwanted and often harmful social biases are
becoming ever more salient in NLP research,
affecting both models and datasets. In this
work, we ask whether training on demograph-
ically perturbed data leads to fairer language
models. We collect a large dataset of human
annotated text perturbations and train a neu-
ral perturbation model, which we show out-
performs heuristic alternatives. We find that
(i) language models (LMs) pre-trained on de-
mographically perturbed corpora are typically
more fair, and (ii) LMs finetuned on perturbed
GLUE datasets exhibit less demographic bias
on downstream tasks, and (iii) fairness improve-
ments do not come at the expense of perfor-
mance on downstream tasks. Lastly, we discuss
outstanding questions about how best to eval-
uate the (un)fairness of large language mod-
els. We hope that this exploration of neural
demographic perturbation will help drive more
improvement towards fairer NLP.

1 Introduction
There is increasing evidence that models can instantiate
social biases (Buolamwini and Gebru, 2018; Stock and
Cissé, 2018; Fan et al., 2019; Merullo et al., 2019; Prates
et al., 2020), often replicating or amplifying harmful
statistical associations in their training data (Caliskan
et al., 2017; Chang et al., 2019). Training models on
data with representational issues can lead to unfair or
poor treatment of particular demographic groups (Baro-
cas et al., 2017; Mehrabi et al., 2021), a problem that
is particularly egregious for historically marginalized
groups, including people of color (Field et al., 2021),
and women (Hendricks et al., 2018). As NLP moves
towards training models on ever larger data samples (Ka-
plan et al., 2020), such data-related risks may grow (Ben-
der et al., 2021).

In this work, we explore the efficacy of a dataset alter-
ation technique that rewrites demographic references in
text, such as changing “women like shopping” to “men
like shopping”. Similar demographic perturbation ap-
proaches have been fruitfully used to measure and often
lessen the severity of social bias in text data (Hall Maud-
slay et al., 2019; Prabhakaran et al., 2019; Zmigrod

et al., 2019; Dinan et al., 2020a,b; Webster et al., 2020;
Ma et al., 2021; Smith and Williams, 2021; Renduch-
intala and Williams, 2022; Emmery et al., 2022). Most
approaches for perturbing demographic references, how-
ever, rely on rule-based systems, which unfortunately
tend to be rigid and error prone, resulting in noisy and
unnatural perturbations (see Section 4). While some
have suggested that a neural demographic perturbation
model may generate higher quality text rewrites, there
are currently no annotated datasets large enough for
training neural models (Sun et al., 2021).

In this work, we collect the first large-scale dataset of
98K human-generated demographic text perturbations,
the Perturbation Augmentation NLP DAtaset (PANDA).
We use PANDA to train a seq2seq controlled genera-
tion model, the perturber. The perturber takes in (i) a
source text snippet, (ii) a word in the snippet referring to
a demographic group, and (iii) a new target demographic
attribute, and generates a perturbed snippet that refers
to the target demographic attribute, while preserving
overall meaning. We find that the perturber generates
high quality perturbations, outperforming heuristic alter-
natives. We use our neural perturber to augment existing
training data with demographically altered examples,
weakening unwanted demographic associations.

We explore the effect of demographic perturbation
on language model training both during pretraining and
finetuning stages. We pretrain FairBERTa, the first
large language model trained on demographically per-
turbed corpora, and show that its fairness is improved,
without degrading performance on downstream tasks.

We also investigate the effect of fairtuning, i.e. fine-
tuning models on perturbation augmented datasets, on
model fairness. We find that fairtuned models per-
form well on a variety of natural language understand-
ing (NLU) tasks while also being fairer on average than
models finetuned on the original, unperturbed datasets.

Finally, we propose fairscore, an extrinsic fairness
metric that uses the perturber to measure fairness as
robustness to demographic perturbation. Given an NLU
classification task, we define the fairscore as the change
in model predictions between the original evaluation
dataset and the perturbation augmented version. Prior
approaches to measuring fairness in classifiers often rely
on “challenge datasets” to measure how predictions dif-
fer in response to demographic changes in inputs (Zhao
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Figure 1: Our contributions. 1 refers to our large scale annotated dataset (PANDA) of demographic perturbations.
Our perturber in 2 is trained on PANDA to generate high quality perturbed text. In 3 , we train a LM on data that
has been augmented using the perturber. In 4 , we illustrate a method for finetuning on perturbation augmented
validation data, which we call fairtuning. Finally, we propose the fairscore 5 , an extrinsic metric that quantifies
fairness in LMs as robustness to demographic perturbation.

et al., 2018; Rudinger et al., 2018; De-Arteaga et al.,
2019; Parrish et al., 2021). However, collecting hu-
man annotations can be costly, and task specific evalua-
tion sets do not always generalize across NLU tasks.
The fairscore is a versatile, complementary method
to challenge datasets that can be easily applied to any
NLP dataset. We see significant improvements in the
fairscore from fairtuning on a range of GLUE tasks.

Our main contributions are summarized in Figure 1.
Using a neural perturber to demographically augment
model training data is a promising direction for less-
ening bias in large language models. To enable more
exploration and improvement upon the present work,
we will release PANDA, our controllable perturber, Fair-
BERTa, and all other trained models and code artifacts
under a permissive license.

2 Approach

We begin perturbation with a set of text snippets, each
of which contains at least one demographic term. De-
mographic terms could be a pronoun (she, him, their,
etc.), a proper name (Sue, Yutong, Jamal), a noun
(son, grandparent), an adjective labeling a demographic
group (Asian, Black) or another part of speech with
demographic information. Each term instantiates one
or more demographic axes, such as gender, each of
which has several demographic attributes, such as
“man”, “woman”, and “non-binary/underspecified”. For
each snippet, we perturb the demographic term to a
new demographic attribute along its axis while preserv-

ing coreference information. If we consider the phrase
“women like shopping” where we select the demographic
term “women”, we could perturb the sentence along the
gender axis to refer to the gender attribute “man”, re-
sulting in “men like shopping”. We use the following
demographic axes and attributes: Gender (Man, Woman,
Non-Binary/Underspecified), Race/Ethnicity1 (White,
Black, Hispanic or Latino, Asian, Native American or
Alaska Native, Hawaiian or Pacific Islander), and Age
(Child < 18, Young 18-44, Middle-aged 45-64, Senior
65+, Adult Unspecified).

We avoid perturbing terms such as surgeon or pink
that can be proxies for demographic axes (i.e., they have
only statistical and/or stereotypical gender associations),
precisely because our procedure aims to break statis-
tical associations of this sort. While names are also
only proxies for race and/or gender, we include them as
demographic terms because names-based demographic
associations have been shown to benefit from counter-
factual augmentation (Hall Maudslay et al., 2019; Prab-
hakaran et al., 2019; Smith and Williams, 2021).

One consequence of our approach is that not all fac-
tual content will be preserved through demographic
perturbation (see Section 8 for more discussion). In
a research context, we are under no strict obligation
to replicate in exact detail the world as it currently ex-
ists: for instance, we could create counterfactual text

1We use the US Census Survey for race and ethnicity
attributes; for a discussion of limitations arising from relying
on the U.S. Census for race/ethnicity attributes, see Section 8.
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describing an alternative past where the first human on
the moon was nonbinary. Our work is not a caveat-
free endorsement of demographic perturbation, nor is
it a blanket suggestion to apply it to all tasks in NLP.
Nonetheless, we feel our research is relevant for answer-
ing the question: can demographically perturbed data be
useful for improving the fairness of language models?
We do not want to enable “fairwashing” by creating
a simple but incomplete test that models can pass so
as to be deemed “safe”. Instead, the present work is
something of an existence proof for the utility of neural
demographic perturbation.

Formalizing Demographic Perturbation Augmenta-
tion: Let S be the input dataset consisting of variable-
length snippets of text, where s ∈ S is a text snippet and
w is a word in s with demographic attribute aw. Let A
be a set of demographic attributes andP ⊆ A×A be the
set of (source, target) attribute pairs where (as, at) ∈ P
defines one pair. We use Pd to denote the subset of
attribute pairs that are under the demographic axis d,
where d ∈ {gender, race, age}. For example, for
d = gender, example attribute pairs for Pgender in-
clude (man, woman), (woman, non-binary). Dd denotes
the dictionary of words for the demographic axis d.

We illustrate the procedure for perturbation augmenta-
tion in Algorithm 1. We sample text snippets to be used
as inputs to the perturber from an existing text dataset
S. For each snippet s ∈ S, we identify the set of per-
turbable demographic words using our words list. For
each perturbable word w, we identify source and target
demographic attributes for perturbation. For example,
for w = lady, possible source and target attribute pairs
include (woman, man) and (woman, non-binary). We
then sample a word and target attribute with uniform
probability2, to preserve dataset size |S|.

Algorithm 1: Data Augmentation via Demo-
graphic Perturbation

1 Input: dataset S , set of attribute pairs Pd,
dictionary of demographic words Dd

2 Initialize: new dataset S̃ ← ∅
3 for snippet s ∈ S do
4 new snippet s̃← s
5 new K ← ∅
6 for word w ∈ s ∩ Dd do
7 for (·, t) ∈

{(as, at) ∈ Pd|as = aw, as ̸= at} do
8 K ← K ∪ {w, t}

9 (w, t) ∼ U(K)
10 s̃← perturber(s, w, t)

11 S̃ ← S̃ ∪ {s̃}
12 Output: S̃

2For the finetuning datasets, we use a modified frequency-
based sampling strategy that ensures representation of
race/ethnicity perturbations, preserving dataset size.

Defining fairtuning: Demographic perturbation aug-
mentation is a flexible, scalable method that can be used
to alter demographic representations in large training
datasets. We explore the effects of demographic pertur-
bation on model training in two settings: (i) pretraining
large LMs on perturbation augmented datasets, and (ii)
finetuning models on perturbation augmented NLU task
datasets, an approach we refer to as fairtuning. In the
supervised fairtuning setting, we apply the perturber to
each training example, following Algorithm 1. For a
labeled training dataset D = {xi, yi} and perturber
model fP , we create a perturbation augmented dataset
D̃ = {fP (xi), yi} that preserves the original label. We
preserve the size of the dataset during perturbation aug-
mentation to ensure fair comparisons.

