
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), pages 32 - 42
May 26-27, 2022 c©2022 Association for Computational Linguistics

Locality-Sensitive Hashing for Long Context Neural Machine Translation

Frithjof Petrick Jan Rosendahl Christian Herold Hermann Ney
Human Language Technology and Pattern Recognition Group

Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

surname@i6.informatik.rwth-aachen.de

Abstract

After its introduction, the Transformer archi-
tecture (Vaswani et al., 2017) quickly became
the gold standard for the task of neural ma-
chine translation. A major advantage of the
Transformer compared to previous architec-
tures is the faster training speed achieved by
complete parallelization across timesteps due to
the use of attention over recurrent layers. How-
ever, this also leads to one of the biggest prob-
lems of the Transformer, namely the quadratic
time and memory complexity with respect to
the input length. In this work we adapt the
locality-sensitive hashing approach of Kitaev
et al. (2020) to self-attention in the Transformer,
we extended it to cross-attention and apply this
memory efficient framework to sentence- and
document-level machine translation. Our ex-
periments show that the LSH attention scheme
for sentence-level comes at the cost of slightly
reduced translation quality. For document-level
NMT we are able to include much bigger con-
text sizes than what is possible with the base-
line Transformer. However, more context does
neither improve translation quality nor improve
scores on targeted test suites.

1 Introduction

After its introduction in 2017, the Transformer ar-
chitecture (Vaswani et al., 2017) quickly became
the gold standard for the task of neural machine
translation (NMT) (Ott et al., 2018). Furthermore,
variants of the Transformer have since been used
very successfully for a variety of other tasks such
as language modeling (LM) (Irie et al., 2019), nat-
ural language understanding (NLU) (Devlin et al.,
2019; Liu et al., 2019), speech translation (ST)
(Vila et al., 2018), automatic speech recognition
(ASR) (Zeyer et al., 2019; Mohamed et al., 2019)
and image processing (Parmar et al., 2018).

A major advantage of the Transformer com-
pared to previous architectures is the faster training
speed achieved by complete parallelization across

timesteps. However, this also leads to one of the
biggest problems of the Transformer, namely the
quadratic time and memory complexity of atten-
tion layers with respect to the sequence length. For
sentence-level NMT this is not a big issue as most
of the time the length of sequences is relatively
short and can be handled efficently, even if sub-
word segmentation is applied (Sennrich et al., 2016;
Kudo, 2018). However, this drastically changes
when moving towards character-level (Gupta et al.,
2019) or document-level (Tiedemann and Scherrer,
2017) NMT. Especially for the latter, speed and
memory issues are one of the biggest roadblocks
towards ‘true’ document level systems (Junczys-
Dowmunt, 2019). This leads to the situation where
most works make do with including just a few
sentences as a form of ‘local’ context information
(Tiedemann and Scherrer, 2017; Jean et al., 2017;
Bawden et al., 2018) or heavily compressing the
document information (Tu et al., 2018; Kuang et al.,
2018; Morishita et al., 2021).

More recently research focus has been shifting
towards more efficient attention calculation for
longer input sentences in several LM and NLU
tasks (Tay et al., 2020). Among these works is the
approach by Kitaev et al. (2020), in which the au-
thors propose to make the attention matrix sparse
by pre-selecting the relevant positions. They report
good results on the LM objective while at the same
time drastically reducing computational complex-
ity. In this work we take the approach of Kitaev
et al. (2020) as a starting point to improve the effi-
ciency of (document-level) NMT systems.

Our contribution is three-fold:

• We adapt the locality-sensitive hashing (LSH)
approach of Kitaev et al. (2020) to self-
attention in the Transformer NMT frame-
work.1

1The source code is available at https://github.
com/rwth-i6/returnn-experiments/tree/
master/2022-lsh-attention.

32

https://github.com/rwth-i6/returnn-experiments/tree/master/2022-lsh-attention
https://github.com/rwth-i6/returnn-experiments/tree/master/2022-lsh-attention
https://github.com/rwth-i6/returnn-experiments/tree/master/2022-lsh-attention

• We expand the concept of LSH to encoder-
decoder cross-attention and provide insights
on how this concept affects the behavior of
the system.

• We use this more memory-efficient NMT
framework to conduct experiments on
document-level NMT with more context infor-
mation as would be possible with the baseline
architecture.

2 Related Work

The problem of quadratic time and memory com-
plexity of the attention framework has received
increasing attention since the success of the Trans-
former architecture (Vaswani et al., 2017).

