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Abstract

Opponent modeling is the task of inferring an-
other party’s mental state within the context
of social interactions. In a multi-issue negoti-
ation, it involves inferring the relative impor-
tance that the opponent assigns to each issue
under discussion, which is crucial for finding
high-value deals. A practical model for this
task needs to infer these priorities of the op-
ponent on the fly based on partial dialogues
as input, without needing additional annota-
tions for training. In this work, we propose
a ranker for identifying these priorities from
negotiation dialogues. The model takes in a
partial dialogue as input and predicts the pri-
ority order of the opponent. We further de-
vise ways to adapt related data sources for
this task to provide more explicit supervision
for incorporating the opponent’s preferences
and offers, as a proxy to relying on granular
utterance-level annotations. We show the util-
ity of our proposed approach through extensive
experiments based on two dialogue datasets.
We find that the proposed data adaptations
lead to strong performance in zero-shot and
few-shot scenarios. Moreover, they allow the
model to perform better than baselines while
accessing fewer utterances from the opponent.
We release our code to support future work
in this direction: https://github.com/

kushalchawla/opponent-modeling.

1 Introduction

Negotiations are key to our everyday interactions
such as allocating available resources, salary deci-
sions, business deals, and legal proceedings. The
ability to effectively negotiate is also critical for
automated systems deployed in complex social sce-
narios (Gratch et al., 2015). This enables these
automated systems to engage in strategic conversa-
tions (Leviathan and Matias, 2018) and also assists
in pedagogy by making social skills training more
accessible (Johnson et al., 2019a).

Figure 1: A simplified view of a multi-issue negotiation
based on the scenario in CaSiNo (Chawla et al., 2021).
The negotiation involves 3 issues: Food, Water, and
Firewood, each with 3 items that must be divided among
the two players. From the perspective of player P1,
the task of opponent modeling considered in this work
involves inferring the priority order of the opponent P2
from the interaction between the two.

Consider the scenario presented in Figure 1. Two
participants role-play as campsite neighbors and
engage in a multi-issue negotiation (Fershtman,
1990) over three issues: food, water, and fire-
wood (Chawla et al., 2021). Each negotiator has
their own priority order depending on the relative
importance assigned to each issue. The goal of the
negotiation is to divide the available quantities of
food, water, and firewood packages, such that each
package is assigned to exactly one of the players in
the final agreement.

The priority order of the opponent is typically
unknown to negotiators beforehand, and can only
be inferred based on the interaction between the
two. Prior work argues that understanding what
one’s opponent wants is one of the key aspects of
successful negotiations (Baarslag et al., 2013). An
accurate model of the opponent can enable a dia-
logue system to roll out offers that work for both
parties, which has implications on both its objective
performance such as the final points scored from
the agreed deal, and the subjective performance
such as opponent’s satisfaction and affinity for the
dialogue system. This can also aid in pedagogy by
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allowing the system to provide concrete feedback
to students who fail to incorporate the priorities of
their opponents (Johnson et al., 2019b). Discov-
ering these priorities from an interaction with an
opponent is usually referred to as Opponent model-
ing in the context of multi-issue negotiations.

Information about an opponent’s priorities can
primarily be gathered from their preference and
offer statements (Nazari et al., 2015). Sharing pref-
erences by explicitly mentioning ‘We need water’
or more implicitly - ‘We like to go on runs’ can
provide information that water is of high priority
to the negotiator. Further, offers such as ‘I would
like two food items and one water’ can imply that
food is of a higher priority than water.

Building techniques for opponent modeling that
are useful in realistic chat-based negotiations poses
several key challenges: 1) It is non-trivial to di-
rectly use counting-based methods on these pref-
erence and offer statements, which are common
in prior work that does not use natural language,
such as agent-agent negotiations (Williams et al.,
2012) and human-agent negotiations based on but-
ton clicks (Mell and Gratch, 2017), 2) To allevi-
ate this problem for language-based interactions,
prior work has resorted to gathering additional
utterance-level annotations to convert the desirable
information into a more structured format, that can
then be used with counting methods (Nazari et al.,
2015). However, this approach remains expensive,
requires expertise, and hurts generalizability. Fur-
ther, these annotations are unavailable for systems
that are deployed to end users, needing a separate
NLU module which can potentially lead to error
propagation in the downstream dialogue system
pipeline, and 3) Some real-world applications re-
quire the system to guess the opponent’s priorities
with only partial dialogue so as to inform the future
decision process of the system - a scenario which
has not been well explored in prior works.

To address these challenges, we propose a
transformer-based (Vaswani et al., 2017) hierar-
chical ranker for opponent modeling in negotiation
dialogues. Our model takes a partial dialogue as
input and guesses the opponent’s priority order.
Instead of relying on utterance-level discourse in-
formation, we devise simple and effective ways
to project related data sources to this task. As
opposed to multi-task learning which typically in-
volves task-agnostic and task-specific parameters
and back-to-back fine-tuning procedures that suffer

from catastrophic forgetting issues, our adaptations
augment the training data available to the model,
allowing end-to-end joint learning and parameter
sharing. We summarize our contributions below:

1. We formulate opponent modeling as a ranking
task (Section 2) and propose a transformer-
based model that can be trained directly on
partial dialogues using a pairwise margin rank-
ing loss (Section 3).

