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Abstract

In automated scientific fact-checking, machine
learning models are trained to verify scientific
claims given evidence. A major bottleneck of
this task is the availability of large-scale train-
ing datasets on different domains, due to the
required domain expertise for data annotation.
However, multiple-choice question-answering
datasets are readily available across many dif-
ferent domains, thanks to the modern online ed-
ucation and assessment systems. As one of the
first steps towards addressing the fact-checking
dataset scarcity problem in scientific domains,
we propose a pipeline for automatically con-
verting multiple-choice questions into fact-
checking data, which we call Multi2Claim.
By applying the proposed pipeline, we gen-
erated two large-scale datasets for scientific-
fact-checking: Med-Fact and Gsci-Fact for
the medical and general science domains, re-
spectively. These two datasets are among
the first examples of large-scale scientific-fact-
checking datasets. We developed baseline mod-
els for the verdict prediction task using each
dataset. Additionally, we demonstrated that
the datasets could be used to improve per-
formance measured by weighted F1 on ex-
isting fact-checking datasets such as SciFact,
HEALTHVER, COVID-Fact, and CLIMATE-
FEVER. In some cases, the improvement in
performance was up to a 26% increase. The
generated datasets are publicly available1.

1 Introduction

Learning to verify the claims in scientific papers
and “science releases” (media announcements of
scientific findings) is a difficult task for both artifi-
cial intelligence (AI) systems and humans. How-
ever, this task is crucial because learning to separate
verified facts from speculation or falsehoods has im-
portant consequences. Success at this task can help
the reader understand scientific topics and promote
science. Conversely, failure at this task leads to the

1https://github.com/taneset/Multi2Claim.

Figure 1: Examples of “supported” (green), “refuted”
(red), and “not-enough-info” (yellow) types of claims
from the Gsci-Fact dataset which is generated from the
original multi-choice question (grey).

spread of misinformation and exaggeration, which
can cause distortion in scientific communication
and undermine public confidence in science. Unfor-
tunately, several studies have revealed that science
releases and scientific articles can contain signifi-
cant exaggeration and misinformation (Woloshin
et al., 2009), (West and Bergstrom, 2021), (Sum-
ner et al., 2014), (Woloshin and Schwartz, 2002).
This misleading information can directly impact
people’s lives, as was the case for media releases
concerning the COVID-19 pandemic (Roozenbeek
et al., 2020). In 2014, some estimates claimed that
40% of the press releases contained exaggerated
advice and 33% contained exaggerated claims in
science-related news (Sumner et al., 2014). Con-
sidering that this problem has not disappeared over
the last eight years and has possibly been exasper-
ated by the continued growth of social media and
the number of published scientific papers, there
is a need for automated systems that can aid both
academics and the public in judging the veracity
and credibility of scientific claims. In this con-
text, attempts to automate searching for distortions
of findings, exaggerations, and misrepresentations
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may contribute to the trustworthiness verification
of science releases and articles.

The fact verification task, commonly known as
“fact-checking”, is verifying claims in natural lan-
guage against a collection of information that con-
tains facts. The pipeline for fact-checking usually
includes two subtasks: 1) Retrieve-Rank and 2)
Veracity Prediction. The Retrieve-Rank operation
is typically carried out using information retrieval,
and ranking models that rely on a combination of
lexical (BM25) and semantic (using word embed-
dings in pre-trained language models) similarities
between the claim and textual evidence candidates
(Lin et al., 2020). The veracity prediction task,
which has been studied less than the retrieve-rank
task, can be seen as a classification task that pre-
dicts the type of verdict given a claim-evidence
pair. Typically there are three classes of verdicts:
“support”, “refute”, and “not enough information”.
The veracity prediction problem can also be formu-
lated as a task of identifying textual entailment, in
which a model predicts if the provided evidence
entails a given claim. Recent work shows that these
two subtasks could be combined in an end-to-end
manner (Thorne et al., 2021; Wadden et al., 2020a)
or could be carried out separately (Saakyan et al.,
2021; Diggelmann et al., 2020). Most studies and
datasets used in fact-checking are designed to ver-
ify claims in general domains such as news, forums,
popular Wikipedia passages, and social media posts
(Augenstein et al., 2019b; Thorne et al., 2021; Os-
hikawa et al., 2020; Shahi and Nandini, 2020; Shaar
et al., 2020).

