
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), pages 11 - 21
May 26-27, 2022 c©2022 Association for Computational Linguistics

Improving Arabic Diacritization by Learning to Diacritize and Translate

Brian Thompson∗
AWS AI Labs

brianjt@amazon.com

Ali Alshehri
Apple

a_alshehri@apple.com

Abstract

We propose a novel multitask learning method
for diacritization which trains a model to both
diacritize and translate. Our method addresses
data sparsity by exploiting large, readily avail
able bitext corpora. Furthermore, transla
tion requires implicit linguistic and seman
tic knowledge, which is helpful for resolving
ambiguities in diacritization. We apply our
method to the Penn Arabic Treebank and re
port a new stateoftheart word error rate of
4.79%. We also conduct manual and automatic
analysis to better understand our method and
highlight some of the remaining challenges in
diacritization. Our method has applications
in texttospeech, speechtospeech translation,
and other NLP tasks.

1 Introduction

Arabic is typically written without short vowels
and other pronunciation indication markers,1 col
lectively referred to as diacritics. A longstanding
task in Natural Language Processing (NLP) is to
take undiacritized text and add the diacritics, re
ferred to as diacritization (see Figure 1). Diacrit
ics indicate both how to pronounce the word and
resolve ambiguities in meaning between different
words with the same (undiacritized) written form.
Diacritic prediction is the dominant source of

errors in Arabic grapheme to phoneme conver
sion (Ali et al., 2020), a crucial component in
many texttospeech and speechtospeech transla
tion systems.
Diacritization also has applications in Auto

matic Speech Recognition (ASR) (Vergyri and
Kirchhoff, 2004; Ananthakrishnan et al., 2005; Bi
adsy et al., 2009), Machine Translation (MT) (Diab
et al., 2007) morphological analysis (Habash et al.,
2016), lexical recognition tests (Hamed and Zesch,

∗ Work done while at Apple.
1Notable exceptions include the Quran and many chil

dren’s books.

ھیا لنذھب ا لنَِذْھَبْ ھَیَّ
[hjaː lnðhb] [hajːaː linaðhab]

Figure 1: Arabic diacritization is the task of adding di
acritics (markings above and below characters, shown
in red) to Arabic text. Diacritics clarify how a word
is pronounced, including short vowels and elongation,
and disambiguate word meaning. Here, we show the
diacritization of لنذهب هيا (let’s go). The IPA pronun
ciations below each word demonstrate that the diacrit
ics are crucial for pronouncing each word: the undia
critized form maps to an incorrect pronunciation, while
the diacritized form maps to the correct pronunciation
(the contributions the diacritics make to the pronuncia
tion are also shown in red).

2018; Hamed, 2019), and homograph resolution
(Alqahtani et al., 2019a).
We focus on Modern Standard Arabic (MSA),

a standardized dialect of Arabic used in most aca
demic, legal, and news publications, and an ob
vious choice for TexttoSpeech (TTS) systems.
MSA is the 5thmost spoken2 language in theworld
with about 274M speakers (Eberhard et al., 2021).

1.1 Challenge #1: Data Sparsity

Arabic is a Morphologically Rich Language
(MRL), where significant information concerning
syntactic units and relations is expressed at word
level. For example, a word like فاسٔقيناكموه is roughly
translated to: ‘and we gave it to you to drink’.
In this example, linguistic units that are typically
expressed by individual words in English such
as coordinating conjunctions and personal pro
nouns are expressed within the word form in Ara
bic. This fact results in Arabic having a large
vocabulary (by way of example, the number of
unique, undiacritized words in the Arabic bible
from Christodouloupoulos and Steedman (2015)

2“Speaker” is a bit of a misnomer: Most Arabic speakers
can understand MSA but would not typically produce it.
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is about 4.38x larger than the number of unique,
lowercased words in the English equivalent.) Fi
nally, highquality diacritized datasets tend to be
quite small: The Penn Arabic Treebank (PATB)
training subset used in this work is only 15,789
lines, and data available in other dialects can be
substantially smaller. These factors result in Ara
bic being quite data sparse, with diacritics models
typically needing to handle a large number of un
seen words.