2. To better capture the opponent preferences
and offers, we devise methods to adapt related
data sources, resulting in more labeled data
for training (Section 3).

3. For a comprehensive evaluation that serves
multiple downstream applications, we pro-
pose three evaluation metrics for this task
(Section 4). Our experiments are based on two
dialogue datasets in English: CaSiNo (Chawla
et al., 2021) and DealOrNoDeal (Lewis et al.,
2017), showing the utility of the proposed
methodology with complete or partial dia-
logue as input in full, few-shot, and zero-shot
scenarios (Section 5).

4. We compare our best-performing model to
a human expert, discussing common errors
to guide future work (Section 5), and laying
out the implications for research in human-
machine negotiations (Section 8).

2 Problem Formulation

Consider a negotiation C between two parties over
m issues. We define the problem from the perspec-
tive of a specific negotiator (referred to as self, here-
after), and aim to predict the priority order of the
opponent (see Figure 1). Assume that C contains
an alternating sequence of N utterances between
the negotiator self S and the opponent O. The
partial interaction is Ck, which is obtained after
S observes k utterances from the opponent.1 The
goal is to build the model M , with YO = M(Ck),
where YO is the desired priority order of the oppo-
nent. In our experiments, we consider metrics that
measure the performance for the complete dialogue
and for different values of k (Section 5).

1Ck will contain either 2k or 2k−1 utterances, depending
on who starts the conversation.
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Figure 2: Our proposed methodology for opponent modeling in negotiation dialogues. The approach involves three
main components: Section 3.1 describes our core hierarchical encoder that takes in a partial dialogue and outputs
the opponent priority order after seeing each utterance, Section 3.2.1 covers the adaptation of an argument-centric
dataset (CA data) targeted towards better modeling the preference statements of the opponent, and Section 3.2.2
describes the adaptation of an offer-centric dataset (DND data) targeted towards the offer statements of the opponent.

3 Methodology

We present our approach in Figure 2, which con-
tains three main components: a hierarchical core
model that takes in a partial dialogue and outputs
the desired ranking order, and two modules for
data adaptation that are designed to better model
the preference and offer statements of the oppo-
nent. We first describe our core model, assuming a
general input, and then describe the proposed data
augmentation techniques.

3.1 Hierarchical Encoder

Our encoder (orange segment from Figure 2) uses
two levels to build contextual utterance represen-
tations, which are then used to output a score for
each of the m issues, representing the ranking order
among them.
Utterance Encoder: First, a sentence-level
module (Level I) encodes each utterance Uj =
[w1, w2, . . . , wLj ] separately. We prepend the ut-
terances with a special token to indicate the author:
<self> or <opp>. To encode a contextually-rich
representation, our level I encoder uses pretrained

language models (Devlin et al., 2019; Liu et al.,
2019), given their success across a wide range of
NLP tasks, especially in low resource settings on
similar NLU tasks (Balaraman et al., 2021). For
each utterance Uj , the pretrained model first em-
beds the input words into the embedding matrix
E ∈ RLj×d. After passing through the encoding
layers, the pretrained model outputs d-dimensional
word representations R ∈ RLj×d. Finally, this is
followed by pooling to obtain the utterance repre-
sentation Uj ∈ Rd. The Level I output is essen-
tially the conversation matrix U ∈ RN×d, which is
obtained after processing all the input utterances.
Dialogue Encoder: At Level II, we use a trans-
former block with masked self-attention (Vaswani
et al., 2017). Self-attention enables efficient inter-
actions for encoding partial conversations. A target
utterance is only allowed to use the information
from previously-seen utterances, which is accom-
plished by masking all the future utterances in the
dialogue. In a single transformer layer, each tar-
get utterance query simultaneously assesses and
encodes the information from all the unmasked key
utterances, resulting in a contextualized representa-
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tion of each utterance - the matrix F ∈ RN×d.
Output Layers: Finally, a feed-forward network
acts on F to output an m-dimensional representa-
tion for each utterance. This represents the scores
for each of the issues that the model is trying to
rank. We then apply the sigmoid operation to con-
strain each score between 0 and 1, resulting in the
output O ∈ RN×m.

In comparison to text ranking tasks where the set
of items that are being ranked is large and can be
dynamic, the set of issues in realistic multi-issue
negotiations is usually small and fixed. Hence, we
predict the scores for each of these issues together,
unlike text ranking literature where each item is
ranked separately (Yates et al., 2021).
Training: We employ the pairwise margin ranking
loss to train our model in an end-to-end manner.
The loss Lk after observing k utterances from the
opponent is defined as:

Lk =
∑

q=(q1,q2)∈Q
Lk(o

k
q1 , o

k
q2 , yq), (1)

where Lk is given by:

Lk(o
k
q1 , o

k
q2 , yq) = max(0,−yq(o

k
q1 − okq2) + c).