For ASR, ST and image processing the complex-
ity can be reduced with relative ease by reducing
the size of the time dimension with convolutional
(Gulati et al., 2020) or pooling layers (Zeyer et al.,
2019). Furthermore, it is possible to restrict the
attention to a few neighboring positions (Parmar
et al., 2018). However, this is not optimal for text
input, as neighboring input words do not necessar-
ily have the same strong correlation as neighboring
audio frames or image pixels.

Existing work on improving the text process-
ing complexity of the Transformer mainly focuses
on the case where all attention inputs come from
the same embedding space, e.g. language model-
ing: Dai et al. (2019) and Rae et al. (2019) uti-
lize a segment-level recurrence mechanism sim-
ilar to what has been used in recurrent architec-
tures. Wang et al. (2020) project the time dimen-
sion of key and value down to a smaller, fixed-size
dimension while leaving the queries untouched.
Directly altering the attention computation, Child
et al. (2019), Sukhbaatar et al. (2019) and Qiu et al.
(2020) limit the attention to a local neighborhood
or a fixed stride while Zaheer et al. (2020) and Belt-
agy et al. (2020) combine multiple sparse attention
masks. In a more flexible approach, matching posi-
tions can be pre-selected using a locality-sensitive
hashing function (Kitaev et al., 2020) or cluster-
ing (Roy et al., 2021). In the present work, we
pick one of the most efficient and best performing
approaches up to date, namely the approach by Ki-
taev et al. (2020) and apply it to the task of machine
translation. We confirm that the concepts can work
for the self-attention in NMT systems and expand
the framework for the case of cross-attention.

Most work related to document-level NMT limit
the inter sentence context to few neighboring sen-
tences. The simplest approach which we also fol-
low in the present work, is to concatenate consec-
utive sentences using a special sentence separator
token (Tiedemann and Scherrer, 2017). There exist
more sophisticated approaches which utilize sep-
arate encoders for the context information (Jean
et al., 2017; Bawden et al., 2018) but later work
seems to suggest that these approaches do not sig-
nificantly outperform the simpler concatenation
approach (Huo et al., 2020; Lopes et al., 2020).

In the realm of NMT, not so much work exists re-
garding improving the efficiency of the system and
the work that exists mainly focuses on document-
level NMT. Morishita et al. (2021) propose to com-
press the context into a single vector which then can
be attended to as an additional token embedding.
Tu et al. (2018) and Kuang et al. (2018) utilize a
cache that holds context information. Zhang et al.
(2020) and Bao et al. (2021) mask out the attention
energies between tokens from different sentences,
showing that the full context is not necessary to
achieve good translation performance. Raganato
et al. (2020) and You et al. (2020) replace most
attention heads with fixed patterns but only for
sentence-level NMT and only for self-attention as
they report a severe degradation when doing the
same for the cross-attention.

There exist several different ways to implement
LSH (Paulevé et al., 2010). The LSH scheme used
by Kitaev et al. (2020) and consecutively in this
work was proposed by Andoni et al. (2015). LSH
has also been successfully applied to efficiently cal-
culate pairwise embedding similarity for informa-
tion retrieval (Ture et al., 2011; Zhao et al., 2015).
Shi and Knight (2017) use LSH to pre-select em-
beddings in the softmax operation of an NMT sys-
tem to speed up the decoding process.

3 Locality-sensitive Hashing Attention

At the core of the Transformer architecture is the
attention mechanism that compares a sequence of
queries q1, . . . qI to a sequence of key-value pairs
(k1, v1), . . . (kJ , vJ) via a soft-lookup α(j|i) =
α(qi, j, k

J
1) and maps them to context vectors

ci :=
J∑

j=1

α(j | i)vj .

To compute the full sequence of context vectors,
O(IJ) operations are required. In the special case

33

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

q1 q2 q3q4 q9q6 q7 q10 q5 q8q11 q12

q1 q2 q3q4 q9q6 q7 q10 q5 q8q11 q12

Initial sequence

Hashing

Sort by hash

Cut into chunks

k1

k2

k4

k11

k12

k3

k6

k7

k9

k10

k5

k8

Attention range

Figure 1: Locality-sensitive hashing for self-attention as presented in Kitaev et al. (2020) with bidirectional context.
For self-attention with key and queries shared it holds that qi = ki. Colors indicate the hash class of the query/key.
Note that no position can attend to itself if other attention points are available.

of self-attention, i.e. I = J and qi = ki ∀i, the
amount of operations grows quadratically with the
sequence length I . Since this can be problematic
for long sequences, Kitaev et al. (2020) proposed
to use locality-sensitive hashing (LSH) attention.

In the following, we first describe the concept
of LSH for self-attention, here we omit the left-
to-right masking originally used (Kitaev et al.,
2020) and describe the concept for bidirectional
self-attention instead. Afterwards, we describe our
extension of LSH to cross-attention.