1.2 Challenge #2: Ambiguity

Many of the morphological variants in Arabic are
differentiated by only diacritics. This results in
undiacritized Arabic having a huge number of ho
mographs which must be resolved when adding di
acritics. Furthermore, as mentioned above, Ara
bic is a MRL, where information such as gen
der (male, female), number (singular, dual, plu
ral), case (nominative, accusative, genitive), as
pect (perfect, imperfect), voice (active, passive)
and mood (indicative, imperative, subjunctive) is
expressed on the wordlevel, sometime with as lit
tle as one diacritic. These factors result in undi
acritized Arabic being highly ambiguous; Debili
et al. (2002) reported an average of 11.6 possible
diacritizations for every nondiacritized word in
Arabic. For example, the form كتب could be dia
critized as كَتَبَ ‘he wrote’, كُتِبَ ‘it was written’, كُتِّبَ
‘it was written repeatedly’, كُتُبٌ ‘books’ (nomina
tive case), or كُتُبٍ ‘books’ (genitive case).

1.3 Overview of Proposed Method

We propose a novel Multitask Learning (MTL)
(Caruana, 1997) based approach to improve the se
mantic and linguistic knowledge of a diacritization
model. Specifically, we propose augmenting dia
critics training data with bitext to train a model to
both diacritize Arabic and translate into and out of
Arabic.
Our approach addresses data sparsity by substan

tially increasing the amount of training data seen
by the model. Our approach also enables the use
of large, readily available MT datasets, which are
available not only in Arabic but in many other lan
guages with diacritics as well.3 In our experiments
on the PATB, adding bitext increases training data

3In contrast, prior MTL work in diacritization has used
handcurated features such as Part of Speech (POS), gender,
and case (see §2.1), severely limiting both the size of available
data and the applicability to other languages, which may not
have such resources.

from 502k to 138M Arabic words, and decreases
the Out of Vocabulary (OOV) rate from 7.33% to
1.14%.
Our approach also addresses ambiguity, since

the task of translation requires (implicit) semantic
and linguistic knowledge. Training on bitext in
jects semantic and linguistic knowledge into the
model which is helpful for resolving ambiguities
in diacritization (see Table 1).
These factors contribute to our method achiev

ing a new StateoftheArt (SOTA) Word Error
Rate (WER) of 4.79% on the PATB, vs 7.49% for
an equivalent baseline without MTL.

1.4 Main Contributions of This Work
The main contributions of this work are:

• We present a novelMTL approach for diacriti
zation, which does not require a morpholog
ical analyzer or specialized annotations (and
thus is likely extensible to other languages, di
alects and domains).

• We achieve a new SOTA WER of 4.79% on
the PATB test set.

• We perform extensive automatic analysis of
our method to see how it performs on var
ious conditions including different parts of
speech, genders, word frequencies, and sen
tence lengths.

• We perform detailed manual error analysis
of our method, illustrating both issues in the
PATB dataset as well as the remaining chal
lenges in Arabic diacritization.

2 Related Work

2.1 Diacritization
Many works have explored using neural networks
for Arabic diacritization (Zalmout and Habash,
2017, 2019; Alqahtani and Diab, 2019; Alqahtani
et al., 2019b).
Alqahtani et al. (2020) and Zalmout and Habash

(2020) both explore MTL regimes in which a
model learns to predict Arabic diacritics simulta
neously with other features in the PATB. Alqahtani
et al. (2020) uses additional features of syntactic di
acritization, word segmentation, and POS tagging,
while Zalmout and Habash (2020) use additional
features of lemmas, aspect, case, gender, person,
POS, number, mood, state, voice, enclitics, and
proclitics. By also report further improvements by
adding an external morphological analyzer. These
papers illustrate the potential of MTL, but they re
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# Arabic Sentence English Sentence Diacritized Pronunciation Translation