Defining the fairscore: We next define a fairness met-
ric to measure robustness to demographic perturbation
on classification tasks. Following Prabhakaran et al.
(2019); Ma et al. (2021); Thrush et al. (2022), we as-
sume that perturbing demographic references should
have minimal to no effect on most of the NLU tasks we
investigate. For instance, the sentiment of a review like
Sue’s restaurant was to die for shouldn’t be altered if
we replace Sue with Yitong, as names shouldn’t have
any sentiment on their own, and the part of the text that
does (i.e., ...’s restaurant was to die for) remains un-
changed (Prabhakaran et al., 2019). Models that utilize
demographic terms as lexical “shortcuts” (Geirhos et al.,
2020) during classification will have a larger change in
their predictions than models that do not, with the latter
being deemed “more fair” by our metric.

We measure how sensitive a model finetuned on a
downstream classification task is to demographic pertur-
bation by evaluating it on both the original evaluation set
and a demographically altered version. The fairscore of
a classifier is defined as the percentage of predictions
that differ when the input is demographically altered.3

More formally, for a perturber model fP and text snip-
pet x, let x̃ ∼ fP (x) be the demographically altered
perturber output. A classifier fC exhibits bias if for
some input x and demographically perturbed input x̃,
the predictions fC(x) ̸= fC(x̃). Given a classifier fC
and an evaluation set X , we define the fairscore FS as

FS(fC , X) =
|{x ∈ X| fC(x) ̸= fC(x̃)}|

|X| . (1)

In the following sections, we describe how we collected
an annotated dataset of text perturbations, trained a neu-
ral perturbation model, and show results of its applica-
tions to model training and bias measurement.

3 Perturbation Augmentation NLP
DAtaset (PANDA)

In this section, we discuss Perturbation Augmentation
NLP DAtaset, a first-of-its-kind human-annotated

3We filter for examples containing demographic informa-
tion in validation sets, to ensure that the fairscore is computed
only on examples containing demographic information.
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original source text selected
word

target
(axis:attribute)

human perturbed output (gold) perturber output

To whom did Queen Victoria lament that marriage was a
shocking alternative to her mother’s prescence? <SEP>
Though queen, as an unmarried young woman Victoria
was required by social convention to live with her mother,
despite their differences over the Kensington System and
her mother’s continued reliance on Conroy. Her mother
was consigned to a remote apartment in Buckingham
Palace, and Victoria often refused to see her. When Vic-
toria complained to Melbourne that her mother’s close
proximity promised “torment for many years”, Melbourne
sympathised but said it could be avoided by marriage,
which Victoria called a “schocking [sic] alternative”. She
showed interest in Albert’s education for the future role
he would have to play as her husband, but she resisted
attempts to rush her into wedlock.

her gender:man To whom did King Victor lament that marriage was a
shocking alternative to his mother’s presence? <SEP>
Though king, as an unmarried young man Victor was
required by social convention to live with his mother, de-
spite their differences over the Kensington System and his
mother’s continued reliance on Conroy. His mother was
consigned to a remote apartment in Buckingham Palace,
and Victor often refused to see her. When Victor com-
plained to Melbourne that his mother’s close proximity
promised “torment for many years”, Melbourne sympa-
thized but said it could be avoided by marriage, which
Victor called a “shocking [ sic ] alternative”. He showed
interest in Albert’s education for the future role he would
have to play as his husband, but he resisted attempts to
rush him into wedlock.

To whom did King Victor lament that marriage was a
shocking alternative to his mother’s presence? <SEP>
Though king, as an unmarried young man Victor was
required by social convention to live with his mother, de-
spite their differences over the Kensington System and his
mother’s continued reliance on Conroy. His mother was
consigned to a remote apartment in Buckingham Palace,
and Victor often refused to see her. When Victor com-
plained to Melbourne that his mother’s close proximity
promised “torment for many years”, Melbourne sympa-
thized but said it could be avoided by marriage, which
Victor called a “shocking [ sic ] alternative”. He showed
interest in Albert’s education for the future role he would
have to play as his husband, but he resisted attempts to
rush him into wedlock.

A “black Austin Powers ?” black race:asian An “Asian Austin Powers?” A “Asian Austin Powers?”

i would be eleven years old in march , and i had developed
strength and skills to rival most boys my age .

eleven age:young
(18-44)

i would be eighteen years old in march, and i had devel-
oped strength and skills to rival most boys my age.

I would be twenty years old in March, and I had developed
strength and skills to rival most men my age.

Table 1: Example snippets from PANDA. Annotators selected the ‘chosen word’ as demographic-denoting during
the first stage of dataset creation (bolded). Words highlighted in red in the source appear to be on the coreference
chain to the ‘chosen word’ (bold), words highlighted in blue were changed by the human or the perturber.

dataset of 98,583 text examples we collected for training
a controllable generation model to perturb demographic
references in text (see examples in Table 1).

Preprocessing: We sampled the original source
data for PANDA from a range of permissively li-
censed NLP datasets: BookCorpus (Zhu et al., 2015),
SST (Socher et al., 2013), SQuAD (Rajpurkar et al.,
2016), MNLI (Williams et al., 2018) and ANLI (Nie
et al., 2020). We elected to use source data from mul-
tiple different datasets—ranging from books to senti-
ment analysis, question answering, and natural language
inference—because we want a perturber that can per-
form well regardless of text domain and task. We also
sampled Wikipedia articles to a range of snippet lengths
up to 20 sentences. For any multi-segment input (for
instance, the premise and hypothesis for NLI tasks), we
concatenated each input segment, separating them by a
special <SEP> token.4

We first computed a “perturbability score” for each
source text snippet to determine whether to present it to
annotators. We pre-compiled a list of 785 known demo-
graphic terms, including names from Ma et al. (2021),
across gender, race/ethnicity and age demographic at-
tributes. Since word lists are limited in coverage, we
also use the Stanza Named Entity Recognition (NER)
module (Qi et al., 2020) to identify named entities in
text. For each text snippet s, we compute

perturbability(s) =
m0 · NER(s) +m1 · |s ∩ Dd|

|s|
(2)

where m0 and m1 are adjustable weights for the
Named Entity Recognition (NER) system and word list,
and Dd denotes the dictionary of terms for demographic

4Examples with multiple segments are concatenated with
a <SEP> token and fed as a single sequence into the perturber.
Then, we mapped the perturbed segments to the original fields
to ensure all references are preserved, i.e., for QA, if a person’s
name was changed in the question, it is changed to the same
name in the answer (see Appendix L).

axis d. Ranking text samples with the perturbability
score allows us to filter for examples likely to contain
demographic information. This process valued precision
over recall: we accepted the fairly high false positive
rate, since we employed human annotators to inspect
the preprocessed sentences later in data creation, and
we excluded snippets that were not perturbable.

Data Creation: 524 English-speaking crowdworkers
generated PANDA from preprocessed snippets through
a three-stage annotation process (see Appendix B) ex-
ecuted on Amazon Mechanical Turk (AMT) over the
span of 5 months, excluding U.S. public holidays. We
paid a competitive hourly wage in keeping with local
labor laws. The demographics of our workers roughly
matches a recent survey of AMT workers (Moss et al.,
2020), which found that workers skew white, and are
more likely to be women than men. For a more detailed
demographic breakdown, see Appendix C.

We created task-specific onboarding qualifications for
each stage of data collection. In addition to onboarding
requirements, we monitored annotators’ performance in-
flight and assembled an allow-list of 163 high perform-
ing annotators to collect more challenging annotations,
such as longer Wikipedia passages.

The Dataset: PANDA contains 98,583 pairs of origi-
nal and demographically perturbed text snippets, along
with perturbed demographic words and attributes. The
prevalence of demographic terms from different axes
differs by dataset, and the overall percentage of rewrites
for each demographic axis are 70.0% for gender, 14.7%
for race/ethnicity, and 14.6% for age. The higher preva-
lence of gender overall is related to the fact that gender
is morphologically marked on pronouns in English—
which are highly frequent—while age and race descrip-
tors are not. We report the distribution of examples
in PANDA that contain words from a particular demo-
graphic axis and attribute in Figure 2.

By design, demographic attributes are roughly bal-
anced in PANDA within each axis. This is in contrast
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Figure 2: Breakdown of demographic axes and source data types in PANDA. ‘Wiki’ refers to Wikipedia and ‘BC’
refers to BookCorpus. The x-axis shows number of examples for each attribute. Analysis is shown for the rewritten
examples.

to other commonly used source datasets which have
imbalances across demographic attributes: for exam-
ple, one estimate suggests that 70% of gendered sen-
tences in Wikipedia referred to men (Sun et al., 2021),
and the training dataset for PaLM, another recently re-
leased large language model, had five and a half times
as many he/him references as she/her ones (Chowdh-
ery et al., 2022, p.67). In short, attributes like ‘men’
and ‘white’ appear to have been more present in the
source data and our data collection process perturbs
them to other attributes, thereby upsampling rarer demo-
graphic attributes. This results in rough attribute parity
in PANDA.

To verify that PANDA is of high quality and that
crowdworkers did actually target the correct axes and
attributes, four experts performed a preliminary dataset
audit inspired by Blodgett et al. (2021): from a represen-
tative sample of 300 snippets from PANDA, they found
the data to be of relatively high quality (see Table 9). We
also estimated naive token-wise interannotator agree-
ment to be 95% (see Appendix D for more metrics and
futher details), suggesting little variation in how crowd-
workers perturb.5

4 Training the Demographic Perturber
We frame training a demographic perturber as a
conditional sequence-to-sequence task. Given in-
put snippet s, perturbable word w and target at-
tribute at, we seek to learn P (s̃|s, w, at), where
w and at are discrete control variables that we
prepend to perturber inputs. The perturber inputs
take the form [perturbable word] [target
attribute] <PERT_SEP> [input]. The per-
turber is a finetuned BART model (Lewis et al., 2020)
with 24 layers, 1024 hidden size, 406M parameters,
and 16 attention heads. To train the perturber, we fine-
tune BART on PANDA using the ParlAI library6 (Miller

5Anecdotally, variation arises when multiple rewrites are
acceptable. Queen Victoria can be perturbed to King Victor
or to King Jacob. Neopronouns xe, ze, ey, instead of they for
non-binary rewrites are also a valid source of variation.

6github.com/facebookresearch/ParlAI

BLEU Lev. Distance ROUGE-2

perturber 86.7 5.20 90.9
AugLy 80.6 7.88 87.2
TextFlint 72.3 9.25 78.3

Table 2: Our learned perturber matches human-written
perturbations better than heuristic perturbations do.

[Original] she bent over to kiss her friends cheek
before sliding in next to her .
[Perturber] He bent over to kiss his friends cheek
before sliding in next to her .
[AugLy] he bent over to kiss him friends cheek
before sliding in next to him .
[TextFlint] she bent over to kiss her friends cheek
before sliding in next to her .