(2)
Q represents the set of all possible pairs of issues.
okq1 and okq2 are the scoress from the final layer of
the hierarchical ranker after applying the sigmoid
operation. yq captures the ground truth ranking
between q1 and q2. yq is equal to +1 when q1
should be ranked higher (has a larger score) than
q2 and it is kept as −1 otherwise. c is the margin.

The objective of the ranking loss is to train the
model to predict a higher score for the issue that is
ranked higher by the ground truth priority order. A
positive margin of c ensures a nonzero loss if the
score for the higher ranked item is not greater than
or equal to its counterpart by c, forcing the model
to predict well-separated boundaries. We experi-
mented with different values for c, concluding that
a nonzero margin is necessary for any meaningful
training. For the results presented in this paper, we
set c as 0.3.
Inference: Once the model is trained, the predicted
scores can be used to output the desired ranking
order for a given input dialogue. The model simply
outputs the ranking of the issues by ordering them
in decreasing order of these predicted scores.
Note on the loss formulation: The pairwise rank-
ing loss was chosen for its suitability and simplic-
ity. However, other potential alternatives do ex-

ist. Since the number of issues is limited, one can
remodel the prediction task as classification over
all the possible orderings. However, this trivially
does not capture that although two orderings can be
wrong, one can be somewhat less wrong than the
other. Hence, a ranking loss is more suitable for giv-
ing a smoother signal to the model during training,
leading to a better performance in our initial experi-
ments. We also explored more complicated ranking
loss functions and a sequence-to-sequence model
to directly generate the sequence of issues in their
correct ranking order (Yates et al., 2021). We in-
stead found the pairwise ranking loss to be effective
and simple for our approach in this paper that in-
volves a limited set of issues and exploits partially-
masked loss functions (Section 3.2.1). Regardless,
we encourage future work to explore these other
formulations as well depending on the task at hand.

3.2 Data Adaptations

The transformer model discussed above learns to
rank the issues directly from the partial dialogue
as input without any additional supervision. Al-
though this approach performs reasonably well in
our experiments, it ignores the observations made
in prior work which have primarily relied on anno-
tations for preference and offer statements for oppo-
nent modeling (Nazari et al., 2015). This suggests
that more explicit feedback for extracting informa-
tion from preferences and offers is one avenue for
improving the performance, especially in settings
when the available dialogue data is scarce. Instead
of gathering additional annotations, we devise alter-
nate ways to better capture the preferences and of-
fers in our hierarchical ranking model. We achieve
this by adapting two additional data sources for this
task, allowing the data to be directly added to the
primary training dataset and enabling end-to-end
parameter sharing between these related tasks.
Datasets: We leverage two datasets in this work:
CaSiNo (Chawla et al., 2021) and DealOrN-
oDeal (Lewis et al., 2017). As discussed before,
CaSiNo is grounded in a camping scenario, contain-
ing negotiations over three issues: food, water, and
firewood. In addition to the dialogue, the dataset
also contains metadata about the arguments used
by the negotiators. DealOrNoDeal involves three
arbitrarily-defined issues: books, hats, and balls.
Our main goal is to perform opponent modeling
for CaSiNo. To this end, we adapt DealOrNoDeal
along with the available metadata in CaSiNo for
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data augmentation.
We refer to the CaSiNo Dialogues as CD,

CaSiNo Argument metadata as CA, and DealOrN-
oDeal dialogue data as DND. While the CD data
can be used as it is with our model, we adapt the
other two data sources (CA and DND) to make
them suitable for our approach (see Figure 2). We
now describe these adaptations.

3.2.1 Capturing Preferences

In order to provide more direct supervision for
the preferences, we leverage the metadata from
CaSiNo (CA data), where the participants explic-
itly reported their arguments for needing or not
needing a specific issue (blue segment from Fig-
ure 2). For instance, if food is the highest priority
issue for a participant, they were asked to come
up with an argument from their personal experi-
ences as to why they would need food the most
for camping.2 Example arguments are provided in
Figure 2. The participants came up with a variety
of such arguments covering Personal Care, Recre-
ational, Group Needs or Emergency requirements.3

The participants were then encouraged to leverage
these arguments in their upcoming negotiations.

This metadata can provide more direct feedback
on which implicit preference statements can lead to
a higher or a lower affinity towards a specific issue.
To incorporate this, we create dummy dialogues
using templates and add them to the training data
for our opponent modeling task. Consider a set
of arguments A = (AH , AM , AL), containing one
argument for High, Medium, and Low priorities
respectively. We extract two pairs: (AH , AL) and
(AM , AL) and construct the dummy dialogue as
per Figure 2.4 We ordered the arguments randomly
to avoid any induced biases.

For each constructed dialogue, we only have
ground-truth ranking order for a single pair of is-
sues. Hence, the pairwise loss function from Equa-
tion 1 needs a special treatment to ignore the score
of the issue that is not relevant for a given dialogue.
More specifically, while training with these con-
structed dialogues, we partially mask the margin
ranking loss to only consider the loss from the pair
for which the relation is known. Further, since a

2These priority orders were randomly assigned to the par-
ticipants by the authors of the CaSiNo paper.

3We refer the readers to the CaSiNo dataset paper for more
examples around these themes.