In LSH the context vector for query position i is
computed via

c(lsh)
i :=

∑

j∈Pi

α̂(j | i)vj

where a locality-sensitive hashing function h is
used to determine

Pi := {j ∈ {1, . . . , J} \ {i}|h(j) = h(i)}

and α̂ is normalized over Pi instead of {1, . . . , J}.
The hashing function h maps to a small number

of classes {1, . . . , nhash} and is locality-sensitive,
i.e. if two vectors are close-by they are likely to get
assigned the same hash value. Kitaev et al. (2020)
consider the case of self-attention and approximate
the set Pi to keep computation efficient. First the
original sequence of keys is sorted by their hash
value as primary criterion and original sequence or-
der as secondary criterion. The resulting sequence

is cut into chunks Ci of fixed size and

P̂i := {j ∈ Ci \ {i}|h(j) = h(i)}

is used as an approximation to Pi. However, if
P̂i = ∅ the fallback P̂i := {i} is used. This process
is illustrated in Figure 1.

Kitaev et al. (2020) consider only the case of a)
self-attention and b) shared query and key trans-
formation matrices within each head. This focus
on self-attention leads to several simplifications, in
particular that the chunks of the key and query se-
quence are identical. In order to extend the concept
of LSH to cross-attention (i.e. queries and keys are
distinct) we need to solve several problems.

How to find an adequate key chunk for each
query chunk? Hashing and chunking is done for
both the key and the query sequences, resulting
in two different chunk sequences. We propose to
calculate an alignment from the query chunks to
the key chunks. For each query chunk C we find
an aligned key chunk K(C) that contains queries
with similar hash classes. To do this, the range of
hash classes (hmin, hmax) of the query chunk C is
determined. Next, we enumerate all key chunks
K1, . . . ,Kn and search for the first key chunk Kj1

that contains an entry hashed to hmin and the last
key chunk Kj2 that corresponds to hmax. Then the
middle chunk K⌈

j2+j1
2

⌉ is selected, resulting in

P̂i := {j ∈ K(Ci) |h(j) = h(i)}.
34

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

q1 q2 q3q4 q9q6 q7 q10 q5 q8q11 q12

q1 q2 q3q4 q9q6 q7 q10 q5 q8q11 q12

Initial sequences

Hashing

Sort by hash

Cut into chunks

k1

k2

k7

k8

k3

k6

k4

k5

Attention range

k1 k2 k3 k4 k5 k6 k7 k8

k1 k2 k3 k4 k5 k6 k7 k8

k1 k2 k6k7 k4 k5k8 k3

q1 q2 q3q4 q9q6 q7 q10 q5 q8q11 q12 k1 k2 k6k7 k4 k5k8 k3

Align each query chunk

k3

k6

k4

k5

queries keys

Figure 2: Locality-sensitive hashing for cross-attention. Colors indicate the hash class of the query/key. Greyed out
dots in the attention range matrices indicate that attention weights are fixed to 1

ℓchunk
= 1

4 , since no possible attention
point corresponds to the current hash class.

What happens if a query belongs to a hash
class that is not represented in the aligned key
chunk? Since no keys are found that are close to
the current query qi, we use the average value of the
aligned query chunk. That is, we set P̂i := K(Ci)
and obtain

c(lsh)
i :=

1

|K(Ci)|
∑

j∈K(Ci)

vj .

Throughout our experiments both key and query
chunks are of equal size ℓchunk. The LSH cross-
attention is shown in Figure 2.

To reduce the impact of the chunking we com-
pute attention not only within the aligned chunk
but also one chunk to the left and right, similar to
Kitaev et al. (2020). This is applied both in self-
and cross-attention. For unidirectional attention
components, only the left context is considered.

Multi-round LSH Attention
Kitaev et al. (2020) show that multi-round hash-
ing can help to improve the performance of LSH
attention systems. For multi-round hashing differ-
ent hash functions hr are used to determine the
corresponding (chunked) hash classes P̂ r

i and the
context vector is calculated over the union

c(lsh)
i :=

∑

j∈⋃r P̂
r
i

α̂(j | i)vj .

with α̂(j | i) normalized over
⋃

r P̂
r
i . Multi-round

hashing can be applied to both self- and cross-
attention. For details on an efficient implemen-
tation we refer to Kitaev et al. (2020).