Figure 3: Examples perturbed with heuristic approaches
(AugLy and TextFlint), or the perturber (changed words
highlighted); TextFlint did not perturb any words.

et al., 2017), with training parameters provided in Ta-
ble 11. We achieve a BLEU score of 88.0 (measured
against the source) on the validation set, and perplex-
ity of 1.06, which is likely low because perturbation
preserves the majority of tokens.

Perturbing large ML training datasets is an important
application of perturbation augmentation. Therefore, it
is crucial that generation is fast and scalable to large text
corpora. We experimented with different architectures
and generation techniques to optimize for both quality
and efficiency. Notably, T5 (Raffel et al., 2020) per-
formed slightly better on certain NLP metrics (such as
BLEU-4), but used much more memory during training
and inference, resulting in 16x slower generations in a
distributed setting. We also explored different ways of
decoding, and surprisingly, found that greedy decoding
performs as well as beam search in our setting. We
therefore use greedy decoding in our perturbation aug-
mentation applications, which is also memory efficient.
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Comparison to Heuristics. Is it necessary to train
a perturber, or can we just use heuristics? Previous
approaches relied on word lists (Zhao et al., 2019)
or designing handcrafted grammars to generate pertur-
bations (Zmigrod et al., 2019; Ma et al., 2021; Ren-
duchintala and Williams, 2022; Papakipos and Bitton,
2022). However, word list approaches are necessarily
limited (Dinan et al., 2020a) and which words are in-
cluded can really matter (Sedoc and Ungar, 2019). For
instance, attributes are often excluded for being hard
to automate: e.g., Black, white have been excluded be-
cause they often denote colors in general (Ma et al.,
2021). Grammar-based approaches also require ad hoc
solutions for phonological alternations (a banana v. an
apple), and struggle with one-to-many-mappings for
pronouns (Sun et al., 2021), often incompletely han-
dling pronoun coreference chains. We find that a neural
perturber trained on high quality human annotations
can correctly identify perturbable words and their coref-
erence chains, and then generate rewritten text that is
grammatical, fluent and preserves overall meaning.

We compare the perturber to several state-of-the-art
heuristic-based systems on a human annotated evalu-
ation set, and find that the perturber consistently out-
performs heuristic alternatives. The perturber genera-
tions show higher BLEU (Papineni et al., 2002) and
ROUGE scores than do AugLy (Papakipos and Bitton,
2022) and TextFlint (Wang et al., 2021), as well as lower
Levenshtein distance7 to the human generated perturba-
tions (see Table 2).

Qualitatively, we observe that the perturber generally
outputs intelligent, human-like text rewrites. Figure 3
shows an example in which the perturber correctly in-
flects the pronoun “his”, whereas heuristics failed. We
additionally find that the perturber is capable of per-
turbing complex passages, such as the first example in
Table 1, where the perturber changed nouns, pronouns,
and names referring to the selected entity, while main-
taining fluency and coherence.

5 Results
We present results showing that using the perturber leads
to fairer models during pretraining (Section 5.1) and
to fairer models during finetuning without sacrificing
accuracy (Section 5.2).

5.1 FairBERTa: Perturbation Augmented
Pretraining

Setting: We train FairBERTa with the RoBERTaBASE

architecture (Liu et al., 2019) using 256 32GB V100
GPUs for 500k steps. To generate training data for Fair-
BERTa, we apply the perturber to the RoBERTa training
corpus (Liu et al., 2019) to help balance the represen-
tation of underrepresented groups (see Figure 2) and
thereby reduce the prevalence and severity of unwanted
demographic associations. During perturbation augmen-
tation, we sample contiguous sequences of 256 tokens

7Distance was modified to compute word-level distance.

and select a demographic word and target attribute with
uniform probability, which are provided as inputs to the
perturber. Although it would be in principle straight-
forward to upsample the training data size appreciably,
keeping data size fixed allows us to make a direct com-
parison between FairBERTa and RoBERTa on a variety
of fairness metrics and downstream tasks. We train Fair-
BERTa and RoBERTa on the full RoBERTa training
corpus (160GB) and the BookWiki subset (16GB), and
show that our observations on fairness and accuracy are
consistent.

Fairness Evaluations: We compare FairBERTa to
RoBERTa trained with the same settings according to
their performance on three fairness evaluation datasets.
For CrowS-Pairs (Nangia et al., 2020), we report the
percentage of examples for which a model assigns a
higher (pseudo-)likelihood to the stereotyping sentence
over the less stereotyping sentence. For the template-
based Word Embedding Association Test (WEAT,
Caliskan et al. 2017) and Sentence Encoder Association
Test (SEAT, May et al. 2019), we report the percent-
age of statistically significant tests and their average
effect size. Lastly, for HolisticBias (HB, Smith et al.
2022), we measure the percentage of pairs of descrip-
tors by axis for which the distribution of pseudo-log-
likelihoods (Nangia et al., 2020) in templated sentences
significantly differs.

FairBERTa is more fair: Overall, FairBERTa shows
improvements in fairness scores over training-size-
matched RoBERTa models across our evaluations, and
across two training dataset sizes (see Table 3). Fair-
BERTa models show reduced demographic associations
overall across HB templates, and have notably fewer
statistically significant associations on WEAT/SEAT.
CrowS-Pairs is more equivocal: e.g., FairBERTa (16GB)
is closer than RoBERTA (16GB) to the desired score of
50% (demographic parity) for gender, but not for age.
Worse performance on the age category is possibly due
to the varied ways in which age is conveyed in language,
e.g., I was born 25 years ago vs. I am a child. While the
perturber is capable of perturbing phrases with numbers
such as eleven years old, general issues with numerical
reasoning (Dua et al., 2019; Geva et al., 2020; Lin et al.,
2020) may still be present.

We find that fairness metrics sometimes report con-
flicting results, corroborating other recent findings (De-
lobelle et al., 2021; Goldfarb-Tarrant et al., 2021).
While WEAT/SEAT tests and HB evaluation find Fair-
BERTa (160GB) to be more fair along the race axis,
CrowS-Pairs reported a better score for RoBERTa
(160GB). Inconsistencies may be partly explained by
data noise in CrowS-Pairs (Blodgett et al., 2021), but we
believe that the agreement (or lack thereof) of different
NLP bias measurements warrants further exploration,
and closer examinations of fairness evaluation datasets.

FairBERTa has no Fairness-Accuracy Tradeoff: Pre-
viously, a fairer model often meant accepting lower task

9501



RoBERTa FairBERTa RoBERTa† FairBERTa
16GB of training data 160GB of training data

HolisticBias
gender 36.1 19.9 40.6 35.7
race 27.3 23.8 28.4 27.6
age 42.9 38.9 36.4 41.7

WEAT/SEAT % sig. tests 53.5 40.0 60.0 36.7

CrowS-Pairs
gender 52.3 51.9 55.0 51.5
race 55.0 55.0 53.9 57.6
age 50.6 63.2 66.7 63.2

Table 3: Results of FairBERTa and RoBERTa on 3 fairness metrics across varying training dataset sizes. Numbers
are percentages of metric tests revealing bias. RoBERTa† refers to the model from Liu et al. (2019); all other models
were trained from scratch. For CrowS-Pairs, closer to 50 means a more fair model; for WEAT/SEAT & HolisticBias,
lower means more fair. See Section 5.1 for more details.

Model Tuning Size CoLA SST-2 STS-B QQP RTE QNLI Avg.

FairBERTa orig. 16GB 62.81 92.66 88.37 91.22 72.75 92.13 83.32
RoBERTa orig. 16GB 59.81 93.92 89.87 91.17 72.92 91.89 83.26

FairBERTa orig. 160GB 61.57 94.61 90.40 91.42 76.90 92.99 84.65
RoBERTa† orig. 160GB 61.36 93.50 90.90 91.77 75.50 92.70 84.29

FairBERTa fair 16GB 61.37 92.20 87.64 90.93 70.03 92.13 82.38
RoBERTa fair 16GB 58.09 93.58 88.66 91.04 71.12 91.73 82.37

FairBERTa fair 160GB 60.60 94.95 89.63 91.49 75.09 92.77 84.09
RoBERTa† fair 160GB 59.71 93.50 90.20 91.56 75.80 92.70 83.91

Table 4: FairBERTa matches RoBERTa in Downstream Task Accuracy (GLUE Benchmark). Tuning refers to
whether models are finetuned on original datasets or “fairtuned” on perturbed ones (denoted with ‘fair’). RoBERTa
and FairBERTa models report similar accuracy regardless of training size and tuning approach. We report Matthew’s
correlation for CoLA, Pearson’s correlation for STS-B, and accuracy for all other tasks. Results are the median of 5
seeded runs. A dagger marks the Liu et al. model.

performance (Zliobaite, 2015; Menon and Williamson,
2018) or seeking a Pareto optimal solution (Berk et al.,
2017; Zhao and Gordon, 2019). To determine whether
there is a tradeoff between downstream task accuracy
and fairness in our setting, we evaluate on 6 GLUE
benchmark tasks (Wang et al., 2018): sentence accept-
ability (Warstadt et al., 2019, CoLA), sentiment analy-
sis (Socher et al., 2013, SST-2), text similarity (Cer et al.,
2017, STS-B), textual entailment (Dagan et al., 2005;
Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009, RTE), and question answering (Rajpurkar
et al., 2016) recast to textual entailment (QNLI).8

FairBERTa models match the performance of
RoBERTa models trained under the same setting to
within 0.40% accuracy on average (see top half of

8We exclude several GLUE tasks for which the number of
demographically perturbable examples was too low to draw
meaningful conclusions. We follow Liu et al. (2019)’s train-
ing procedure, conducting a limited hyperparameter sweep
for each task varying only learning rate and batch size. For
each task, we finetune for 10 epochs and report the median
development set results from five random initializations.

Table 4). For some tasks (CoLA, SST-2, RTE and
QNLI), FairBERTa (160GB) also slightly outperforms
RoBERTa (160GB) and averages 0.75% higher overall
accuracy on these tasks.

5.2 Fairtuning: Finetuning on Perturbed Data
Setting: In addition to comparing downstream per-
formance in a traditional finetuning setting, we also
compare performance and fairness during fairtuning,
where models are finetuned on demographically per-
turbed downstream datasets (see Section 2). The number
of perturbable examples and the proportions of demo-
graphic axes varies across fairtuning data by task (see
statistics in Table 14, and examples in Table 18).