It is typically more challenging to automatically
verify a scientific claim compared to a claim in the
general domain. This is because scientific asser-
tions can be much more complex, and it requires
deep domain knowledge to create datasets for sci-
entific claims. The required domain knowledge
is a major bottleneck, making the annotation pro-
cess expensive and time-consuming. As a result of
these difficulties, there are only a few scientific-
fact-checking datasets in the literature, and the
sizes of those datasets are limited. However, the
recent deep-learning-based approaches to perform-
ing fact-checking require large amounts of anno-
tated training data to generalise well on unseen data.
Therefore, there is an urgent need for large-scale
scientific-fact-checking datasets, and methods for
automatically creating such datasets.

As a step towards addressing the problem of lack-

ing large-scale datasets in scientific-fact-checking,
this paper makes the following contributions:

• We constructed a pipeline for generating sci-
entific claims from scientific multiple-choice
questions.

• We created two large-scale scientific-fact-
checking datasets in the biomedical (150k
samples) and general-science domains (32k
samples) by applying the proposed pipeline
to existing scientific multiple-choice question-
answering (QA) datasets.

• We evaluated different pretrained transformer-
based models for the verdict prediction task
on the generated datasets. The results serve as
the initial benchmark on the datasets.

• We showed that the generated datasets can be
used to improve the performance on existing
scientific-fact-checking datasets.

2 Claim Generation From Multi-Choice
Questions

Claim generation can be defined as the process of
generating claims that can be classified as “sup-
ported”, “refuted”, or “not enough information”
based on evidence in associated texts. A multiple-
choice question typically consists of a question,
a correct option, and multiple distractors. Some
multiple-choice QA datasets even provide an expla-
nation of the correct answer. This section describes
a pipeline to automatically generate all three types
of claims that are commonly found in the existing
fact-checking datasets by taking advantage of such
multiple-choice QA datasets. The pseudocode of
the generation process is described in Algorithm 1.

2.1 Supported and Refuted Claim Generation

The key to our method of generating supported and
refuted claims is a sequence-to-sequence model
that can convert question-answer pairs into their
declarative forms. For example, the question-
answer pair (“Which of the following hormonal ac-
tivity is expected immediately prior to ovulation?”,
“LH surge”) might be converted into a declarative
sentence such as, “LH surge is expected imme-
diately prior to ovulation”. In order to achieve
this, we adopted the BART (Lewis et al., 2019)
model that was trained to convert question-answer
pairs in the Stanford Question Answering Dataset
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(SQUAD) (Rajpurkar et al., 2016) into their declar-
ative forms, known as QA2D (Demszky et al.,
2018). We denote this model as BARTQA2D.

Our pipeline begins with multiple-choice ques-
tions. These questions are typically prepared by
domain experts who determine which pieces of
knowledge are essential to test learners on within
the related field. To create a “supported” claim
from a multiple-choice question, we feed the ques-
tion and the answer (correct option) as input to
BARTQA2D to generate the declarative sentence.
Using this process, we obtain the same number of
claims as the number of questions in the multiple-
choice QA dataset. The generated claim is then
paired with the original explanation of the correct
answer, serving as the supporting evidence.

To generate a “refuted” claim type, we make
use of the original distractors, carefully selected
by domain experts. We assume that any incor-
rect option (distractor) should be refuted by the
original supportive document (explanation), since
there is a single correct option for each question.
In our LH surge example, the distractors are FSH
surge, Progesterone surge, and Estrogen surge. One
can generate as many different refuted claims as
the number of distractors from a typical multiple-
choice question. However, in our implementation,
we only generated one refuted claim from a ques-
tion using the distractor that was the most similar
to the correct option. To achieve this, we computed
the cosine similarity scores between the embed-
dings of the correct choice and each of the dis-
tractor choices, and then we chose the distractor
with the highest score. The embeddings were com-
puted using the Scispacy named-entity-recognition
model2 (Neumann et al., 2019), which was trained
on biomedical corpora such as the MedMentions
(Murty et al., 2018), and the BioCreative V CDR
corpus3. This filtering of distractors can help re-
move distractors that are dissimilar to the correct
option and therefore avoid generating claims that
can be obviously refuted. The chosen distractor is
then fed into the BARTQA2D model along with
its question to generate a declarative sentence, e.g.,
“FSH surge is expected immediately prior to ovula-
tion”. This generated claim is then paired with the
original explanation to the correct answer.