4 Experimental Setup

We evaluate our extensions to the attention by train-
ing Transformer (Vaswani et al., 2017) models
with varying attention mechanisms on four MT
tasks: The WMT 2016 news translation Romanian
to English data with 612k parallel sentences (Eu-
roparl v8 & SE Times), the WMT 2019 English to
German data with 329k parallel sentences (News
Commentary v14), as well as the IWSLT 2017 En-
glish to German and English to Italian data con-
sisting of 232k and 206k parallel sentences (TED
talks). The data is pre-processed by applying 20k
SPM merge operations (15k for both IWSLT tasks)
(Kudo, 2018). The average sentence length for both
WMT tasks is 30 subwords and 24 subwords for
the IWSLT tasks.

The WMT EN→DE and the IWSLT EN→DE

and EN→IT sentences are grouped by document.
For document-level systems we utilize this infor-
mation in a pre-processing step by simply concate-
nating the k preceding sentences on source and
target side to each sentence pair like Tiedemann
and Scherrer (2017) do, but experiment with larger

35

Attention method
RO→EN EN→DE EN→IT

WMT WMT IWSLT IWSLT
BLEU TER BLEU TER BLEU TER BLEU TER

Full attention (baseline) 34.2 53.3 32.1 56.7 23.3 68.4 32.8 53.6
LSH self-attention 33.5 54.3 30.5 58.6 22.9 68.6 31.6 54.7
LSH self- & cross-attention 33.3 54.3 29.3 60.0 22.3 69.4 31.9 54.7

Table 1: Translation performance when training models with LSH attention on different sentence-level tasks. We
vary where to apply LSH attention: nowhere (baseline), encoder and decoder self-attention, or three-fold. All
systems use nhash = 4, ℓchunk = 6 and four hash rounds. BLEU and TER are given in percentage.

context sizes k ∈ {0, 3, 9, 12}. In particular k = 0
yields a sentence-level system without any docu-
ment context. In between the concatenated sen-
tences we add a special separator token. We do not
utilize right side context to ensure source and target
have roughly the same length.

The general system architecture follows the
‘base’ configuration of Vaswani et al. (2017) with
6 encoder/decoder layers of feature dimension
dmodel = 512, 8 attention heads and key/value di-
mension dk = 64. We share the source/target
embeddings as well as the transposed projections
and employ training dropout of 30 % (20 % for
RO→EN). All models are implemented in RE-
TURNN (Zeyer et al., 2018).

We use the Adam optimizer (Kingma and Ba,
2015) with initial learning rate of 10−3. After train-
ing the systems for 200 checkpoints (1/4 of all data
for WMT RO→EN, 1/2 for WMT EN→DE and the
full data for both IWSLT tasks), we select the best
checkpoint based on the dev perplexity on which
we report BLEU using SacreBLEU (Post, 2018) and
TER using TERCom (Snover et al., 2006) on an
unseen test set. As systems with larger document-
context see more frames in each epoch, we already
stop training after 100 checkpoints for k ≥ 9. We
find that the converged document-level systems are
able to predict the correct number of target sen-
tences with almost perfect accuracy. We extract
the last predicted sentence for each sample and
then calculate BLEU and TER on the sentence-level
data.

When deploying LSH in the cross-attention, we
found it crucial for training stability to first shuffle
the key and query sequences as secondary criterion
before sorting by hash classes. This helps during
training in cases where the amount of queries/keys
with the same hash class exceeds the window size.

5 Experimental Results

5.1 Sentence-level

We first evaluate the impact of our LSH attention
approximation on different sentence-level tasks by
replacing the self- and/or cross-attention compo-
nents of the baseline with LSH attention. For
LSH we use nhash = 4 hash classes, chunks of
size ℓchunk = 6 and four hash rounds. This way
the LSH attention could cover sentences of length
nhash · ℓchunk = 4 ·6 = 24 entirely by partitioning it
into nhash hash classes of size ℓchunk (neglecting the
forward/backward window and the multiple hash
rounds), roughly matching the average sentence
length. The results are shown in Table 1. We use
LSH both while training and during inference.

Across all tasks the LSH-approximated attention
performs worse than full attention. All systems
but the WMT EN→DE system perform at most
1 % BLEU worse then the baseline when using
three-fold LSH. For WMT EN→DE however, the
performance degradation is much higher (2.8 %
BLEU), suggesting that LSH does not work equally
well across different tasks and language pairs.

In general, approximating the cross-attention is
more damaging than LSH in the self-attention. In
an extended analysis we find that the decoder self-
attention seems least delicate and can be replaced
by LSH attention with almost no decrease in trans-
lation capability.