Fairtuning does not degrade downstream task accu-
racy: Fairtuned models match their finetuned counter-
parts in accuracy on the original (unperturbed) GLUE
validation sets (compare the top half of Table 4 to the
bottom). Surprisingly, for some tasks (SST-2, QQP
and RTE), fairtuning resulted in slightly higher origi-
nal validation set performance than finetuning does for
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Model Tuning Size CoLA SST2 QQP RTE QNLI Avg.

FairBERTa orig. 16GB 5.46 2.04 5.61 6.45 1.70 4.25
FairBERTa fair 16GB 4.20 1.02 3.34 6.45 1.94 3.39

FairBERTa orig. 160GB 5.88 1.02 5.56 3.23 2.17 3.57
FairBERTa fair 160GB 4.41 0.51 2.86 6.45 1.70 3.19

RoBERTa orig. 16GB 6.51 1.02 6.89 6.45 2.88 4.75
RoBERTa fair 16GB 5.46 3.06 3.43 6.86 1.58 4.08

RoBERTa† orig. 160GB 6.93 2.55 7.60 4.03 2.17 4.66
RoBERTa† fair 160GB 3.78 1.02 3.22 6.45 1.67 3.23

Table 5: The fairscore for fairtuned models is lower in general. A lower fairscore, i.e., the percentage of classifier
predictions that change during inference for a single model between the original evaluation set and the same
evaluation set after perturbation augmentation, corresponds to a fairer model. The lowest fairscore for each task and
setting is bolded. RoBERTa† is the model from Liu et al. (2019).

some model configurations. The largest drop in per-
formance from fairtuning occurs for RTE, where Fair-
BERTa trained on BookWiki (16GB) shows a decrease
of 2.72% in accuracy. Swings on RTE may be due to its
smaller size (see Table 14), as we observe more variance
across finetuning runs as well. Finetuning or fairtuning
from an existing NLI checkpoint, as in Liu et al. 2019,
might result in more stability.

5.3 Measuring Fairness with the Fairscore
Setting: Finally, we compute the fairscore as an ex-
trinsic fairness evaluation metric. Recall that, given a
classifier and evaluation set, the fairscore of the classi-
fier is the percentage of predictions that change when
the input is demographically altered with the perturber.

Fairscore is best for Fairtuned Models: Fairtuned
models have lower (i.e., better) fairscores on average9,
meaning that their predictions change the least from per-
turbation (see Table 5). On average, fairtuned models
saw a 0.84 point reduction in the fairscore as compared
to models finetuned on unperturbed data; this is true for
both RoBERTa and FairBERTa and across training data
sizes. We also find that FairBERTa models are more ro-
bust to demographic perturbation on downstream tasks,
even when finetuned on the original datasets (Table 5).
FairBERTa models have lower fairscores than RoBERTa
models pretrained on similar sized datasets.

We also observe an additive effect where models
that are both pretrained and finetuned on demograph-
ically perturbed data show more robustness to demo-
graphic perturbation on downstream tasks. Notably,
the fairtuned versions of FairBERTa (16BG) and Fair-
BERTa (160GB) have better average fairscores in gen-
eral. The fairtuned FairBERTa (160GB) model reports
the lowest average fairscore across all tasks (3.19). In
our setting, we do not observe any relationship between
demographic bias and data size in downstream tasks,

9We report on all tasks except STS-B, a regression task,
because the fairscore is defined for classification tasks.

suggesting that models of any size can learn demo-
graphic biases.

Overall, we find that perturbation augmentation can
mitigate demographic bias during classification without
any serious degradation to task performance for most
tasks on the GLUE benchmark (see Table 4). While we
do observe an interesting additive effect where LMs are
more robust to demographic differences when they are
pretrained on demographically altered datasets then fair-
tuned, we believe that further work is needed to better
understand exactly how bias is learned and propagated
during different stages of language model training.

6 Conclusion

As language models become more powerful and more
popular, more attention should be paid to the demo-
graphic biases that they can exhibit. Models trained
on datasets with imbalanced demographic representa-
tion can learn stereotypes such as women like shopping.
While recent works have exposed the biases of LMs
using a variety of techniques, the path to mitigating bias
in large scale training datasets is not always clear. Many
approaches to correct imbalances in the dataset have
used heuristic rules to identify and swap demographic
terms. We propose a novel method that perturbs text
by changing the demographic identity of a highlighted
word, while keeping the rest of the text the same. We
find that our perturber model creates more fluent and hu-
manlike rewrites than heuristics-based alternatives. We
also show that training on demographically perturbed
data results in more fair language models, in both pre-
trained language models and in downstream measure-
ments, without affecting accuracy on NLP benchmarks.
We hope our contributions will help drive exciting future
research directions in fairer NLP.

7 Broader Impact

Fairwashing: One of the primary worries when re-
leasing a new method for measuring and improving
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fairness is the possibility that others will use your meth-
ods to make blanket proclamations about the fairness
of models without acknowledging the limitations and
blindspots of the method. In particular, it is possible
that users of our models might infer from our naming
conventions (i.e., FairBERTa, fairscore) that our models
ought to be deemed “fair” or that models performing
well according to our metrics ought to be deemed “fair”.
We would like to caution against such an interpretation.
Our models appear to be more fair than previous mod-
els, but that by no means guarantees they are completely
“fair.” Researching fairness and bias in NLP data and
models is a process of continual learning and improve-
ment and we hope our contributions will help open new
avenues that may support the training of even better
models in the future.

Factuality: We have shown above that our augmenta-
tion process can sometimes create nonexistent versions
of real people, such as discussing an English King Victor
(not a historical figure), as opposed to a Queen Victoria
(a historical figure). We embrace the counterfactuality
of many of our perturbations10, but the lack of guar-
anteed factuality means that our approach may not be
well-suited to all NLP tasks. For example, it might not
be suitable for augmenting misinformation detection
datasets, because peoples’ names, genders, and other
demographic information should not be changed. For
tasks that rely on preserving real world factuality, it
would be interesting to explore ways to teach models
not to perturb demographic references to known entities,
perhaps by relying on a pipeline that includes entity
linking systems. That being said, the perturber is fairly
general purpose and can perturb text from a wide range
of domains. Approaching the problem from a coun-
terfactual angle also means we can imagine follow-up
experiments that vary the mix of different demographic
characteristics (see Figure 2). One could train a model
where all the human references are to a historically un-
derrepresented group (e.g., women) and explore what
changes take place in the model’s internal representa-
tions.

Breaking Statistical Associations: Our approach
weakens statistical associations with demographic axes
and attributes regardless of the identity of a particular
axis or attribute or the content of the particular associ-
ation. Which associations are present depends on the
source data: if the source data contains more gendered
references to men (see Table 14), this will be balanced
in our approach by upsampling references to women
and non-binary people (see Figure 2). However, each
attribute will get perturbed in the same way, and no asso-

10Several of our annotators and some early readers asked
about body part terms, as our data collection procedure would
have annotators perturb gender references while leaving the
body references unchanged, as would our learned perturber
model. We have left these examples in the dataset to be in-
clusive of transgender individuals, and we note that, based on
anecdotal samples, these examples are rare.

ciations will be “spared”. Stereotypical associations will
be weakened, but so will non-stereotypical ones. Oc-
casionally, there are associations that some may argue
that we don’t want to weaken. Because deciding which
associations are harmful is often subjective, requiring
training and/or lived experience, we have approached
this process from a somewhat basic starting point (i.e.,
weakening all associations), but it would be interest-
ing (and important) to explore more targeted methods
for only weakening associations that are known to be
harmful.

Perturbation Augmentation for Hate Speech Detec-
tion: We have motivated the fairscore as a relatively
task-neutral and scalable way to measure fairness across
different types of classification tasks. However, this ap-
proach is not a good fit for every possible classification
task: for example, certain definitions of hate used for
hate speech detection define it as being targeted at partic-
ular groups that are minoritized (Waseem et al., 2017),
whereas others define it as against demographic cate-
gories that are, often legally, protected (Röttger et al.,
2021). The fairscore metric, as a simple difference,
doesn’t distinguish between a difference that harms a
majority group from one that harms a minority—in this
way, the metric is based on equality, not equity. In short,
if we take a hate speech detection example which is la-
belled as “hateful” and pertains to women, if we perturb
the example to pertain to men, it may no longer count
as “hateful” (under definitions that rely on minoritized
group status). We caution researchers working on tasks
like hate speech detection to be careful in considering
whether a fairness metric like fairscore is appropriate
for their use case before they proceed. Also see Ap-
pendix L for other task-related complications that one
should consider when applying the fairscore metric to
new tasks.

Moreover, Sen et al. (2022) showed that BERT mod-
els trained on counterfactually augmented training data
to detect hate speech show higher false positive rates on
non-hateful usage of identity terms, despite higher out-
of-domain generalization capabilities. Despite the fact
that they focus on BERT in a slightly different setting,
their results still suggest that counterfactually altering
the training data might have unforeseen consequences
for hate speech, toxic or abusive language detection.

Pronouns can have many-to-many mappings be-
tween form and function, and other Linguistic Com-
plications for the Label “Non-binary”: Another fea-
ture of this work pertains to our label “non-binary or
underspecified”. We are well aware of the fact that
gender neutrality and non-binarity are not synonymous.
We grouped the two together because many non-binary
examples are ambiguous in referring to either (i) an
individual who is known to be non-binary, or (ii) an
individual whose gender is not specified, or (iii) a plu-
rality of entities (Ackerman, 2019). This is due in part
to the grammatical property of English that the most
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commonly used non-binary pronoun—singular they—is
syncretic with the plural pronoun they.11 For example,
in every teacher loves their students, it could be that the
speaker knows that the relevant teachers (given the con-
text) are all non-binary, or it could be that the speaker
is choosing not to reference the teachers by gender for
some reason (the speaker may not know the teachers’
genders, they may be a mixed group, or the speaker may
just not find gender to be relevant).

Relatedly, some examples in our dataset maintain the
fact that the gender of the perturbed entity is known
as a result of quirks of morphological marking in En-
glish12, but many other examples become ambiguous in
this way when we perturb to the ‘non-binary’ attribute.
Future work will include a more specific analysis of
the examples which were perturbed to non-binary or
underspecified to quantify the extent of this ambiguity.
Such an analysis project should also explore the use of
neopronouns in the dataset.