4We skip the third pair due to an absence of a visible
difference based on our qualitative analysis.

partial dialogue is not meaningful in this case, we
only train the model with L2 loss using k=2.

Although we use the readily available metadata
from CaSiNo in our work, we believe that such con-
textual data can be constructed for other realistic
domains as well, such as by leveraging appropriate
domain-specific knowledge about the negotiators’
common requirements.

3.2.2 Capturing Offers
To better capture the preferences in the previous
section, our approach was to construct synthetic
dialogues from a resource that primarily focused
on implicit preference statements, so as to teach the
model in a more explicit manner. With a similar
idea, we adapt DND dialogues to better use the
offer statements (green segment in Figure 2). The
DND dataset follows the same multi-issue frame-
work as CaSiNo, which enables our adaptation.
Each dialogue in DND involves three arbitrarily-
defined issues: books, balls, and hats. Due to the
arbitrary nature of these issues, there is minimal
context discussed in the dialogues, reducing it to
essentially an exchange of offers from both sides
(see example in Figure 2). Hence, such a resource
can be used to provide more explicit supervision
to learn from the offer statements of the opponent.
We map these dialogues to our dataset by randomly
mapping the issues in this dataset to the issues in
the target dataset, in our case, CaSiNo. We modify
the utterances by replacing all the occurrences of
the issues with the corresponding issues in CaSiNo.
For this purpose, we find that simple regular expres-
sions prove to be effective (Appendix B.1). Once
mapped, this adapted data is simply added to the
training data for our opponent modeling task.
Note on multi-issue negotiations: Our adaptation
described above leverages the structural similari-
ties between the two datasets. If the tasks follow
a similar structure, it is relatively straightforward
to use adaptations as described above for other
settings as well. This can be largely done with
regular expressions but if not, this relatedness still
paves the way for multi-task learning. The nego-
tiations in DealOrNoDeal and CaSiNo are based
on a popular abstraction in the negotiation litera-
ture, referred to as the Multi-Issue Bargaining Task,
or MIBT (Fershtman, 1990). MIBT is a generic
framework that can be useful for many negotiation
tasks beyond these datasets as well, for instance,
salary negotiations, or negotiations between art col-
lectors distributing the items among each other. It
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is extensively used in NLP (Lewis et al., 2017;
Chawla et al., 2021; Yamaguchi et al., 2021), be-
yond NLP (Mell and Gratch, 2017), and in the
industry as well (e.g. iDecisionGames5).

4 Experimental Design

We address the following questions: Q1) How use-
ful is the proposed transformer-based ranker
along with data augmentations for opponent
modeling in negotiation dialogues? We exper-
iment with two pretrained language models and
compare our ranker to standard baselines. To test
the data augmentations, we analyze model abla-
tions, including 0-shot and few-shot settings. We
also observe if they lead to a better performance
with a lower number of utterances. Q2) Do prefer-
ences and offers contribute to the performance?
To further shed light on the contributions of these
utterances to the final opponent modeling perfor-
mance, we look at average attention scores on these
utterances. Further, for a more explicit analysis,
we observe whether the performance varies by the
integrative potential in the negotiation, which es-
sentially captures how aligned the preferences of
the two negotiators are (Chawla et al., 2021). The
scenarios with low integrative potential are usually
associated with a higher expression of preferences
and offers. Hence, we expected the performance
to be higher in the cases with low integrative po-
tential. Q3) How does our approach compare
to a human expert? We compare our model to a
human expert and recognize some of the errors that
the model makes, discussing potential directions
for future work.
Datasets: Each data point in CD results in two
dialogues for our analysis, based on the perspec-
tives of the two negotiators (Section 2). We report
results on 5-fold cross validation for this dataset.
We further leave out 100 dialogues from the train-
ing data for hyperparameter tuning, resulting in
1548 dialogues for training, 100 for tuning, and
412 for evaluation - for each cross fold. We ex-
tract CA from the metadata corresponding to the
training data of CD, leaving out 200 constructed
dialogues for validation (following Section 3.2.1).
For DND data, we only select the dialogues with at
least 4 total utterances and unique priority values
for meaningful training. After adaption (following
Section 3.2.2), we end up with 4074 dialogues for
training and 444 for validation. All the models are

5https://idecisiongames.com/promo-home

primarily validated and tested on the corresponding
subsets of CD (except for some additional analysis
presented in Section 5).

Evaluation Metrics: Our metrics are inspired
by the negotiation literature, along with related
research in Dialog State Tracking (DST) and
Learning-to-Rank(LTR) tasks in NLP. Our primary
metric is Exact Match Accuracy (EMA): the per-
centage of cases where the predicted priority order
is entirely correct. This is analogous to the pop-
ular Joint Goal Accuracy in DST which captures
the cases where all the slots are correctly identi-
fied (Balaraman et al., 2021). For negotiation tasks,
even knowing the topmost priority can be useful.
Hence, we also report Top-1 Accuracy: the per-
centage of cases where the highest priority issue
is correctly predicted. Finally, we report the Nor-
malized Discounted Cumulative Gain (NDCG@3).
NDCG has been widely used in LTR tasks with
distinct relevance values (Yates et al., 2021), which
is also true for the setting that we consider. In our
case, we use the relevance values as 5, 4, and 3
for the most, second, and least ranked issues re-
spectively, following the incentive design structure
of CaSiNo. We compute these metrics for all k
from 1 to 5, varying the number of opponent utter-
ances seen by the model. We present the results
at k=5 to analyze the performance after seeing al-
most all of the opponent utterances in CaSiNo. To
capture the performance with partial dialogues, we
report corresponding k-penalty versions that take a
weighted average of the performance for different
values of k, while giving a linearly higher weight
to the performance at a lower k.