0 اللون وابٔيض اخٔضر السعودية علم The flag of Saudi Arabia is green and white عَلَمُ [ʕalamu] flag
1 الفلك علم احٔب I love space science عِلمَ [ʕilma] science
2 السباحة احٔمد ناصر علم Nasser taught Ahmad how to swim عَلَّمَ [ʕalːama] taught

Table 1: Adding bitext to our training data improves the semantic and linguistic knowledge of our diacritization
model. For example, in order to correctly translate علم out of Arabic, the model must learn to implicitly perform ho
mographic resolution to determine if the word is being used to mean “flag,” “science,” “taught,” or other meanings.
This knowledge is helpful for diacritization since diacritized forms are intrinsically linked with word meaning. The
model can also implicitly learn, for example, that علم in example #2 is being used as a causative past tense verb. This
can help the model diacritize this use of علم correctly ,(عَلَّمَ) even if عَلَّمَ does not appear in the diacritization training
data, since عَلَّمَ follows a common diacritization pattern for causative past tense verbs.

quire additional handcurated features. This limits
both the datasets they can use (neither are able to
take advantage of large outside datasets) and the
languages they could be applied to.

2.1.1 Contextual Embeddings

Náplava et al. (2021) show that contextual embed
dings can result in substantial improvements in di
acritization error rates in several languages, but un
fortunately they do not report results on Arabic.
Qin et al. (2021) start with a strong baseline built

on ZEN 2.0 (Song et al., 2021), an ngram aware
BERT variant. Their BERTbased baseline outper
forms prior work on PATB. They then claim even
stronger results on PATB with two methods that
incorporate multitask training with a second, aux
iliary decoder trained to predict the diacritics pro
duced by the Farasa morphological analyzer (Ab
delali et al., 2016). We argue that their experi
mental setup is fundamentally flawed, since Farasa
was trained on the PATB test set4 and can leak in
formation about the test set to the model.5 They
also report results on the Tashkeela training/test
data (Zerrouki and Balla, 2017; Fadel et al., 2019),
which does not have a potential testset contami
nation problem, and find that their method under

4Farasa was trained on PATB parts 1, 2 and 3 in their en
tirety, and then tested on a separate collection of hand curated
news articles (Abdelali et al., 2016).

5To understand how leakage from the test set can occur,
consider the word النجمة (the star; female). النجمة appears three
times in the training data, once without diacritics (likely an
error) and twice as النَّجْمَةِ . However, it appears 9 times in the
test set, each time diacritized as النَّجْمَة . Farasa is trained on
both the training and test data, so from it’s perspective, النَّجْمَة
is by far the most likely diacritization of النجمة . Thus when
the model sees النجمة in training, Farasa can artificially bias
the model toward producing the diacritized form in the test
set, despite that form never appearing in the training data.

performs a straightforward bidirectional LSTM,6
which supports the hypothesis that their strong
PATB results are due to training on a derivative of
the test set.

2.2 CharacterLevel and Multilingual MT
Multilingual MT (Dong et al., 2015) has been
shown to dramatically improve lowresource trans
lation, including enabling transfer from higher re
source language pairs to lowerresource language
pairs (Zoph et al., 2016; Nguyen and Chiang, 2017;
Neubig and Hu, 2018). In our case, we set up learn
ing to encourage transfer from undiacritized Ara
bic to much lowerresourced diacritized Arabic.
Most MT systems operate at the subword

(Sennrich et al., 2016; Kudo and Richardson,
2018); however, such approaches would result
in diacritized and undiacritized versions of the
same word having little to no overlap in sub
words. We instead train a characterlevel encoder
decoder model (Lee et al., 2017; Cherry et al.,
2018), to maximize the number of shared repre
sentations between diacritized and undiacritized
words. Characterlevel diacritics models have also
been shown to outperform subwordlevel models
(Alqahtani and Diab, 2019).