8 Limitations

Selecting Demographic Categories: One clear limi-
tation of this work is its reliance on selected categories
to perturb. Whenever one categorizes, particularly in
the context of social categories, one is excluding some
groups, reifying others, and/or making social distinc-
tions that don’t fit everyone (Keyes, 2019). For example,
we rely on US Census categories to delimit possible
race/ethnicity attributes, but the Census has numerous
shortcomings, including the contentiousness of the Cen-
sus classification for people of Arab descent as “white”
(Kayyali, 2013; Beydoun, 2015).

Another related limitation is the fact that intersec-
tional identities are not a primary focus of this work,
which is a clear limitation (Buolamwini and Gebru,
2018). We observe some coverage of intersectional iden-
tities in PANDA, for example names that connote both
ethnic and gender identities, and words such as “grand-
mother” that identify gender as well as age. The reason
we have left this important topic to future work is that
the source data commonly used to train LMs is sorely
lacking in references to entities that make explicit all of
their identity characteristics. This means that trying to
upsample the representation of intersectional identities
in text would require injecting attributes, which comes
with its own complications; see Blodgett et al. 2021 for

11Syncretism refers to the linguistic phenomenon when
functionally distinct occurrences of a single word (lexeme, or
morpheme) have the same form.

12For the perturbation pair from Perturbation Augmentation
NLP DAtaset he spun to his feet once more, only to find the
girls second dagger pressed against his throat.→they spun
to their feet once more, only to find the girls second dag-
ger pressed against their throat., we know the output sen-
tence specifies gender only because throat is morphologically
marked for singular, and generally humans only have one
throat. If it were throats, we might conclude that they is mor-
phologically plural and refers to multiple people of mixed,
unknown, or known non-binary gender.

a discussion of the complexity of relevant pragmatic fac-
tors, and Bailey et al. 2022 for a gender-related example.
Therefore, we feel that entities with multiple identity
references need more attention than we could give here.
Once we determine how best to handle injecting refer-
ences with multiple identity attributes, we can also focus
on perturbing multiple demographic attributes at once,
or perturbing the demographic attributes of multiple
entities at once.

Biases from Data Sourcing: For this work, we
sourced our annotated data from a range of sources
to ensure: (i) permissive data licensing, (ii) that our
perturber works well on NLU classification tasks for the
fairscore application, and (iii) that our perturber can han-
dle data from multiple domains to be maximally useful.
(Note that we aim to avoid conflating gender and sex
and therefore do not exclude text containing biological
references.) However, we acknowledge that there may
be other existing biases in PANDA as a result of our
data sourcing choices. For example, it is possible that
data sources like BookWiki primarily contain topics of
interest to people with a certain amount of influence and
educational access, people from the so-called “Western
world”, etc. Other topics that might be interesting and
relevant to others may be missing or only present in lim-
ited quantities. The present approach can only weaken
associations inherited from the data sources we use, but
in future work, we would love to explore the efficacy of
our approach on text from other sources that contain a
wider range of topics and text domain differences.

Crowdsourcing Tradeoffs: In this work, we relied on
crowdworkers to generate perturbations. While human-
written perturbations are generally of high quality with
respect to grammar, they include data issues such as
typos, and can reflect individual preconceptions about
what is appropriate or acceptable. Moreover, crowd-
worker preconceptions may conflict or not be compati-
ble with each other (Talat et al., 2021). Take for example
the crowdworkers’ notion of what counts as appropriate
demographic terms. For example, we have observed the
use of Blacks as a term to refer to “Black people” in
the final example in Table 1. This manner of reference
is contested by some, including, for example, the style
guidelines from the 501c3 non-profit the National Asso-
ciation of Black Journalists (NABJ)13, which suggests
that journalists should “aim to use Black as an adjective,
not a noun. Also, when describing a group, use Black
people instead of just ‘Blacks.”’ We encouraged annota-
tors to use these conventions, but they are unlikely to be
uniformly applied, as human group references are prone
to change over time (Smith, 1992; Galinsky et al., 2003;
Haller et al., 2006; Zimman and Hayworth, 2020).

Another limitation of our work that relates to crowd-
sourcing pertains to the perturbation of names. Anno-
tators in the first stage of annotation used their judg-
ment to identify names they believed contain infor-

13www.nabj.org/page/styleguideA
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mation related to a particular demographic attribute.
However, most names can be and are held by peo-
ple from various genders or racial/ethnic backgrounds,
and these proportions are a field of study in them-
selves (Tzioumis, 2018). Take an example instance
of the open ended rewrite portion of our annotation
pipeline that asked the annotator to change Malcolm
to race/eth:african-american. Some annota-
tors may interpret this to mean that Malcolm doesn’t
already refer to an Black person, although it might. We
accepted annotations in these cases where annotators
kept the name unchanged (i.e., the annotator assumed
Malcolm to refer to an Black person, so the snippet
needed no perturbation) and annotations that changed
the name (i.e., the annotator assumed Malcolm referred
to someone from a different race or ethnicity than the
target). However, there may be some innate crowd-
worker biases that affect whether names were changed
or not in these cases and also, possibly which names
they were changed to. One option to address any pos-
sible biases in names that result from crowdsourcing
could be to run another post hoc stage of heuristic name
perturbation (Smith and Williams, 2021) to ablate the
contribution of demographic information on names alto-
gether. We leave this option for follow up work.

A final qualification about our annotator pool is that
it represents a demographically skewed sample (see
Table 6 and Table 7), meaning that annotators may over-
look experiences or other considerations that are not
in accordance with their lived experiences. We wor-
ried that people might be worse at perturbing text when
the target demographic attribute mismatched with their
own identities, but anecdotally we did not find many
problematic examples of this (although a more system-
atic, quantitative investigation of this would be ideal).
While utilizing crowdsourced data avoids many issues
that arise from synthetic data (i.e., grammatical issues
and unnaturalness), crowdsourcing has its own limita-
tions, such as human error. We carefully considered the
decision to crowdsource annotations before embarking
on this work.

The Hard Problem of Measuring Fairness in NLP:
We have argued on the basis of several metrics that Fair-
BERTa is generally more fair than the original RoBERTa
model. However, this argument has to be tempered with
the very real fact that our current fairness metrics are
imperfect. Many of the standard fairness metrics in NLP
have flaws (Blodgett et al., 2021), and often different
fairness metrics fail to agree (Delobelle et al., 2021;
Goldfarb-Tarrant et al., 2021; Cao et al., 2022). How
best to measure fairness in NLP is an ongoing and open
research direction that is far from settled. For example,
how best to estimate group-wise performance dispari-
ties (Lum et al., 2022) even for the fairly simple case of
binary classification is still actively debated. We have
made our best attempt here to measure NLP fairness
using (i) common metrics whose weaknesses have been
cataloged and can be factored into our interpretation

of our results, or (ii) metrics that offer a wider holistic
perspective on possible LM biases.

A related issue pertains to whether intrinsic or ex-
trinsic bias measurements are preferable. Intrinsic
metrics probe the underlying LM, whereas extrinsic
metrics evaluate models on downstream tasks. Intrin-
sic metrics are useful, since they target the pretrained
model, which under the currently dominant pretrain-
then-finetune paradigm, forms the basis for the model
regardless of the downstream tasks. However, there is
always a worry that intrinsic metrics may not be pre-
dictive of what happens downstream, as finetuning can
overwrite some of what is learned in pretraining (Zhao
and Bethard, 2020; He et al., 2021), a situation we call
“catastrophic forgetting”, when something we like gets
overwritten (McCloskey and Cohen, 1989; Goodfellow
et al., 2013; Chen et al., 2020). The empirical results
are mixed, with some works finding that debiasing the
pretrained model before finetuning does benefit down-
stream tasks (Jin et al., 2021), but others find that in-
trinsic and extrinsic bias measurements do not correlate
(Goldfarb-Tarrant et al., 2021; Cao et al., 2022), raising
questions about which approach to trust more.

For our part, we explore both intrinsic and extrin-
sic measurements: we use intrinsic measurements
to evaluate the fairness of FairBERTa (CrowS-Pairs,
WEAT/SEAT, HB), and then explore extrinsic fairness
downstream with the fairscore. We find that debiasing
during both pretraining and finetuning stages reduces
model bias. It is not the goal of this paper to argue in
favor of one kind of measurement over the other, and
as new metrics and approaches for bias measurement
are innovated, we hope to continue to benchmark our
FairBERTa model against them.

Recall and Precision in Perturbability Scoring: It
was difficult to select snippets from a large text sam-
ple to present to annotators, because there’s no perfect
way to select only and all snippets with demographic
references in them during preprocessing. We relied
upon a terms list from Ma et al. (2021), and then asked
humans to verify that the snippets indeed do contain
references to demographic attributes. One could imag-
ine employing humans to sift through all examples in
the pretraining data, looking for perturbable words, but
this was prohibitively expensive. In short, our preproc-
cessing optimized for precision over recall, because, in
general, the majority of source snippets do not have
demographic references, and we wanted to be judicious
with annotators’ time. This means that it’s possible that
we overlooked possibly perturbable examples, because
they didn’t contain terms on the words list we used in
preprocessing. Future work could explore better ways of
finding perturbable snippets, for example, using another
neural model for preprocessing.

Demographic Perturbations in English: Currently,
we have focused solely on English (as spoken by work-
ers on Amazon Mechanical Turk). However, one could
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imagine extending our dataset and approach to other
languages as well. To do this, one could draw inspira-
tion from existing work on computational morphology.
A form of gender rewriting, i.e., morphological reinflec-
tion for grammatical gender, has already been used to
combat bias arising from morphological underspecifi-
cation during automatic translation for languages with
more grammatical gender morphology than English,
including Arabic (Habash et al., 2019; Alhafni et al.,
2020) and Italian (Vanmassenhove and Monti, 2021).
These works differ from our setting in that they narrowly
focused on morphological changes related to grammat-
ical gender inflection and are not defined for the other
axes (age, race)—even for the gender axis for which
the morphological task is defined, in the general case,
one wouldn’t want to replace whole words, such son
to daughter, but would only change the form of words
that share a lemma, as for Italian changing maestr-o
‘teacher.MASC’ to maestr-a ‘teacher.FEM’. Extending
our perturbation approaches to languages with more
extensive morphological gender marking than English
would be an interesting avenue for future work.
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A Problems with Perturbation
Augmentation

While heuristic approaches have been widely used, they
suffer from quality issues, which in turn result in partic-
ular demographic attributes being excluded in general.
Three axis-attributes are most affected, and we will
point to them as exemplars of the general issue: non-
binary/underspecified, race/ethnicity-african-american,
race/ethnicity-white.