5.2 Document-level

As the sequences in the sentence-level setting are
relatively short, employing LSH does not save any
memory but instead has a large computational over-
head in comparison to the full dot-attention imple-
mented with a few simple matrix multiplications.
With increasing document-level context however,
the quadratic memory usage of the full attention
becomes a limiting factor which is overcome by

36

Attention method Context
EN→DE EN→IT

ContraPro
Accuracy

Peak
Mem.
[GB]

WMT IWSLT IWSLT
BLEU TER BLEU TER BLEU TER

Full att. (baseline) 0 32.1 56.7 23.3 68.4 32.8 53.6 42.4 5.5
3 31.9 57.1 23.6 67.5 31.9 54.7 69.2 7.8
9 30.8 58.6 OOM OOM OOM 9.6
12 OOM OOM OOM OOM OOM

LSH self-attention 0 30.2 58.9 22.6 68.8 32.5 53.6 38.4 5.1
3 30.8 58.5 23.0 68.3 32.5 53.8 50.1 5.7
9 30.5 58.5 23.2 68.1 32.2 53.6 50.4 6.8
12 29.8 59.2 23.6 67.6 31.8 53.9 46.3 7.0

LSH self- & cross-att. 0 29.0 60.2 22.5 68.7 31.5 54.7 40.3 9.6
3 29.4 60.1 22.7 68.4 31.7 55.2 59.8 9.3
9 27.3 64.8 22.1 69.9 31.4 54.5 51.7 9.0
12 25.8 62.7 19.8 69.3 29.6 57.6 51.8 9.4

Table 2: Training LSH attention systems with different document-level context sizes. Besides BLEU and TER on the
test set, we report the accuracy of the IWSLT EN→DE system on the ContraPro task (Müller et al., 2018). These
three metrics are given in percentage. All systems use the same batch size during training, we exemplarily report the
memory usage of the WMT EN→DE system. ‘OOM’ indicates that a system requires too much memory and cannot
be trained.

using LSH attention.
We conduct a series of experiments with varying

document-level context sizes, concatenating up to
13 sentences at once. For each context size, we
train models with a) full attention everywhere, b)
LSH in the encoder- and decoder-self-attention,
and c) LSH in all three attention components.

In all LSH components we fix the LSH chunk
size to ℓchunk = 10, meaning each query can only
attend to a constant number regardless of how many
context sentences the system utilizes. We set the
number of hash classes equal to the number of
concatenated sentences (i.e. k + 1, but rounded to
an even number which is required by Kitaev et al.
(2020)’s hash function). The systems trained with
LSH only in the self-attention use single rounded
hashing as this is more memory-efficient. For the
three-fold LSH systems we use four hash rounds.

Table 2 shows the results in BLEU and TER

as well as the peak memory consumption on a
GTX 1080 which fits about 10 GB. All systems
are trained with a batch size of 3133 subwords. Ad-
ditionally, we report the accuracy on the EN→DE

contrastive pronoun resolution test set ContraPro
(Müller et al., 2018). To resolve the pronouns prop-
erly context of up to three sentences is necessary.

With increasing context size, the full attention
systems drastically use more memory as the com-

putation of the full attention matrix scales quadrat-
ically in the sequence length. The memory usage
of the LSH attention on the contrary only scales
linearly in the sequence length and therefore is con-
stant w.r.t. a fixed batch size. When the context
size is too large, all full attention systems crash dur-
ing training as a single training batch no longer fits
into the 10 GB GPU memory. Replacing the self-
attention with LSH is not only in absolute numbers
more memory-efficient than the baseline but also
scales much more softly in the document-level con-
text size, making it possible to easily train a system
with 12 sentences context where all full attention
systems crash. Also, replacing the cross-attention
with LSH finally means that the memory consump-
tion remains constant w.r.t. the document-level
context size, as it scales fully linearly in the num-
ber of tokens. Note however that because we use
multi-round hashing here, it requires more memory
than full attention when used on short sequences.

In terms of translation quality, we see similar
results as in Table 1 when comparing the three dif-
ferent system architectures in the sentence-level
setting: Employing LSH in the self-attention de-
creases BLEU by 0.3–0.9 % BLEU. Three-fold
LSH performs 0.8 and 1.3 % BLEU worse than
the baseline for the IWSLT EN→DE and EN→IT

tasks respectively, but 3.1 % BLEU worse on WMT

37

Hash classes Class size range
LSH inference Full inference Full attention

covered by LSHBLEU TER BLEU TER

1 (baseline) 35.7 51.4 35.7 51.4 100.0
2 49.7 – 50.3 35.6 51.6 35.4 51.6 64.5
4 24.1 – 25.7 35.2 51.9 35.1 51.9 42.4
8 11.0 – 13.4 34.6 52.2 34.6 52.2 29.5

Table 3: WMT RO→EN sentence-level systems trained with single-round LSH cross-attention and full self-attention.
We set the chunk size large enough to always cover the entire sequence and vary the number of hash classes. For
each system, we aggregate the hash class distribution of all queries/keys on the dev set and report the size of the
smallest and largest class in percentage. We report BLEU and TER on the dev set a) using LSH and b) using full
attention not restricted to the same hash class. Further we average the sum of all attention weights of the full
attention inference that would have been covered by LSH attention and report it in percent.