3 Method

We train a single Transformerbased (Vaswani
et al., 2017) encoderdecoder model to both trans
late and diacritize, with the hypothesis that the
translation task is complementary to diacritization.
To maximize the number of shared representations
between diacritized and undiacritized words, we
train our model at the characterlevel. Following

6Qin et al. (2021) claim to achieve stateoftheart perfor
mance on both datasets, but this is not supported by their re
sults (see their Table 2, noting that bold does not denote the
best performing system).

13



work in multilingual MT, we prepend a tag to each
output sentence to tell the model whether the out
put is undiacritized Arabic, diacritized Arabic, En
glish, French, or Spanish during training. At infer
ence time we force decode the tag to request that
the model produce diacritized Arabic.

3.1 Decoding
In Arabic, simple rules dictate where diacritics can
be placed. During decoding, we enforce these
rules by keeping track of which input characters
the decoder has produced (i.e. copied from input to
output) and constrain the decoder as follows: If the
previous output is a nondiacritic Arabic character,
we restrict the decoder to produce any diacritic or
the next input character. If the previous output is
a shadda, we restrict the decoder to produce a non
shadda diacritic or the next input character. Oth
erwise, the model is forced to produce the next in
put character. Without these restrictions, we found
that the model would occasionally produce minor
paraphrastic variations of the input.7

3.2 Long Sentence Handling
The computational complexity of Transformer lay
ers is proportional to sequence length squared
(Vaswani et al., 2017), so we do not want to train or
evaluate on an arbitrarily long sequences of char
acters. Instead, we limit the maximum input and
output sequence to 600. To diacritize a sentence
with more than 300 input characters, we take over
lapping windows of 300 characters with a step size
of 100 characters. We predict diacritics indepen
dently for each window, and reconstruct the orig
inal sentence using the first 200 characters from
the first window, the input characters of the last
window excluding the first 100 characters, and the
middle 100 characters from any windows in be
tween. This ensures that we only use output with at
least 100 characters of context. For the bitext data,
we simply discard sentence pairs with greater than
600 input or output characters.

4 Experiments

We train a characterlevel transformer encoder
decoder model on both diacritics data and the
bitext. Our primary model performs diacritiza
tion, translation from Arabic (Ar) to English (En),
French (Fr), and Spanish (Es), and translation from

7The tendency of a multilingual MT model to paraphrase
the input has been noted (and exploited) in Tiedemann and
Scherrer (2019) and Thompson and Post (2020b).

Name Form Sound [IPA]

Fatha ◌َ /a/
Fathatan ◌ً /an/
Kasra ◌ِ /i/
Kasratan ◌ٍ /in/
Damma ◌ُ /u/
Dammatan ◌ٌ /un/
Dagger Alif ◌ٰ /aː/
Maddah ◌ٓ /ʕaː/
Shadda ◌ّ Elongation (ː)
Sukun ◌ْ None

Table 2: Diacritics considered in this work.

ArEn ArEs ArFr Diacs

Global Voices 0.9 0.9 0.5 
CCAligned  21.9 21.7 
News Commentary 5.0 5.0 4.3 
United Nations 20.7 19.9 19.5 
WikiMatrix 15.0 1.7 1.6 
PATB    0.5

Total 40.8 48.4 47.1 0.5

Table 3: Size (millions of Arabic words) of training
datasets used in this work. Note that total bitext is about
275x larger than diacritics data.

English, French, and Spanish to Arabic. However,
we also perform ablations for analysis purposes,
leaving out (1) the Ar→{En,Fr,Es} data, (2) the
{En,Fr,Es}→Ar data, and (3) all of the bitext data.
Each model uses a single encoder and decoder for
all tasks.

4.1 Diacritics Data

We chose to use PATB part 1 v4.1 (LDC2010T13),
part 2 v3.1 (LDC2011T09) and part 3 v3.2
(LDC2010T08), following the train/dev/test splits
proposed by Diab et al. (2013). The PATB was
chosen because in addition to diacritics, it con
tains many carefully annotated features which we
use to analyze the performance of our models (see
§6). We perform unicode NFKD normalization
on the text in order to (1) split Unicode charac
ters which contain both a nondiacritic and dia
critic (e.g. the Unicode character for alif with mad
dah above (U+0622) is split into alif (U+0627) and
maddah (U+0653)) and (2) normalize the order of
characters (e.g. alif + high hamza + fatha and alif +
fatha + high hamza both render as أَ and are normal
ized to alif + high hamza + fatha). The diacritics
considered in this work are shown in Table 2.