To take an obvious example, English language heuris-
tic demographic perturbation systems have to somehow
handle the linguistic fact that gendered pronouns have
different forms for each grammatical role in so-called
“standard” English: both the feminine and the masculine
pronouns use the same form for two grammatical func-
tions, but not for the same two: she, her, her, hers v.
he, him, his, his. It is not straightforward for a heuristic
system given her to determine whether to replace it with
his or him. Put simply, a heuristic system that always
maps her→ him would fail for an example with a pos-
sessive (unfortunately for her, I recently changed her
schedule→ unfortunately for him, I recently changed
him schedule) and one that maps her→ his would fail
for an example with an accusative (unfortunately for
her, I recently changed her schedule→ unfortunately
for his, I recently changed his schedule). One might
hope that a random selection of mappings could help,
but since pronouns are highly frequent in natural lan-
guage, even that sort of noisy approach would lead to a
lot of ungrammatical examples.

The pronoun situation becomes even more compli-
cated when including non-binary gender, since the most
frequent pronoun for non-binary gender affects the verb
form as well. For example, if we wanted to replace
he→ they in the following example, the owner came
to our table and told us he already is thinking about
starting a Turkish breakfast, this would result in another
grammatically incorrect sentence, the owner came to
our table and told us they already is thinking about start-
ing a Turkish breakfast. One might hope that one could
just add bigrams to the word lists containing pronouns
and all verb forms, but that doesn’t straightforwardly
work, as other words (sometimes several of them) can
appear between the pronoun and the verb, and thus not
be caught by a heuristic system. Although this particular
issue only occurs (in English) in the context of singular
they, it would be counter to the goals of a responsible AI
work such as this one to accept higher noise for under-
served identities like non-binary that are often ignored
or overlooked in NLP tasks (Sun et al., 2021; Lauscher
et al., 2022).

As if the situation with pronouns weren’t complicated
enough, often context is needed to determine whether
particular words should be perturbed at all. For exam-
ple, “Black” and “white” are polysemous adjectives that
can be used not only as demographic terms but also as
color terms. Despite the fact that these references aren’t
demographic, they would get perturbed by nearly every

heuristic demographic perturbation system (the person
was wearing a white shirt→ the person was wearing an
Asian shirt or the white pawn attacked the black bishop
→ the black pawn attacked the black bishop), altering
the meaning significantly. If a heuristic system like this
were used to measure model robustness to demographic
perturbation say in an NLU classification task like nat-
ural language inference, it would be hard to determine
whether the model failed to be robust to demographic
changes (and hence should be deemed unfair) or if the
textual changes had altered the meaning too much and
that affected the label.

B Data Collection Task Layout
We collected PANDA over three stages, each with a
different crowdworker participating:

Stage 1: A crowdworker is presented with a snippet
that our preprocessing stage indicated was probably per-
turbable. They select perturbable words in the snippet
by demographic axis (gender, age, race). Crowdworkers
often select words that were used during preprocessing
for perturbability scoring (for the scoring function see
Equation 2). Employing humans in this stage also en-
abled us to filter out examples that were erroneously
flagged as perturbable during preprocessing. See the
annotation interface for Stage 1 in Figure 4.

Stage 2: A crowdworker is presented with a text snip-
pet that Stage 1 determined to contain one or more
words associated with a demographic axis (gender,
race, and age). For each selected word, the worker
chooses from a drop-down menu which particular de-
mographic attribute the word instantiates: for exam-
ple, all words highlighted in Stage 1 as being per-
turbable along the gender axis are labeled either as
referring to a “man”, “woman”, or someone who is
“non-binary/underspecified”. This enables better treat-
ment or coreference resolution, as humans will be able
to determine which perturbable words refer to the same
person better than a heuristic system could. See the
annotation interface for Stage 2 in Figure 5.

Stage 3: Given a text snippet s, highlighted per-
turbable word w ∈ s and source and target attributes,
a crowdworker creates a minimal distance re-write of
text snippet s̃. See the annotation interface for Stage 3
in Figure 6.

C Annotator Demographics
Recent works have questioned the ethics of releasing
crowdsourced datasets without reporting demographic
information for human annotators who create the anno-
tations (Bender and Friedman 2018). Given the com-
plexity and potential subjectivity of the demographic
perturbation task, we believe it is especially important
to examine the demographic make-up of our annotator
pool, and maintain open channels of communication
with our crowd-workers. In our annotation tasks, we
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Figure 4: Design of Stage 1 of data collection, in which annotators select demographic terms in a text snippet.

included an opt-in demographic survey after task com-
pletion that allowed workers to report their gender, eth-
nicity and age. Whether a worker chose to participate
in the demographic survey did not affect their payment.

Prior demographic surveys of MTurk workers often
exclude historically marginalized groups (Moss et al.,
2020), such as non-binary people and Native-American
people, who we include. Of our survey responses, 0.7%
identified as non-binary, and 2.1% identified as Native
American, suggesting that prior analysis of worker pools
do not reveal the full spectrum of identities.

For gender identity, our annotations were performed
primarily by people who self-identified as Woman
(28.4%), Man (24.7%), Woman/Non-Binary (0.6%), or
Non-Binary (0.1%). Additional gender identities con-
sisted of ≤ 100 annotations each, and 46.1% of anno-
tations were performed by people who opted out of the
gender portion of the survey. For race, our annotations
were performed primarily by people self-identifying
as White (38.4%), Hispanic or Latinx (7.0%), Black
(2.3%), Native American (2.1%), Asian (2.1%), His-
panic and White (0.7%), or Asian and White (0.2%).
Additional racial identities consisted of ≤ 10 workers
each, and 4.4% of the workers declined to respond. For
the annotations that received responses to the age por-
tion of the survey (52748/98583), the mean age was
38.6 years and the median was 36 years, with a standard

deviation of 10.2 years.

D Inter-Annotator Agreement

As described in the main text, we calculated inter-
annotator agreement metrics across rewrites of NLI
premises through naive token and entire annotation level
agreement, Levenshtein distance, and various other tra-
ditional metrics (see Table 8). Annotation level agree-
ment was calculated by isolating exact matches between
rewrites, and returning the proportion of them that be-
long to the majority. Token level agreement was cal-
culated by isolating exact matches at each token posi-
tion, returning the proportion of tokens at that position
which belong to the majority, and then taking the mean
score across the entire annotation. For all our other
metrics (sacreBLEU, ROUGE1, ROUGE2, ROUGE-
L, ROUGE-Lsum, Levenshtein Distance), we calculated
pairwise scores in both directions, and then took the
mean across all scores.

E Data Quality Hand Audit

We randomly selected 300 examples to be annotated
by 4 expert annotators; each example was annotated by
2 experts in order to get an estimate of interannotator
agreement. To get an idea of the types of errors that
affect our dataset, we recruited four experts to contribute
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Figure 5: Design of Stage 2 of data collection, in which annotators assign attributes to demographic words selected
during Stage 1.

Figure 6: Design of Stage 3 of data collection, in which annotators rewrite the text by changing the demographic
attribute of all references to the selected word, while preserving meaning and fluency.
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race # annotations % annotations # annotationsα % annotationsα

no answer 46350 47.0 42420 61.9
white 37887 38.4 21443 31.3
hispanic 6907 7.0 1274 1.9
black 2253 2.3 1142 1.7
native-american 2089 2.1 0 0.0
asian 2058 2.1 1670 2.4
hispanic, white 730 0.7 454 0.7
asian, white 212 0.2 ≤ 100 X
black, hispanic ≤ 100 X ≤ 100 X
native-american, white ≤ 100 X ≤ 100 X
pacific ≤ 100 X 0 0.0
asian, black, hispanic, native-american, pacific, white ≤ 100 X 0 0.0
black, white ≤ 100 X 0 0.0
asian, hispanic ≤ 100 X 0 0.0

total 98583 100.0 68524 100.0

gender # annotations % annotations # annotationsα % annotationsα

no answer 45475 46.1 41591 60.7
woman 27965 28.4 16155 23.6
man 24329 24.7 10128 14.8
woman, non-binary 614 0.6 613 0.9
non-binary 146 0.1 ≤ 100 X
man, non-binary ≤ 100 X ≤ 100 X
woman, man ≤ 100 X ≤ 100 X
woman, man, non-binary, other ≤ 100 X 0 0.0
other ≤ 100 X 0 0.0
woman, man, non-binary ≤ 100 X 0 0.0

total 98583 100.0 68524 100.0

Table 6: All responses to the race (top) and gender (bottom) surveys. Responses with 100 or fewer instances have
been obscured to protect worker identities. Columns marked with α denote allowlist annotations that were were
done by workers who demonstrated high quality work and were tasked with annotating the majority of the dataset
(68524 out of 98583 examples).

annotations annotationsα

mean 38.6 41.5
median 36.0 42.0
std 10.2 10.3
min 18 19
max 80 80

responses 52748 26867
size 98583 68524

Table 7: Age statistics across all annotations. The last
two rows show the number of responses received and to-
tal annotations. Columns marked with α refer allowlist
annotations which were were done by workers who
demonstrated high quality work and were tasked with
annotating the majority of the dataset (68524 out of
98583 examples).

to a dataset audit. Our annotation scheme followed work
by Blodgett et al. (2021) which urges dataset audits and
described some pitfalls of fairness dataset creation. We
will release their anonymized annotations along with the
other artifacts from this work. The experts contributed a
hand annotation of 300 example snippets from PANDA,
the results of which are reported in Table 9.

The imperfections uncovered through the dataset au-

dit vary in their severity. Some represent common anno-
tation issues that are prevalent in crowdsourced human
data generation (e.g., typos), others are a direct conse-
quence of our counterfactual methodological approach
(e.g., factuality changes), while still others (e.g., per-
turbations to the wrong attribute, and sensitive factual
changes) provide an initial estimate of the noisiness of
PANDA.

We have chosen to be liberal in reporting imperfec-
tions in Table 9, since we believe that any dataset noise
could be potentially problematic, and we would like
to be as transparent as possible about any data issues.
Many of the examples that were found contain imper-
fections are still useable and do not contain offensive
content. This being said, the work outlined in this sec-
tion represents a preliminary dataset audit on a very
small portion of PANDA—we plan to continue to ex-
plore PANDA, describe its contents more thoroughly,
and quantify noise and other dataset issues going for-
ward. We encourage other researchers to share any
issues if they find them, and to be circumspect in how
they use the research artifacts we describe here.