Methods: We call the complete model from Figure
2 that combines all the three datasets for training
as CD + CA + DND. We compare it with its abla-
tions, including 0-shot and few-shot scenarios. We
further develop two standard baselines. The Ran-
dom baseline chooses the final ranking at random,
from all the possible orderings. BoW-Ranker is
based on the Bag-of-Words paradigm. The input
features are based on the normalized frequencies of
the 500 most frequent words in the training dataset,
except stopwords. Instead of contextualized hierar-
chical representations, this method directly uses a
feed-forward network on the input BoW features to
predict the ranking. The model is trained on partial
dialogues using the same margin ranking loss.

Training Details: The embedding dimension
throughout is 768 for transformer-based models.
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These models use base variant of either BERT (De-
vlin et al., 2019) or RoBERTa (Liu et al., 2019)
for Level I encoder. The Level II encoder uses
one transformer layer. The feed-forward network
contains two fully connected layers with a fi-
nal sigmoid activation. We train the model with
Adam optimizer using a learning rate of 2e−5 for
transformer-based methods and 2e−3 for BoW-
Ranker. The margin c is kept as 0.3. We use
a dropout of 0.1 to prevent overfitting. We further
employ a loss-specific dropout of 0.15, in order
to backpropagate the loss from fewer ks simulta-
neously. The models were trained for 20 epochs
with a batch size of 25. We checkpoint after every
epoch and the one with the highest EMA at k=5 on
the held out CD dataset is chosen for evaluation.
We provide the details on the computing infras-
tructure, hyper-parameter tuning, and validation
performance in Appendix A.

5 Results and Discussion

5.1 Addressing Q1
We summarize the results in Table 1. Our pro-
posed ranking-based models beat the Random and
BoW-Ranker baselines by a huge margin across
all metrics. This is true even for zero-shot DND and
for CA + DND, attesting to the utility of the pro-
posed ranking methodology and data adaptations.6

Comparing similar configurations, we observe that
RoBERTa-based models outperform BERT-based
models on this task. The best performing config-
uration is the RoBERTa CD + CA + DND that
combines all the three data sources.

In Figure 3a, we plot the performance for dif-
ferent percentages of CD data. We only show
RoBERTa-based models due to their superior per-
formance. The plot highlights the advantage of
adapting the related data sources, especially in few-
shot settings, with CD + CA + DND at 50% match-
ing the performance of CD at 100%.

We also look at how the performance varies with
the number of utterances seen in Figure 3b. We
find that the performance gains are visible across
all values of k. The data augmentations allow the
model to perform better than the baselines, while
observing a fewer number of utterances, making
the model more useful in realistic scenarios.

Performance on the adapted datasets: We an-
alyze if our joint learning also improves the per-

6Training with the CA data only was not useful due to the
lack of training with any partial dialogues.

formance on the validation sets of CA and DND
datasets, showing advantages across multiple tasks.
For CA dataset, we measure argument ranking ac-
curacy: for a given input dialogue based on a pair
of arguments, we consider a prediction as correct
if the scores predicted by the model correctly rank
the arguments. For DND, we analyze EMA at
k=2 for opponent modeling, similar to our setup
for CaSiNo. As evident from Tables 2a and 2b,
we find support that joint learning improves the
performance on CA and DND datasets as well.

5.2 Addressing Q2
Average attention: We recognize the utterances
with preference statements by utilizing strategy an-
notations in CaSiNo (Chawla et al., 2021). We
assume that an utterance contains a preference if
it was annotated with at least one of Self-Need,
Other-Need, or No-Need strategies. For identify-
ing offers, we use regular expressions following
prior work (He et al., 2018) (refer Appendix B.2).
We consider any utterance that is not labeled with a
preference or an offer as Other. Then, we observed
the average attention put by the best-performing
model on these categories in the Level II encoder.
Preferences received an average of 0.3, offers re-
ceived 0.27, and other utterances received 0.08
attention scores, without any explicit indication
about these categories during model training. We
consider this as preliminary evidence that the learn-
ing process matches our intuition, with preferences
and offers contributing to the performance.

Performance across integrative potential: For
more concrete evidence of the utility of preferences
and offers, we look at how the performance varies
between scenarios with low and high integrative
potential. This basically captures how aligned the
preferences of the two negotiators are in a negoti-
ation. In a scenario with low integrative potential,
the negotiations are more competitive, leading to
a higher expression of preferences and offers and
providing a better signal to our ranking models. For
our best-performing model, we find EMA at k=5 to
be 68.75 (4.58) for scenarios with low integrative
potential against 60.31 (2.67) for those with high
potential. This provides stronger evidence that the
learning process sensibly takes into account the
preference and offer statements in the data.