EN→DE as also observed before.
While increasing the document-level context

slightly worsens BLEU and TER for the full at-
tention systems, the accuracy on the ContraPro test
set increases significantly from 42.4 % to 69.2 %
when including the three previous sentences as this
task requires knowledge of the last few sentences.

Both the system with LSH in self-attention only
and the three-fold LSH system perform equally
well as the sentence-level systems even for high
context sizes. Only for very large sizes (k = 12),
performance starts to decrease.

6 Extended Analysis

6.1 Hash Quality

To evaluate the impact of approximating the full
attention LSH we train systems with varying num-
ber of hash classes nhash in the cross attention. As
described in Section 3, queries may only attend to
keys of the same hash class. The results for this are
shown in Table 3. We explain the different columns
in the following paragraphs.

In a first step we want to answer the question
whether LSH attention actually makes use of dif-
ferent hash classes. Otherwise, if one hash class
is over- or underrepresented, the chunk size used
by the system will not be large enough to actually
attend to all relevant keys. To verify this, we ex-
tract the distribution of all key and query vectors
the system generated on the development set and
count the sizes of all hash classes. We find that
indeed the hash classes are approximately equally
distributed, i.e. all have a size close to 1

nhash
.

Increasing the number of hash classes decreases
the number of keys each query can attend to. This
also decreases translation performance in terms of

BLEU and TER, but only minorly: The system us-
ing 8 hash classes, i.e. only attending to one eighth
of all keys per query, only performs 1.1 % BLEU

worse than the baseline when also using LSH dur-
ing inference.

The previous results all also use LSH during in-
ference. Alternatively, we also experiment with
full attention during inference after training the sys-
tem with LSH. In this case, performance is almost
equal to the LSH-restricted attention, even when
using many hash classes. For each sentence pair,
we extract the attention weights using full attention
and sum over the key positions the LSH system
attends to. This is the share of full attention cov-
ered by the LSH approximation, which however
in the LSH system is renormalized to have a sum
of 1 for each query. The average of this over all
dev sentences and attention heads is shown in the
last column of Table 3. Even though with increas-
ing number of hash classes the share of covered
attention decreases drastically, both LSH inference
and full inference perform equally well in terms of
BLEU and TER. This indicates that LSH is able to
focus on the most important positions.

6.2 Effective Window Size

The number of keys each query can attend to de-
pends on a) the LSH chunk size, b) the number of
attention heads used in parallel, and c) the number
of hash rounds used in each attention head. Fixing
the product of these three factors, which combina-
tion leads to the best translation performance?

As shown in Table 4, a larger chunk size or
more attention heads do not improve performance.
Using two hash rounds increases performance by
0.5 % BLEU. Different hash rounds allow the sys-
tem to partition the key sequences w.r.t. different

38

Chunk size Heads Rounds BLEU TER

6 8 1 35.0 52.1

12 8 1 34.7 52.2
6 16 1 35.0 52.1
6 8 2 35.5 51.7

6 8 4 35.4 51.6

Table 4: WMT RO→EN sentence-level systems trained
with LSH encoder self-attention, varying three param-
eters determining the how many keys each query may
attend to. All systems with ℓchunk = 6 use nhash = 4
(nhash = 8 for ℓchunk = 12). We report BLEU and TER
on the dev set in percentage.

aspects described by different hash functions. This
effect is limited however, as four hash rounds per-
form equally well as just two.

6.3 Training Time and Memory

While LSH is more memory-efficient than full at-
tention, it requires more operations to compute due
to its increased complexity. For example, training
for one checkpoint for the sentence-level WMT
EN→DE system (Table 2) takes 49 min when us-
ing full-attention, 69 min when using single-round
LSH in the self-attention, and 120 min when using
three-fold LSH with four hash rounds. In particular,
the time complexity of LSH scales linearly in the
amount of hash rounds.

To still be able to train the full attention sys-
tems with large document-level context, a simple
option is to reduce the batch size at the cost of a
longer training time. With k = 12 sentences con-
text, if we reduce the batch size to 2500 subwords,
we can run the full attention system at a speed of
165 min / checkpoint. For this however note that
we need to remove a few very long sequences no
longer fitting into a single batch. In comparison,
the self-attention system with a tuned batch size
takes about the same time, 163 min / checkpoint.