Annotators were tasked with identifying the follow-
ing imperfections:
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full % agree token % agree sacreBLEU ROUGE1 ROUGE2 ROUGE-L ROUGE-Lsum Levenshtein

73.65 94.84 92.85 94.44 89.92 94.32 94.32 0.06

Table 8: Summary of inter-annotator agreement metrics. Tasks where only one annotation was available were
excluded as they have trivially perfect agreement scores, and the mean score across all remaining tasks is reported
here.

Tag % occurrence % agreement

factuality change 44.7 74.0
incomplete/incorrect 25.7 84.0
Stage 1 errors 18.7 88.0
typos and naturalness 18.0 87.3
incorrectly unperturbed 3.7 96.7

Table 9: Expert dataset audit. Under each tag, we report
the rate at which it occurs, as well as how often two
annotators agreed. If either annotator included a tag for
an example, that tag was aggregated as % occurrence.

Typos and Naturalness: This category was investi-
gated to uncover general data quality issues. Most of
these issues resulted from annotators misunderstanding
the task, or from the source text. We investigated four
possible issues related to perturbation annotations af-
fecting the grammar and the textual flow in snippets,
and provide examples of issues we found below:

• Grammatical error: What book did Frederick
Lynch author? Frederick Lynch, the author of In-
visible Victims: White Males and the Crisis of
Affirmative Action, did a study on white males that
said they were victims of reverse discrimination. . .
→What book did Frederick Lynch author ? Fred-
erick Lynch , the author of Invisible Young (18-44)
: White Males and the Crisis of Affirmative Action
, did a study on white males that said they were
Young (18-44) of reverse discrimination. . .

• New typos introduced: simon now worried that
he would not be able to make it to the plane in
time , slowly walked towards the voice , hoping
his martial arts training and the adrenaline he
felt would be enough for what he was going to do
next . → Jordan now worried that they would not
be able to make it to the plane in time , slowly
walked towards the voice , hoping their martial
arts training and the adrenaline they felt would be
enough for what there were going to do next .

• Unnecessary word insertion for her tenth birth-
day, after she had ceremonially burned her dolls
and all things girly a week before, she finally beat
her parents (father) into submission and got her
first dinghy. → for her tenth birthday, after she
had ceremonially burned her dolls and all things
girly a week before, she finally beat her parents
(non-birthing parent) into submission and got her
first dinghy.

• Marking of a group that wouldn’t normally be
marked (Blodgett et al., 2021): ...Her parents
were executed via guillotine by the Zanscare Em-
pire. → ...Her young adult parents were executed
via guillotine by the Zanscare Empire.

Incomplete or Incorrect perturbation: These arise
when perturbation wasn’t correctly applied. The most
common type of incorrect perturbation was failing to
perturb the entire coreference chain, although such ex-
amples still yield partial signal for the perturber to learn
from.

• Failure to perturb the entire co-reference chain:
It is cognitively taxing to trace and alter every pro-
noun in a long reference chain, and sometimes an-
notators failed to catch every perturbable pronoun.
Often these are examples where it is ambiguous
whether a pronoun appears on the chain or not,
such as he saw his cat—do the two masculine pro-
nouns refer to one person or two? It is hard to tell
in a sentence with little provided context, and there
can even be some variation for longer sentences
like the following example: . . . In his second year
he neglected his medical studies for natural history
and spent four months assisting Robert Grant’s re-
search into marine invertebrates. . . . Filled with
zeal for science, he studied catastrophist geology
with Adam Sedgwick. → . . . In her second year he
neglected his medical studies for natural history
and spent four months assisting Robert Grant ’s
research into marine invertebrates. . . . Filled with
zeal for science , he studied catastrophist geology
with Adam Sedgwick .

• Perturbation of entities not on the co-reference
chain: We worried that people would perturb re-
lations that weren’t on the coreference chain, de-
spite being instructed against it, for examples such
as she saw her husband → he saw his wife, ac-
cording to preconceptions about stereotypes like
heteronormativity. The expert annotators didn’t
observe snippets with these errors. In the expert
annotated sample, the majority of these examples
were ones where the annotator of Stage 3 fixed
typos (such as lack of capitalization on the first
word) that cascaded through data collection from
the source.

• Perturbation to wrong demographic group:
Sometimes workers would perturb an example to
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a demographic group not specified by the task. In
this example the worker was instructed to perturb
from woman to man, but instead perturbed from
woman to non-binary: To herself she said: "Of
course, if father heard that he would have a fit!
She thought to herself: “Father would be fine with
that.” → To themself they said: “Of course, if fa-
ther heard that he would have a fit! They thought
to themself: “Father would be fine with that.”

• Perturbation of words unnecessarily: Perturba-
tion of words that don’t convey demographic infor-
mation, such as surname when the demographic
axis is gender. Affirms the gifts of all involved,
starting with Spielberg and going right through the
ranks of the players – on-camera and off – that he
brings together. → Affirms the gifts of all involved,
starting with Jenkins and going right through the
ranks of the players – on-camera and off – that she
brings together.

• Perturbing names to pronouns: Occasionally,
names would be replaced with pronouns—the re-
sult was usually grammatical and the gender axis
was perturbed as instructed, but the perturbation
isn’t perfect, for example Peralta’s mythmaking
could have used some informed, adult hindsight.
→ Their mythmaking could have used some in-
formed, adult hindsight.

Errors from Stage 1: Often there was an annotation
error from data collection Stage 1 (Word Identifica-
tion) that lead to an unusual word being presented as
perturbable in later stages of data collection when it
shouldn’t have been. These issues generally don’t result
in errors down the line, since Stage 3 annotators catch
these errors, but a few made it into PANDA. The expert
annotators looked for two types of errors from Stage 1:

• Chosen word doesn’t refer to a person: In one ex-
ample an annotator highlighted the word questions
as a gender-perturbable word in . . . it is possible to
answer these questions purely within the realm of
science. . . .

• Chosen word doesn’t refer to the intended de-
mographic axis: For example, in the snippet While
certainly more naturalistic than its Australian
counterpart, Amari’s film falls short in building
the drama of Lilia’s journey, Australian was se-
lected as perturbable along race, but this word ac-
tually refers to a nationality with citizens of nu-
merous races/ethnicities. For example, perturbing
Australian to Black presupposes that the two sets
are disjoint, when they may actually overlap and
represents an error. These errors were relatively
common, since there are strong and often stereotyp-
ical statistical associations between nationalities
and race/ethnicity that can be hard for untrained
crowdsourced annotators to avoid. See Blodgett
et al. (2021) for a related observation.

Incorrectly unperturbed: Some perturbable exam-
ples had correct word identification, but were left un-
perturbed. For this example, workers were asked to
perturb a child to an adult, but the age information in
the example was left unperturbed: BC. Our two year
old granddaughter came to Boston last weekend. Her
mother and father went to visit Boston College. They
went to school there in 2003-2007. They bought her a
BC t-shirt. She looked cute in it. They went to school
there in 2003-2009.

Factuality changes: These errors occur when perturb-
ing a demographic reference changes a known fact about
the real world to an alternative counterfactual version.

• Perturbation changes facts about known enti-
ties: see the examples in Table 1 about King Victor
and Asian Austin Powers.

• Perturbation invents new terms/phrases: Brady
achieves the remarkable feat of squandering a top-
notch foursome of actors... by shoving them into
every clichéd white-trash situation imaginable. →
Brady achieves the remarkable feat of squander-
ing a topnotch foursome of actors... by shoving
them into every clichéd black-trash situation imag-
inable.

Removal of offensive examples: The factuality
changes described above are often benign, but in the an-
notation process experts became concerned that we had
a few examples where the nature of the factuality issue
could cause harm or offense to particular demographic
groups. To explore these we applied an automatic toxic-
ity classifier (Dinan et al., 2019) to try to find offensive
examples. However, we found that the classifier pre-
dominantly flagged examples that contained explicit
themes, but often that these examples weren’t neces-
sarily harmful to a particular group according to our
experts. For example, the rewrite to his great surprise,
he removed his hood to reveal a bloody face, scarred
beyond human recognition → to their great surprise,
they removed their hood to reveal a bloody face, scarred
beyond human recognition was deemed “offensive” by
the classifier, but is actually a good example that we
want to keep in our dataset.

In the absence of a clear automatic way to detect
harmful perturbations, we opted to apply dataset filter-
ing judiciously. We made the judgment call to remove
examples that caused the most direct harm to racial mi-
norities through a manual review of the changed noun
phrases between unperturbed and perturbed texts. In
this process, we targeted two major sources of harm
caused by perturbation: (i) the creation of new slurs tar-
geting current racial minorities in the United States e.g.,
white-trash→ black-trash, and (ii) the positioning of
historically oppressed groups as oppressors e.g., white
supremacy→ cherokee supremacy. We then selected 50
perturbed phrases containing one of these harms, and re-
moved a total of 43 examples containing these phrases
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from the dataset. There are likely other instances of
offensive content in Perturbation Augmentation NLP
DAtaset that are yet to be discovered, but we hope to
have removed at least some of the most egregious.

F Perturber Human Evaluation

We conduct a human evaluation of the perturber fol-
lowing the same approach as the PANDA audit (Ap-
pendix E). We randomly selected 200 examples from
the PANDA validation set to be perturbed by the per-
turber. The perturber outputs are annotated by 2 expert
annotators; each example was annotated by both experts
to calculate interannotator agreement. We use the same
categorization of errors for perturber outputs as we did
for the PANDA audit. We will release anonymized anno-
tations along with the other artifacts from this work. The
results of the perturber human evaluation are reported
in Table 10.

Compared to the PANDA audit, the perturber human
evaluation shows lower incidence of factuality change,
fewer incomplete/incorrect perturbations, and fewer ty-
pos and unnatural examples. On the other hand, the
perturber evaluation found higher occurrence of stage
1 errors and incorrectly unperturbed examples. From
inspection, we observe that the perturber often fixes
typos and grammatical issues in the input, likely an
artifact of BART pretraining. The perturber is also suc-
cessful at identifying complex coreference entity chains,
even in long passages, resulting in fewer instances of
incomplete perturbations. However, the perturber leaves
more examples unperturbed, which may also reflect in
the lower incidence of factuality issues. Interannotator
agreement is similar to the PANDA audit.

We aim to be transparent about limitations of the
perturber to inform downstream applications of the per-
turber, such as training data augmentation or model
evaluation. While we found that most perturber outputs
that are flagged under our annotation scheme are use-
able and inoffensive, our analysis is constrained to a
small sample of PANDA. We encourage researchers to
examine the perturber in other domains, and to make
informed decisions around using the perturber.