5.3 Addressing Q3
Comparison to Human Expert: Similar to the
trained models, we asked a human expert (an au-
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Model k=5 k-penalty
EMA Top-1 NDCG@3 EMA Top-1 NDCG@3

Random 16.46 (1.47) 32.49 (1.58) 48.49 (1.16) 16.59 (1.22) 33.99 (1.13) 49.76 (0.75)
BoW-Ranker 28.49 (1.3) 53.38 (2.21) 65.51 (0.62) 27.71 (1.24) 52.98 (1.97) 64.31 (1.67)

Bert-based
DND 41.12 (3.06) 64.69 (2.94) 73.88 (1.57) 34.5 (1.12) 58.75 (1.35) 68.48 (0.77)

CA+DND 41.9 (2.93) 66.98 (3.17) 75.91 (2.28) 36.01 (1.25) 61.09 (1.9) 70.09 (1.49)
CD 53.97 (3.02) 77.7 (2.85) 83.75 (1.96) 42.3 (1.53) 66.8 (1.78) 74.39 (1.45)

CD+CA 57.24 (3.09) 79.74 (2.37) 84.99 (1.87) 44.39 (1.17) 67.88 (1.16) 75.31 (1.1)
CD+DND 56.12 (4.07) 79.16 (2.57) 84.66 (1.84) 43.79 (2.07) 68.18 (1.55) 75.38 (1.6)

CD+CA+DND 56.56 (2.07) 80.13 (1.07) 85.49 (1.09) 44.22 (1.82) 69.21 (2.05) 76.03 (1.6)
RoBerta-based

DND 45.21 (3.07) 68.1 (2.8) 77.01 (1.76) 37.66 (1.41) 61.41 (2.3) 70.44 (1.5)
CA+DND 46.76 (1.89) 68.73 (1.22) 77.65 (0.9) 39.43 (1.67) 62.87 (2.5) 71.7 (1.83)

CD 60.06 (3.01) 81.98 (1.75) 86.54 (1.31) 46.57 (1.6) 69.26 (1.69) 76.17 (1.22)
CD+CA 60.01 (2.23) 80.23 (2.11) 85.85 (1.41) 46.96 (2.1) 68.59 (1.93) 76.05 (1.14)

CD+DND 62.54 (3.3) 82.56 (1.24) 87.57 (1.18) 47.69 (2.52) 69.98 (1.96) 76.71 (1.55)
CD+CA+DND 63.57 (3.44) 82.76 (2.47) 87.55 (1.58) 48.72 (2.03) 70.03 (1.63) 77.14 (1.38)

Table 1: Performance on the opponent modeling task, showing the utility of the proposed methods. EMA and Top-1
represent the accuracy in percentage. We also scaled NDCG@3 to 0-100. For all the metrics, higher is better. The
numbers represent Mean (Std.) over 5-cross folds of the CD data.
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Figure 3: Mean performance for two RoBERTa-based models: (a) on different percentages of CD data. The Y-Axis
represents EMA at k=5, (b) on different values of k.

CA
Model Accuracy

Random 52.4 (4.14)
AD 63.8 (9.33)

AD+DND 73.4 (6.19)
CD+AD 78.9 (1.39)

CD+AD+DND 76.7 (3.52)

(a)

DND
Model EMA

Random 16.04 (0.92)
DND 60.68 (2.05)

AD+DND 60.9 (1.87)
CD+DND 63.11 (1.77)

CD+AD+DND 63.56 (0.94)

(b)

Table 2: Performance for RoBERTa-based models: (a)
argument classification accuracy on the validation set
of CA, (b) EMA at k=2 for opponent modeling on the
validation set of DND. The numbers represent Mean
(Std.) over 5-cross folds.

thor of this work) to guess the priority order of the
opponent by accessing partial dialogues. The ex-
pert was allowed to make multiple guesses if she is
unsure, in which case the final ranking was chosen
randomly from all the guesses. We compare the
expert to our best-performing model on 100 dia-
logues from the evaluation set. The expert achieved
75% mean EMA at k=5 against 66% for the model

while performing better on other metrics as well.
We show the comparison by varying the parameter
k in Appendix C.

While the model performs reasonably, there is a
scope for improvement. We performed a qualita-
tive analysis of the errors made by the model and
the expert. In many cases, it is simply not feasible
to predict accurately, especially when negotiators
engage in small talk early on - indicating a limited
scope for improvement with fewer utterances. In
some cases, there is more focus on the highest pri-
ority issue, giving less explicit signals of the entire
ranking. This might work for some applications
but in other cases, the agent design can be modi-
fied to discuss the complete ranking more explic-
itly. Integrating other datasets that follow the same
MIBT structure (such as (DeVault et al., 2015)) via
data adaptation or multi-task learning is another
potential direction. We also observed errors in the
cases that included longer contextually-dense ut-
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terances, where preferences are shared indirectly
as a response to the partner, and when the nego-
tiators give away their higher priority issues out
of empathy towards their partner. These cases are
easier for the expert but can be confusing to the
model. Better modeling of the prior context and
handling of longer utterances are also avenues for
improvements in the future.