14



Training Data OOV Rate (Undiacritized)

PATB 7.33%
PATB + Bitext 1.14%

Table 4: OOV rates (rate of seeing a word at infer
ence time that was not seen in training), for the encoder,
which sees words without diacritics.

4.2 MT Data
We use Ar↔{En,Fr,Es} data from Wikimatrix
(Schwenk et al., 2019), Global Voices,8 United
Nations (Ziemski et al., 2016), and NewsCom
mentary,9 and Ar↔{Fr,Es} data from CCAligned
(ElKishky et al., 2020), after joining on English
urls. We filter out noisy sentence pairs (Khayral
lah and Koehn, 2018) using the scripts10 pro
vided by Thompson and Post (2020a), using more
aggressive thresholds of min_laser_score=1.06,
max_3gram_overlap=0.1 for the CCAligned data
and using values from Thompson and Post (2020a)
otherwise. We limit each dataset to 1M lines per
language pair, so that no one data type dominates
training. Data size are shown in Table 3. We up
sample PATB by 20x when combining it with the
bitext, since it is much smaller than the bitext.
We filter out the (very infrequent) diacritics

from the MT data to ensure that any benefits ob
served are due to MTL and not simply the result of
including more diacritized data in training.11
The impact that adding bitext has on the OOV

rate is shown in Table 4.

4.3 Models & Training
We train characterlevel Transformer models in
fairseq (Ott et al., 2019). Metaparameters are
tuned on the development set. The (nonMTL)
baseline has 6 encoder and decoder layers, encoder
and decoder embedding dimensions of 1024, en
coder and decoder feedforward network embed
ding dimensions of 8192, and 16 heads. All embed
dings are shared. The model is trained with learn
ing rate of 0.0004, label smoothing of 0.1, dropout
of 0.4 with no attention or activation dropout, 40k
characters per batch, for 50 epochs. All MTLmod
els have 6 encoder and decoder layers, encoder and
decoder embedding dimensions of 1280, encoder
and decoder feedforward network embedding di

8casmacat.eu/corpus/globalvoices.html
9data.statmt.org/newscommentary/
10github.com/thompsonb/prism_bitext_filter
11In practice, there may be some benefit to retaining dia

critics in the MT data, but this was not explored in this work.

mensions of 12288, and 20 heads. All embeddings
are shared. The model is trained with learning rate
of 0.0004, label smoothing of 0.1, dropout of 0.2
with no attention and activation dropout each set to
0.1, 40k characters per batch, for 20 epochs. We se
lect the best performing model for each run using
WER on the development set.

5 Results

The word error rates for our method (main model,
both ablation models, and baseline) are shown in
Table 5, along with error rates reported by prior
work. Our main model achieves 4.71% WER
on the development set, a relative improvement of
22.8% over the previous best development set re
sult from Zalmout and Habash (2020), who trained
a multitask model on PATB features and incorpo
rated a morphological analyzer. On the test set, it
achieves 4.79% WER, a relative improvement of
18.8% over the best previously reported test set re
sult from Qin et al. (2021), who trained a BERT
based model.
Our ablation models also outperform all prior

work, with the model trained on Ar→{En,Es,Fr}
(denoted Ar→*) bitext outperforming the model
trained on {En,Es,Fr}→Ar (denoted *→Ar) bi
text, but neither perform as well as the main model
trained on both Ar→* and *→Ar. (See §6 for
more detailed comparisons between the models
trained in this work.)
Finally, our baseline model, consisting of a

characterbased Transformer with no augmenta
tion or word embeddings, slightly outperforms
prior models from Alqahtani et al. (2019b) and
Alqahtani and Diab (2019), that also do not use
MTL, morphological analyzers, or contextual em
beddings.