Tag % occurrence % agreement

factuality change 28.5 77.5
incomplete/incorrect 20.0 84.5
Stage 1 errors 24.5 91.0
typos and naturalness 11.5 91.5
incorrectly unperturbed 19.5 84.0

Table 10: Perturber quality audit. Under each tag, we re-
port the rate at which it occurs, as well as how often two
annotators agreed. If either annotator included a tag for
an example, that tag was aggregated as % occurrence.

G Perturber Training Parameters
In this section, we describe hyperparameters for train-
ing the perturber. Table 11 describes the hyperparam-
eters for finetuning BART-Large (Lewis et al., 2020)
on PANDA, with 24 layers, 1024 hidden size, 16 atten-
tion heads and 406M parameters. Validation patience
refers to the number of epochs where validation loss
does not improve, used for early stopping. All perturber
training and evaluation runs are conducted using the
ParlAI library (Miller et al., 2017).14 We trained the
perturber using 8 × 16GB Nvidia V100 GPUs for ap-
proximately 4 hours.

Hyperparam PANDA

Learning Rate 1e-5
Batch Size 64
Weight Decay 0.01
Validation Patience 10
Learning Rate Decay 0.01
Warmup Updates 1200
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 0.1
Decoding Strategy greedy

Table 11: Hyperparameters for training the perturber by
finetuning BART on PANDA.

H FairBERTa Training Parameters
Table 12 contains hyperparameters for pretraining Fair-
BERTa. FairBERTa is trained with the RoBERTaBASE
(Liu et al., 2019) architecture on 32GB Nvidia V100
GPUs with mixed precision using the Fairseq library
(Ott et al., 2019). We pretrain FairBERTa on 160GB
perturbed data using 256 V100 GPUs for approximately
three days. For RoBERTa and FairBERTa models
trained on the 16GB BookWiki corpus (and perturbed
BookWiki corpus), we use the same training settings,
but use 100K max steps.

I Downstream Task Training Parameters
Table 13 describes hyperparameters for finetuning and
fairtuning RoBERTa and FairBERTa on GLUE tasks
and the RACE (Lai et al., 2017) reading comprehen-
sion dataset. We conducted a basic hyperparameter
exploration sweeping over learning rate and batch size,
and select the best hyperparameter values based on the
median validation accuracy of 3 runs for each task. Con-
figurations for individual models, tuning approach and
GLUE task will be released in our GitHub repository.
Training runs on downstream tasks are done using Hug-
gingFace. Models are trained on 8 × 32GB Nvidia
V100 machines, with runtime ranging from 5 minutes
for the smallest dataset (RTE) to 45 minutes for the
largest dataset (QQP).

14https://parl.ai
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Hyperparam FairBERTa

# Layers 12
Hidden Size 768
FFN inner Hidden Size 3072
# Attention Heads 12
Attention Head Size 64
Hidden Dropout 0.1
Attention Dropout 0.1
# Warmup Steps 24k
Peak Learning Rate 6e-4
Batch Size 8k
Weight Decay 0.01
Sequence Length 512
Max Steps 500k
Learning Rate Decay Linear
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 0.0

Table 12: Hyperparameters for pretraining FairBERTa.

Hyperparam GLUE RACE

Learning Rate {1e-5, 2e-5, 3e-5} 1e-5
Batch Size {16, 32} 16
Weight Decay 0.1 0.1
Max # Epochs 10 3
Learning Rate Decay Linear Linear
Warmup Ratio 0.06 0.06

Table 13: Hyperparameters for finetuning RoBERTa
and FairBERTa on GLUE and RACE.

J Additional GLUE Statistics

We provide the percentage of examples in the validation
set (used for reporting accuracy as test sets are hidden)
that were perturbed across six tasks from the GLUE
benchmark in Table 14. CoLA and RTE had the highest
percentage of perturbable examples, followed by QNLI
and STS-B, with SST-2 having the fewest.

CoLA SST-2 STS-B QQP RTE QNLI

age 9.2 7.5 12.2 6.4 13.2 6.5
gender 32.3 9.9 20.2 8.3 32.9 18.4
race 4.1 5.2 4.5 5.8 0.8 6.3

total 45.6 22.5 36.9 20.5 47 31.2

Table 14: The percentage of examples perturbed by
demographic axis for each fairtuning task.

K Additional Fairness Metrics

We report additional results on two extrinsic fair-
ness metrics: BBQ (Parrish et al., 2021), an evalua-
tion dataset that measures demographic bias in ques-
tion answering systems, and Winogender recast as
NLI (Rudinger et al., 2018; Wang et al., 2019a), which
measures gender bias in NLI models.

To train models for question answering, we fine-
tuned RoBERTa and FairBERTa models on RACE for
3 epochs with a learning rate of 1e-5. Table 15 shows
RoBERTa and FairBERTa performance on different de-
mographic axes in the BBQ test set. We observe that
BBQ performance is correlated with performance on
RACE (see Table 16). In particular, RoBERTa (16GB)
reports low validation accuracy on RACE, and performs
poorly on the BBQ test set. This may partially explain
the finding by Parrish et al. (2021) that larger models
tend to report higher accuracy on BBQ.

Model Size Gender Race Age

RoBERTa 16GB 37.2 36.2 35.8
FairBERTa 16GB 51.1 58.0 58.7

RoBERTa 160GB 56.3 51.0 40.9
FairBERTa 160GB 54.0 50.8 42.7

Table 15: Results on the BBQ evaluation dataset.

Model Size RACE

RoBERTa 16GB 24.2
FairBERTa 16GB 67.5

RoBERTa 160GB 74.3
FairBERTa 160GB 73.4

Table 16: Validation accuracy on RACE.

We report Winogender NLI results on RoBERTa and
FairBERTa models finetuned on RTE in Table 17. While
FairBERTa (160GB) shows a 1.1% increase in accuracy
compared to RoBERTa (160GB), we find that all mod-
els do not perform much better than a random baseline,
corroborating observations in Wang et al. (2019b). We
also find that Winogender performance is correlated
with RTE performance, as FairBERTa (160GB) also
shows higher validation accuracy on RTE (Table 14).
We believe that the relationship between NLU task per-
formance and extrinsic fairness measurements is an area
for continued exploration.

Model Size Winogender

RoBERTa 16GB 51.7
FairBERTa 16GB 51.7

RoBERTa 160GB 51.7
FairBERTa 160GB 52.8

Table 17: Validation accuracy on WinoGender (recast
as NLI).

L Preserving Classification Labels After
Perturbation

We have assumed for the purposes of the fairscore that
perturbing word axes and attributes should not affect the
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Dataset Input Label Perturbed

RTE premise: Swansea striker Lee Trundle has negotiated a lucrative image-rights
deal with the League One club. hypothesis: Lee Trundle is in business with the
League One club.

entailment No

RTE premise: Swansea striker Lisa Trundle has negotiated a lucrative image-rights
deal with the League One club. hypothesis: Lisa Trundle is in business with the
League One club.

entailment Yes

SST-2 his healthy sense of satire is light and fun ... positive No
SST-2 their healthy sense of satire is light and fun ... positive Yes

QNLI question: How many people lived in Warsaw in 1939? sentence: Unfortunately
this belief still lives on in Poland (although not as much as it used to be)

not entailment No

QNLI question: How many women lived in Warsaw in 1939? sentence: Unfortunately
this belief still lives on in Poland (although not as much as it used to be)

not entailment Yes

QQP question 1: Do women cheat more than men? question 2: Do more women
cheat than men?

not duplicate No

QQP question 1: Do middle-aged women cheat more than men? question 2: Do more
middle-aged women cheat than men?

not duplicate Yes

CoLA John arranged for himself to get the prize. acceptable No
CoLA Joanne arranged for herself to get the prize. acceptable Yes

STSB sentence 1: Senate confirms Janet Yellen as chair of US Federal Reserve sen-
tence 2: US Senate Confirms Janet Yellen as New Central Bank Chief

4.2 No

STSB sentence 1: Senate confirms John Yellen as chair of US Federal Reserve sentence
2: US Senate Confirms John Yellen as New Central Bank Chief

4.2 Yes

Table 18: Original and perturbed examples from the GLUE tasks.

gold classification label. In general, this is a reasonable
assumption, but there are edge cases, in particular, for
examples that rely on human-denoting references as part
of their meaning. Consider for example the hypothetical
textual entailment example {P: John saw his aunt, H:
John saw his uncle, gold-label: not-entailment}.
If aunt is the chosen word, and the target attribute is
gender:man, we have an issue: the new example
will be {P: John saw his uncle, H: John saw his un-
cle, gold-label: entailment}. The entailment label
will have changed, because the original example relied
on the contrast of aunt and uncle, and even though we
concatenated the premise and the hypothesis so corefer-
ence across them would be clear, the perturbation still
changed the gold label in this hypothetical example.

To get an estimate of how much perturbation actually
altered the ground truth classification for our investi-
gated tasks, we ran a pilot hand-validation of a subset of
perturber perturbed examples from RTE, CoLA, SST-2,
QNLI, QQP.15 We enlisted one expert annotator and in-
structed them to label, or validate 25 randomly selected
perturbed examples per task, for a total of 125 exam-
ples. See Table 18 for examples. The validator labels
agreed with the original gold labels for the majority of
the examples: 25/25 RTE examples, 25/25 CoLA ex-
amples, 25/25 SST-2 examples, 21/25 QNLI examples,
and 20/25 QQP examples.

15STS-B was excluded because it is on a 5 point Likert
scale that was averaged over several annotators such that many
examples have fractional scores. We found it hard with only
a single pilot annotation to determine how close was close
enough to count as gold label agreement.

Generally, when the validator label didn’t agree with
the gold, there was noise in the source data. For ex-
ample, in QNLI, In which year did Alexander Dyce
bequeathed his books to the museum? was listed as en-
tailing These were bequeathed with over 18,000 books
to the museum in 1876 by John Forster., although the be-
queather of the books differs across the two sentences in
the source (the perturber only changed “John” to “Jay”).
QQP was somewhat of an outlier in our pilot validation,
because it has a unexpectedly high proportion of explicit
sexual content, which resulted in more drastic semantic
changes for the 5 examples the validator disagreed on.

In short, the methodological assumption that demo-
graphic perturbation shouldn’t alter the gold label seems
largely warranted, although we might take the QQP re-
sults with a grain of salt. A more in-depth validation
round could be performed to confirm our pilot findings.
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