7 Conclusion

We present a method to make the Transformer
NMT architecture more memory-efficient when
handling long input sequences. This is achieved by
pre-selecting the most relevant candidates in self-
attention and cross-attention using an LSH scheme
that has been successfully applied for language
modeling in previous work. We modify the exist-
ing LSH scheme to work in the NMT framework

and conduct experiments on both sentence-level
and document-level NMT tasks.

Our experiments show that the LSH attention
scheme can be used for sentence-level NMT, al-
though the approximation comes at the cost of
slightly reduced translation quality. For document-
level NMT we are able to include much bigger con-
text sizes than what is possible with the baseline
Transformer. However, more context does neither
improve translation quality nor improve scores on
targeted test suites.

In the future, we plan to use this approach for
speech translation where long input sequences are
a more pressing issue.

Acknowledgements

This project has received
funding from the Eu-
ropean Research Coun-
cil (ERC) under the Eu-
ropean Union’s Horizon

2020 research and innovation programme (grant
agreement No 694537, project "SEQCLAS"). The
work reflects only the authors’ views and the
European Research Council Executive Agency
(ERCEA) is not responsible for any use that may
be made of the information it contains.

References
Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya

Razenshteyn, and Ludwig Schmidt. 2015. Practical
and optimal lsh for angular distance. Advances in
neural information processing systems, 28.

Guangsheng Bao, Yue Zhang, Zhiyang Teng, Boxing
Chen, and Weihua Luo. 2021. G-transformer for
document-level machine translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3442–3455.

Rachel Bawden, Rico Sennrich, Alexandra Birch, and
Barry Haddow. 2018. Evaluating discourse phenom-
ena in neural machine translation. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Vol-
ume 1 (Long Papers), pages 1304–1313. Association
for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

39

https://doi.org/10.18653/v1/n18-1118
https://doi.org/10.18653/v1/n18-1118
http://arxiv.org/abs/2004.05150

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. 2020.
Conformer: Convolution-augmented transformer for
speech recognition. Proc. Interspeech 2020, pages
5036–5040.

Rohit Gupta, Laurent Besacier, Marc Dymetman, and
Matthias Gallé. 2019. Character-based NMT with
transformer. CoRR, abs/1911.04997.

Jingjing Huo, Christian Herold, Yingbo Gao, Leonard
Dahlmann, Shahram Khadivi, and Hermann Ney.
2020. Diving deep into context-aware neural ma-
chine translation. In Proceedings of the Fifth Confer-
ence on Machine Translation, pages 604–616.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann
Ney. 2019. Language modeling with deep transform-
ers. Proc. Interspeech 2019, pages 3905–3909.

Sébastien Jean, Stanislas Lauly, Orhan Firat, and
Kyunghyun Cho. 2017. Does neural machine
translation benefit from larger context? CoRR,
abs/1704.05135.

Marcin Junczys-Dowmunt. 2019. Microsoft translator
at wmt 2019: Towards large-scale document-level
neural machine translation. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 225–233.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Shaohui Kuang, Deyi Xiong, Weihua Luo, and Guodong
Zhou. 2018. Modeling coherence for neural machine
translation with dynamic and topic caches. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 596–606.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 66–75.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

António Lopes, M Amin Farajian, Rachel Bawden,
Michael Zhang, and André FT Martins. 2020.
Document-level neural mt: A systematic compari-
son. In Proceedings of the 22nd Annual Conference
of the European Association for Machine Translation,
pages 225–234.

Abdelrahman Mohamed, Dmytro Okhonko, and Luke
Zettlemoyer. 2019. Transformers with convolutional
context for ASR. CoRR, abs/1904.11660.

Makoto Morishita, Jun Suzuki, Tomoharu Iwata, and
Masaaki Nagata. 2021. Context-aware neural ma-
chine translation with mini-batch embedding. In
Proceedings of the 16th conference of the European
chapter of the association for computational linguis-
tics: main volume, pages 2513–2521.

Mathias Müller, Annette Rios, Elena Voita, and Rico
Sennrich. 2018. A large-scale test set for the evalua-
tion of context-aware pronoun translation in neural
machine translation. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers,
WMT 2018, Belgium, Brussels, October 31 - Novem-
ber 1, 2018, pages 61–72. Association for Computa-
tional Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 1–9, Brussels,
Belgium. Association for Computational Linguistics.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. In International
Conference on Machine Learning, pages 4055–4064.
PMLR.

Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. 2010.
Locality sensitive hashing: A comparison of hash
function types and querying mechanisms. Pattern
recognition letters, 31(11):1348–1358.

40

http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1911.04997
http://arxiv.org/abs/1911.04997
http://arxiv.org/abs/1704.05135
http://arxiv.org/abs/1704.05135
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1904.11660
http://arxiv.org/abs/1904.11660
https://doi.org/10.18653/v1/w18-6307
https://doi.org/10.18653/v1/w18-6307
https://doi.org/10.18653/v1/w18-6307
https://doi.org/10.18653/v1/W18-6301

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, WMT 2018,
Belgium, Brussels, October 31 - November 1, 2018,
pages 186–191. Association for Computational Lin-
guistics.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih,
Sinong Wang, and Jie Tang. 2020. Blockwise self-
attention for long document understanding. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2555–2565.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
Chloe Hillier, and Timothy P Lillicrap. 2019. Com-
pressive transformers for long-range sequence mod-
elling. In International Conference on Learning Rep-
resentations.

Alessandro Raganato, Yves Scherrer, and Jörg Tiede-
mann. 2020. Fixed encoder self-attention patterns
in transformer-based machine translation. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 556–568.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions of
the Association for Computational Linguistics, 9:53–
68.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Xing Shi and Kevin Knight. 2017. Speeding up neural
machine translation decoding by shrinking run-time
vocabulary. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 574–579.

Matthew G. Snover, Bonnie J. Dorr, Richard M.
Schwartz, Linnea Micciulla, and John Makhoul.
2006. A study of translation edit rate with targeted
human annotation. In Proceedings of the 7th Con-
ference of the Association for Machine Translation
in the Americas: Technical Papers, AMTA 2006,
Cambridge, Massachusetts, USA, August 8-12, 2006,
pages 223–231. Association for Machine Translation
in the Americas.

Sainbayar Sukhbaatar, Édouard Grave, Piotr Bo-
janowski, and Armand Joulin. 2019. Adaptive at-
tention span in transformers. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 331–335.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2020. Efficient transformers: A survey. CoRR,
abs/2009.06732.

Jörg Tiedemann and Yves Scherrer. 2017. Neural ma-
chine translation with extended context. DiscoMT
2017, page 82.

Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang.
2018. Learning to remember translation history with
a continuous cache. Transactions of the Association
for Computational Linguistics, 6:407–420.

Ferhan Ture, Tamer Elsayed, and Jimmy Lin. 2011. No
free lunch: Brute force vs. locality-sensitive hashing
for cross-lingual pairwise similarity. In Proceedings
of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’11, page 943–952, New York, NY, USA. As-
sociation for Computing Machinery.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Laura Cross Vila, Carlos Escolano, José AR Fonollosa,
and Marta R Costa-Jussa. 2018. End-to-end speech
translation with the transformer. In IberSPEECH,
pages 60–63.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. CoRR, abs/2006.04768.

Weiqiu You, Simeng Sun, and Mohit Iyyer. 2020. Hard-
coded gaussian attention for neural machine transla-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7689–7700.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in Neural
Information Processing Systems, volume 33, pages
17283–17297. Curran Associates, Inc.

Albert Zeyer, Tamer Alkhouli, and Hermann Ney. 2018.
RETURNN as a generic flexible neural toolkit with
application to translation and speech recognition. In
Proceedings of ACL 2018, Melbourne, Australia, July
15-20, 2018, System Demonstrations, pages 128–133.
Association for Computational Linguistics.

Albert Zeyer, Parnia Bahar, Kazuki Irie, Ralf Schlüter,
and Hermann Ney. 2019. A comparison of trans-
former and lstm encoder decoder models for asr. In
2019 IEEE Automatic Speech Recognition and Un-
derstanding Workshop (ASRU), pages 8–15. IEEE.

Pei Zhang, Boxing Chen, Niyu Ge, and Kai Fan. 2020.
Long-short term masking transformer: A simple but
effective baseline for document-level neural machine
translation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1081–1087.

41

https://doi.org/10.18653/v1/w18-6319
https://doi.org/10.18653/v1/w18-6319
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/2006.amta-papers.25/
https://aclanthology.org/2006.amta-papers.25/
http://arxiv.org/abs/2009.06732
https://doi.org/10.1145/2009916.2010042
https://doi.org/10.1145/2009916.2010042
https://doi.org/10.1145/2009916.2010042
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2006.04768
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://doi.org/10.18653/v1/P18-4022
https://doi.org/10.18653/v1/P18-4022

Kai Zhao, Hany Hassan, and Michael Auli. 2015. Learn-
ing translation models from monolingual continuous
representations. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 1527–1536.

42