6 Automatic Analysis

6.1 Case Endings

We compute the Diacritic Error Rate (DER) for
all models trained in this work for several differ
ent settings: all characters (including whitespace,
punctuation, and nonArabic characters), Arabic
characters, Arabic case endings, and Arabic char
acters excluding case endings: see Table 6. We use
POS tags to determine which words have case end
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Multitask Morphological Word Dev Test
Analyzer Embeddings WER ↓ WER ↓

Alqahtani et al. (2019b) No No No 8.20%
Alqahtani and Diab (2019) No No No 7.60%
Alqahtani et al. (2020) PATB Features No fastText 7.51%
Zalmout and Habash (2019) PATB Features Train & Test fastText 7.30% 7.50%
Zalmout and Habash (2020) PATB Features Train & Test fastText 6.10%
Qin et al. (2021)† No No Zen 2.0 6.49% 5.90%‡

This word (baseline) No No No 7.46% 7.49%
This work (ablation) Translate *→Ar No No 5.60% 5.83%
This work (ablation) Translate Ar→* No No 5.24% 5.32%
This work Translate *→Ar & Ar→* No No 4.71% 4.79%

Table 5: Development and Test WER (lower is better) for our main system, ablation systems, and baseline, com
pared to recent work. Our main system outperforms all prior work, as do both ablation systems. †:We exclude the
experiments of Qin et al. (2021) which use Farasa in training, as Farasa was trained on the test set (see §2.1.1).
‡:Mean of 5 runs with different random seeds.

Multitask Learning
Baseline *→Ar Ar→* Both

All 2.34% 1.85% 1.73% 1.52%
Arabic 2.97% 2.35% 2.21% 1.94%
Arabic CE 6.90% 4.71% 4.18% 3.61%
Arabic nonCE 2.48% 2.06% 1.96% 1.73%

Table 6: Diacritic error rate for all characters (including
whitespace and nonArabic characters), Arabic charac
ters only, Arabic case endings (CE), and Arabic charac
ters excluding case endings (nonCE). We use POS tags
to determine which words contain case endings.

ings when computingDER.12 Comparing ourmain
model to the baseline, we see thatMTL training im
proves case endings more than noncase endings:
case ending DER is improved by a 47.7% (3.61%
vs 6.90%) vs 30.2% (1.72% vs 2.48%) for non case
ending characters. Furthermore, comparing the ab
lation models, the performance difference between
them is more pronounced on case endings, where
the *→Ar model is 12.7% worse than the Ar→*
model, while the difference is only 5.1% for non
case endings.

6.2 WER vs Sentence Length

We showWER as a function of sentence length (in
undiacritized characters) in Figure 2. We note that
while both the *→Ar and the Ar→* models tend
to improve with sentence length, the improvement
is much more pronounced for the Ar→* model.
In other words, the Ar→* model is benefiting

12Several prior works have reported DER of just the last
character as a standin for caseending DER. However, this
analysis is muddied by the fact that not all words in Arabic
have case endings; in the PATB test set, for example, the POS
tags indicate that only about 46.8% of words have them.
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Figure 2: Word error rate vs (undiacritized) character
length. †:Sentences over 300 characters are processed
in overlapping windows of 300 characters (see §3.2).

much more from increased context than the *→Ar
model.
In conjunction with the DER results in §6.1, this

indicates that training the model to translate out of
Arabic is more helpful at injecting semantic and
linguistic knowledge into the model to address am
biguity. The fact that the two translation direc
tions are complementary suggests that training the
model to translate into Arabic is addressing data
sparsity issues in the model’s decoder, despite the
mismatch between the bitext being undiacritized
and the model needing to produce diacritized out
put.
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Male Female Bias
# WER # WER

Pronoun 835 6.23% 641 8.11% 30.3%
Verb 3579 5.34% 2083 6.39% 19.6%
Suffix 901† 5.22% 10222 5.71% 9.5%

Table 7: WER for male and female pronouns, verbs,
and nouns/adjectives with gendered suffixes, along
with their counts in the test set. †:We include only suf
fixes which are explicitly marked in the PATB for gen
der, which tend to be female (see §6.3).