6 Related Work

Opponent modeling encompasses several tasks in
negotiations such as priority estimation, predicting
opponent limits like BATNA (Sebenius, 2017), and
classifying opponents into categories such as based
on personality traits (Albrecht and Stone, 2018;
Baarslag et al., 2016). In this work, we focused
only on inferring the opponent’s priorities but in
a more challenging domain involving chat-based
interactions, instead of structured communication
channels often used in prior work (Williams et al.,
2012; Mell and Gratch, 2017; Johnson and Gratch,
2021). Using a realistic interface like natural lan-
guage fundamentally alters the negotiation dynam-
ics in terms of the exchange of information, and
hence, requires a separate investigation.

For chat-based negotiations, Nazari et al. (2015)
relied on heuristics and utterance-level annotations
to infer the opponent’s priorities using frequency-
based methods. Langlet and Clavel (2018) explored
a symbolic rule-based system to parse the utter-
ances collected from a multimodal interaction. In-
stead, our focus is on modeling the priorities di-
rectly from partial dialogues as input. Research in
negotiation dialogue systems has mainly focused
on end-to-end modeling of the agent, without any
explicit opponent modeling (Lewis et al., 2017;
He et al., 2018; Zhou et al., 2019; Cheng et al.,
2019; Parvaneh et al., 2019). However, there is
evidence that even end-to-end systems can benefit
from being more opponent-aware, as seen in recent
work that uses dialogue acts to estimate opponent’s
behavior (Zhang et al., 2020; Yang et al., 2021).

A number of related data augmentation strate-
gies have been explored in Computer Vision and
NLP (Shorten and Khoshgoftaar, 2019; Feng et al.,
2021). Most methods use rules or models to trans-
form the available data or create synthetic data to
avoid overfitting while training. This especially
helps in low-resource languages (Li et al., 2020)
and few-shot scenarios (Kumar et al., 2019).

7 Conclusion

We presented and evaluated a transformer-based
approach for opponent modeling in negotiation dia-
logues. Our objective was to address the challenges
to bridge the gap between existing research and
practical applications of opponent modeling tech-
niques. Our comparison to baselines and ablations
attest to the utility of our method. We found that
the proposed data adaptations can be especially
beneficial in 0-shot and few-shot scenarios. In
the future, we will explore two primary directions:
first, improving the model performance on oppo-
nent modeling by leveraging other related available
datasets and by better incorporating the negotiation
dialogue context, and secondly, using effective op-
ponent modeling techniques towards the design of
automated negotiation systems for applications in
pedagogy and conversational AI.

8 Broader Impact and Ethical
Considerations

Datasets Used: Both the datasets used in this work
had been completely anonymized before their re-
lease by the respective authors. Moreover, we care-
fully verified the licensing details and ensured that
the datasets were only used within the scope of
their intended usage.

We note that both datasets follow the multi-issue
structure where the priority order remains fixed
throughout the negotiation. Although this may not
be true for some real-world scenarios, as we noted
earlier, the underlying MIBT framework used by
these datasets has been extensively used in aca-
demic research and also in the industry, attesting
to the generalizability and applicability of this ap-
proach. Finally, we note that both the datasets
are in English. Although this means that our ex-
periments were limited to one language, our ap-
proach makes no such assumptions and should be
broadly applicable to other settings as well. We en-
courage researchers to extend this work and study
human-machine negotiations for other languages
as well. This would open up exciting avenues for
cross-culture research in this space, given the well-
documented differences in how humans negotiate
across cultures (Luo, 2008; Andersen et al., 2018).
Human Annotations: Human annotations were
used to estimate the expert performance on this task.
This did not involve any additional crowdsourcing
effort. Instead, the dialogues were annotated by an
author of this work.
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Opponent Modeling For Negotiation Dialogues:
Negotiations are typically non-collaborative in na-
ture, where the goals of the negotiating parties
may not align with each other. Hence, the nego-
tiators may not always feel comfortable in reveal-
ing their preferences for fear of being exploited.
Even if they do, inferring them from natural lan-
guage is challenging as preferences might be im-
plied, and resolving these implications involves
domain-specific knowledge and prior dialogue con-
text. Regardless, incorporating such realistic com-
munication channels is critical for designing prac-
tical and robust AI systems for downstream ap-
plications. However, most of the prior efforts in
negotiations use restrictive menu-driven systems
based on button clicks. Our work is a step towards
bridging this gap.

This work is aligned with our broader goals for
building automated negotiation systems, trained
either in an end-to-end or a modular manner. For
conversational AI applications, opponent modeling
systems that can predict the priorities of the oppo-
nent reliably based on a partial dialogue can inform
the strategy of the agent in the latter parts of the
conversation. From the perspective of pedagogi-
cal applications, even the systems that can predict
the priorities of a negotiator at the end of the ne-
gotiation can be helpful. For instance, consider a
negotiation between two students, A and B who
are asked to guess the opponent’s priorities at the
end of their negotiation. If the pedagogical agent
is able to accurately guess the priorities of student
B, while student A fails to guess correctly, this can
be used to give concrete feedback to students who
fail to recognize these strategies.