We want to emphasise that generating “refuted”
claims is challenging and might require extra

2https://allenai.github.io/scispacy
3https://www.ncbi.nlm.nih.gov/research/bionlp/Data

ontology-like mechanisms to replace plausible but
false notions or entities in order to declare the claim
untrue. However, an ontology-like approach re-
quires extensive filtering to ensure the associated
document (explanation) is not supporting the re-
placement and the replacement is meaningfully
integrated into the refuted claim. An alternative
way of generating a refuted claim is by simply
adding “not” to a supported claim. However, exclu-
sively using this method would result in all refuted
claims containing “not”. This would limit the di-
versity of the generated claims and might cause
the machine learning models to cheat by simply
identifying negation.

Algorithm 1 Claim generation from multi-choice
question

Require: Question (Q), Explanation (E), Answer
(A), Distractors (D)

1: function SUPPORTED(q ∈ Q, e ∈ E, a ∈ A)
▷ q, e and a belong to the same question.

2: c← BARTQA2D(q, a)
3: return (c, e) ▷ The evidence e supports

claim c.
4: end function
5: function REFUTED(q ∈ Q, e ∈ E, a ∈ A,D)

▷ q, e, a and D belong to the same question.
6: d̂← argmaxdi∈D cosine(a, di)

7: c← BARTQA2D(q, d̂)
8: return (c, e) ▷ Claim c is refuted by e.
9: end function

10: function NOT_ENOUGH_INFO(c, e ∈ E, a ∈
A,E,A) ▷ c is generated
using SUPPORTED. e and a are its associated
explanation and answer.

11: Ê ← arg top10ei∈E,ai∈A cosine
(SPECTER(a, e), SPECTER(ai, ei))
▷ Ê is sorted in descent.

12: for êj in Ê do
13: if êj ⊉ a then
14: return (c, êj) ▷ êj does not contain

enough information to make a judgement on c.
15: end if
16: end for
17: end function

2.2 Not-Enough-Info Claim Generation
To generate a not-enough-info claim, we replace
the explanation of a supported claim with a similar
explanation from another claim but without sharing
the same key entities or notions (the answer). An
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example of this is shown in figure 1, where the orig-
inal supportive document is about collagen fibers
and connective tissue, and the replacement is about
collagen fibers and extracellular matrix. Crucially,
the replacement does not contain information about
connective tissue. To help find similar explanations
as the one provided, we compute document-level
representations of concatenated answer and expla-
nation for all generated claims using SPECTER as
introduced in (Cohan et al., 2020). It was shown
that SPECTER can create a dense-vector represen-
tation for each scientific document in order to cap-
ture the relatedness of the documents (Cohan et al.,
2020). By using the dense-vector representations
of explanations, we retrieve 10 most similar ex-
planations (using cosine similarity) for each claim.
Then, we filter out those that contain the key entity
of the claim, and we selected the most similar one
among them.

2.3 Med-Fact: Medical domain fact-checking
dataset

We applied the proposed pipeline to the MedM-
CQA dataset (Pal et al., 2022) which consists of
real-world medical entrance exam questions, an-
swers (which could be multiple or single), and the
supporting document for the correct answer. We
selected samples whose supporting documents had
more than 50 words to ensure a minimal length of
the supporting document. Then we only considered
multiple-choice questions that had a single correct
option. We also dropped the questions, which had
the same supportive documents. In the end, we
generated 150K claims, including 50K supported,
50K refuted, and 50K not-enough-info claims. Ex-
amples of this dataset are given at the end of the
Appendix.

2.4 Gsci-Fact: General science domain
fact-checking dataset

We used about 13.7K multiple-choice science-
exam questions introduced in (Welbl et al., 2017).
These questions are about natural sciences such as
biology, physics, and chemistry and are created by
crowd workers. As was true for Med-Fact, we ap-
plied a filtering process to ensure the length of the
supporting document and to have a unique support-
ing document. We generated about 32.2K claims,
of which 10.7K are supported, 10.7K are refuted,
and 10.7K are not-enough-info. An example is
given in Figure 1.

3 Experiments

We conducted experiments to answer the following
research questions:

• Whether the datasets we generated can be
used for verdict prediction tasks?

• Can the generated datasets improve the
models’ performance on scientific-fact-
checking tasks?

• What is the quality of the generated claims?

We formulate verdict prediction as a multi-class
classification task. For a given claim c and a docu-
ment d, the model must determine a label

l(c, d) ∈ {supported, refuted, not-enough-info}.

We concatenate a claim and its document (expla-
nation) together as input, and the model is trained
to predict the claim type (supported, refuted, or
not-enough-info) in a supervised manner.