6.3 Gender Bias
Gender bias has been noted in many aspects of
NLP (Sun et al., 2019) but we are not aware of any
prior work looking at gender bias in diacritization.
We use the PATB POS tags to isolate three types
of gendered words: pronouns, verbs, and suffixes.
“Suffixes” refer to nouns and adjectives that have
a gendered suffix. Unsurprisingly, we find that the
model is better at diacritizing male words than fe
male words in all three cases (see Table 7), with
words in the male categories being diacritized cor
rectly 9.5% to 30.3% more often than their female
equivalents. We suspect that this bias is due at least
in part to representation within the data: Male pro
nouns and verbs are 30% and 72% more common
than their female counterparts. Counts of suffixes
are complicated by the fact that that PATB only
marks certain nouns and adjectives for gender (in
cluding those with taa marbuta, which tend to be
female). By manual inspection, the remainder ap
pear to be male, but we were unable to confirm this
in the PATB annotation guidelines so we included
only those explicitly marked for gender.

6.4 WER vs POS
The PATB includes detailed POS tagging. We ex
ploit this feature to examine how our model per
forms on different parts of speech: see Table 8.
Note that the PATB has one or more POS tags per
word, with about 2.19 tags per word on average
in the test set. We do not attempt to split words
into their respective parts, as we find cases where
this is not straightforward. Instead, such words are
counted multiple times. As an example, الأَوَّلوُن (the
first) is both a determiner and cardinal adjective,
and contributes to the WER of both.
For parts of speech with at least 500 occurrences

in the test set, the worst performing POS for the
MTLmodel by far is proper nouns (count=5969) at
14.09%WER. This is followed by imperfect verbs

(count=2598) at 7.89%WER, possessive pronouns
(count=1609) at 6.60%, and adjectives (excluding
cardinal and comparative) (count=6106) at 6.49%.
Comparative adjectives, which are relatively in

frequent (count=264) also have a high WER of
9.95%, but the worst POS considered by far is the
extremely infrequent (count=18) imperative verbs,
with aWER of 72.22%. Imperative verbs illustrate
the importance of domain; news data contains very
few imperatives, and imperative verbs are often
distinguished from from imperfect or perfect verbs
by diacritics alone. For example, الطريق على استمر can
be diacritized الطَّريِقِ عَلَى اسِتَمِر (Continue on the road)
or الطَّريِقِ عَلَى اسِتَمَرَّ (He continued on the road). This
results in the model choosing the much more com
mon perfect or imperfect forms in the majority of
cases that should be imperative.

6.5 WER vs Word Frequency

MTL improves learning across all word frequen
cies: see Table 9. The biggest improvements are
seen for words seen once and 24 times in training,
with relative improvements of 43.5% and 45.4%,
respectively.

7 Manual Analysis

To better understand the performance of our MTL
model, we manually annotate all differences be
tween our model prediction and the gold test set for
a randomly selected 20% of the 1246 sentences in
the test set that contain at least one disagreement.
We find that approximately 66% of the disagree

ments between the gold test set and the model are
the result ofmodel errors, whichwe denote as “true
errors”. Themajority of these errors are due to case
markings being either incorrect (38.6% of all true
errors) or missing (16.5% of all true errors), while
the rest of the word is correct.
However, we find that in approximately 32% of

disagreements the model output is, in fact, correct.
We denote such cases as “false errors.” About half
(50.3%) of the false errors were due to the test set
missing diacritics and another 31.2% of all false
errors were due to errors in the test set diacritics.
10.7% of the false errors were the result of valid
variations which did not change the meaning of the
sentence in any way (e.g. يُكْشِفْ vs يَكْشِفْ and وَليِ الدُّ
vs وْليِ .(الدَّ Another 4.4% of false errors were the
result of valid variations that changed the meaning
of the sentence while still resulting in a plausible
meaning. A very small number of words (3.4%
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Count Baseline MTL Rel. Examples
WER WER imprv.