Ethical Recommendations: Finally, we briefly
discuss the ethical considerations around the design
of automated negotiation systems. A considerable
amount of research in negotiations has focused on
ethics. Primary concerns revolve around the acts
of emotion manipulation, bias, deception, and mis-
interpretation (Lewicki et al., 2016). Consequently,
these issues can also emerge in the systems that are
developed on human-human negotiation dialogue
datasets. Our central recommendation in mitigating
the impact of these issues for negotiation dialogue
systems or other conversational AI assistants is
transparency - around the identity, capabilities, and
any known undesirable behaviors of the system.
Further, any data collected during the deployment
phase should be properly anonymized and the users

of the system should be well-informed. In particu-
lar, we recommend extra precautions for systems
that are adaptive towards their opponents or users
such as having regular monitoring for any unex-
pected behaviors, to ensure that the systems are not
offensive or discriminatory.
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A Experiments

A.1 Computing Infrastructure

All experiments were performed on a single Tesla
V100 GPU. The complete model (CD + CA +
DND) takes around 10 hours for training with 32-
bit precision on a single cross-validation fold with
a batch size of 25.

A.2 Training Details

We used a combination of randomized and man-
ual search to tune the hyperparameters. For each
cross fold, we kept 50 dialogues from the CD train-
ing data for parameter tuning. This amounts to
100 data points, considering the two perspectives
extracted from each dialogue. The metric for choos-
ing the best hyperparameters is EMA at k=5, aver-
aged over the 5 cross-validation folds. We tuned
the parameters on the performance of the BERT-
based model with CD + CA + DND configuration.

We vary the learning rate in {1e−5, 2e−5,
3e−5}, dropout in {0.0, 0.1, 0.2}, and loss-specific
dropout in {0.0, 0.15, 0.25}. We also varied the
number of transformer layers in Level II encoder
from Figure 2 in the set {1, 2, 3}. For DND, we
also varied the number of instances that were cho-
sen for adaptation but found that using all the in-
stances that passed our filtering gave the best per-
formance. We further varied the margin for rank-
ing loss in {0.0, 0.3, 0.5}. Finally, for the mod-
els trained on combined datasets, we tried with
a higher weightage (2x) for the loss contribution
of CA-adapted instances due to their lower total
count but found no visible improvements in the
performance. The rest of the hyper-parameters
were fixed based on the available computational
and space resources. We report the best performing
hyper-parameters in the main paper.

The models used in the paper have nearly 171
million trainable parameters. We report the mean
performance on the validation set in Table 3.

A.3 External Packages and Frameworks

The models were developed in PyTorch Lightning7

and relied on the HuggingFace Transformers li-
brary8 for using the pretrained models and their
corresponding tokenizers. We used a number of

7https://www.pytorchlightning.ai/
8https://github.com/huggingface/

transformers

Model EMA
Random 17.8 (4.87)

BoW-Ranker 35 (3.35)
Bert-based

DND 51 (1.67)
CA + DND 51.2 (3.12)

CD 63.6 (4.84)
CD + CA 65.8 (1.94)

CD + DND 69 (2.28)
CD + CA + DND 70 (2.61)

RoBerta-based
DND 54.6 (5.43)

CA + DND 55 (5.55)
CD 70.2 (3.19)

CD + CA 70 (3.95)
CD + DND 75.6 (2.15)

CD + CA + DND 77.8 (2.32)

Table 3: Validation performance for opponent modeling
on CD dataset. The reported EMA is at k=5. The
numbers represent Mean (Std.) over 5-cross folds of the
CD data.

external packages such as Python Scikit Learn9

library for implementing the evaluation metrics,
and NLTK10 for tokenization for the Bag-of-Words
model.

B Regular Expression Usage

B.1 Adapting DealOrNoDeal data

We randomly mapped book from DealOrNoDeal
to food, replacing all occurrences of ‘book’ and
‘books’ with ‘food’ in the utterances. Similarly,
hat was mapped to water, and ball was mapped to
firewood. Since the dialogues only involve minimal
context about the issues, we found these replace-
ments to be sufficient.

B.2 Identifying Offer statements

The offer statements were also recognized by reg-
ular expressions for the purpose of computing av-
erage attention scores. Specifically, an utterance is
classified as having an offer, if it contains 3 or more
of the following phrases - {’0’, ’1’, ’2’, ’3’, ’one’,
’two’, ’three’, ’all the’, ’food’, ’water’, ’firewood’,
’i get’, ’you get’, ’what if’, ’i take’, ’you can take’,
’can do’}. The threshold 3 and these phrases were
chosen heuristically via qualitative analysis.

9https://scikit-learn.org/stable/
modules/model_evaluation.html

10https://www.nltk.org/api/nltk.
tokenize.html
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C Comparison with Human Performance
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Figure 4: Mean performance comparison for the best
performing model with the human expert for different
values of k.

We present the performance for our best perform-
ing model with the human expert across different
values of k in Figure 4.
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