Noun: Proper 5969 18.24% 14.09% 22.8% مَریَم (Mary); أَحمَد (Ahmed)
Noun: Numeric 1609 3.29% 2.11% 35.8% عَشَرةَ (ten); أَربَعَة (four)
Noun: Quantity 451 10.42% 5.32% 48.9% أَیَّة (any; fem); بَعض (some)
Noun: Other 22795 8.43% 5.03% 40.3% یَوم (day); دُوَیلَة (small country)
Pronoun: Possessive 1681 11.42% 6.60% 42.2% كِتابيَِ (my book); your)كِتابُكُن book; fem)
Pronoun: Demonstrative 601 0.00% 0.17%  هذٰا (this; male singular); هاتان (these, fem dual)
Pronoun: Other 1154 1.04% 0.52% 50.0% شاھَدَتنِي (she saw me); أَنتَ (you; male singular)
Verb: Inflected, Perfect 3273 9.53% 4.89% 48.7% ذَھَبَ (he went); قبُِلَ (it was accepted)
Verb: Inflected, Imperfect 2598 13.55% 7.89% 41.8% یَذھَبُ (he goes); تقُبَلُ (it is accepted)
Verb: Inflected, Imperative 18 83.33% 72.22% 13.3% اذِهَب (go; male); قِفِي (stop; fem)
Adverb 260 0.00% 0.38%  مَتَى (when); حِینَذاك (then)
Adjective: Cardinal 348 7.18% 4.31% 40.0% القَرن (19th century); الأَوَّلوُن (the first)
Adjective: Comparative 264 16.67% 9.85% 40.9% أَحرصَُ (more cautious); الأَحسَن (the best)
Adjective: Other 6106 10.87% 6.49% 40.4% تارخِِيٌّ (historic); یَھُودِيٌّ (Jewish)
Determiner 15337 8.72% 5.85% 32.9% التُونسِِي (the Tunisian); الیَومُ (the day)

Table 8: WER for our baseline and our main MTL model, for various parts of speech, and their associated count in
the test set. Note: many words have more than one POS and contribute to 2+ categories (see §6.4).

# Occur in Multitask Learning
PATBtrain Baseline *→Ar Ar→* Both

0 30.93% 26.30% 23.20% 21.92%
1 17.63% 12.46% 10.33% 9.95%
24 11.94% 8.32% 7.56% 6.51%
516 8.78% 6.83% 6.50% 5.67%
1764 7.80% 5.81% 5.50% 4.86%
65256 6.33% 4.97% 4.55% 3.76%
2571024 4.34% 3.28% 3.16% 2.94%
>1024 0.30% 0.20% 0.29% 0.22%

Table 9: WER vs number of times a word occurs in
PATBtrain (ignoring diacritics), for all four models
trained in this work.

of false errors) had trivial diacritic variations that
do not change meaning or pronunciation (e.g. one
having a sakun while the other had no diacritic, or
one having a fatha before an alif while the other
did not).
Finally, about 2% of the disagreements are cases

where the input to the model is not a real word,
making the correct output undefined.

8 Conclusion

We demonstrate that training a diacritics model to
both diacritize and translate substantially outper
forms a model trained on the diacritization task
alone. Adding translation data substantially in
creases the amount of training data seen by the
model, addressing data sparsity issues in diacriti
zation. The translation task also injects semantic
and linguistic knowledge into the model, helping

the model resolve ambiguities in diacritization.
Our method achieves a new stateoftheart

word error rate of 4.79% on the Penn Arabic Tree
bank datasets, using the standard data splits of
Diab et al. (2013).
Finally, we present extensive manual and au

tomatic analysis which provides insight into our
method and highlights several challenges that still
remain in Arabic diacritization, including proper
nouns, female word forms, and case endings.
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