3.1 Baselines for Med-Fact and Gsci-Fact

We selected five pre-trained models from the lit-
erature as baselines for fact-checking tasks. We
fine-tuned the transformer models BERT (Devlin
et al., 2018), DeBERTa (He et al., 2020), SciBERT
(Beltagy et al., 2019), Longformer (Beltagy et al.,
2020), and BioBERT (Lee et al., 2019) for the
verdict prediction task. DeBERTa, SciBERT, and
BioBERT are descendants of BERT, and DeBERTa
has modified attention mechanisms. SciBERT was
trained on a large multi-domain corpus of scien-
tific publications, whereas BioBERT was trained
on a large-scale biomedical corpus. Longformer is
different from the other transformer-based models
because it has an efficient attention mechanism that
accepts longer input sizes. We used the weighted
F1 metric for evaluation because models can be ac-
curate at predicting a specific label but inaccurate
at others, and weighted F1 can give better insight
about performance than accuracy. The weighted-
F1 score is calculated by averaging all per-class F1

scores while accounting for support for each class,
where support refers to the number of actual class
occurrences in the dataset. For both Med-Fact and
Gsci-Fact datasets, DeBERTa produced the best
performance. The complete results for Med-Fact
and Gsci-Fact are shown in Table 1.

.

2655



Models Med-fact GSci-Fact
BERT 0.70 0.85
DeBERTa 0.77 0.90
Longformer 0.72 0.86
BioBERT 0.71 0.86
SciBERT 0.65 0.78

Table 1: Weighted F1 scores of baseline models on
verdict prediction task.

3.2 Performance Improvements on Exiting
Datasets

We examined whether training models on Med-
Fact and Gsci-Fact can improve the performance
of verdict prediction on the existing scientific fact-
checking datasets. We used two different setups
for our experiments. Firstly, we fine-tuned and
evaluated models presented in Table 1 on SciFact,
HEALTHVER, and CLIMATE-FEVER with three
classes (supported, refuted, and not-enough-info).
The results are shown in Table 3. We conducted
additional experiments to investigate whether our
generated fact-checking datasets can improve per-
formance on binary-classification fact-checking
datasets such as COVID-Fact. The results for the
COVID-Fact dataset are shown in Table 2.

3.2.1 SciFact

According to (Wadden et al., 2020b), the SciFact
dataset consists of 1.4K expert-written scientific
claims with associated documents (abstracts of the
scientific articles) that contain evidence about the
claim. The dataset is in the biomedical domain and,
is extracted from S2ORC (Lo et al., 2020). The
document length is considerably longer than doc-
uments in other scientific-fact-checking datasets
since it contains the abstracts of scientific papers.
Statistics for all the datasets we used in this study
are provided in Table 5 in the Appendix.

Although the SciFact dataset is designed for both
retrieval (both sentence level and abstract level)
and verdict prediction tasks, we only conducted
experiments on the verdict prediction task. This
set up exists in the literature (Saakyan et al., 2021;
Wright et al., 2022). To do that, we used all the
associated documents in the datasets for each claim.
Since the test set of the dataset is not publicly avail-
able, we merged the training and development sets
and reserved 10% as a test set for the experiments.
We obtained the best weighted F1 score (0.77) on
SciFact using DeBERTa. By fine-tuning models

trained on Med-Fact and Gsci-Fact, we improved
the weighted F1 score to 0.86 and 0.83, respec-
tively.

3.2.2 HEALTHVER
HEALTHVER contains health-related claims ob-
tained from sources such as online forums and
search engines (Sarrouti et al., 2021). To verify the
claims, the top-10 related abstracts were labeled
by annotators as “supports”, “refutes”, “neutral”.
As with the experiments on SciFact, we used 10%
of the dataset as the test set. We obtained results
ranging from 0.68 to 0.78 by fine-tuning five pre-
trained models on the HEALTHVER dataset. Train-
ing first on our Med-Fact and Gsci-Fact datasets
consistently increased all models’ performance by
0.16 to 0.20 points.

3.2.3 CLIMATE-FEVER
CLIMATE-FEVER consists of claims related to
climate change. Like HEALTHVER, they use
techniques such as web scraping and using key-
words in search engines (Diggelmann et al., 2020).
They treated the verdict prediction task as an en-
tailment prediction task to predict one of the labels
“SUPPORTS”, “REFUTES”, or “NOT ENOUGH
INFO”. During our experiments, we obtained im-
provement of 0.11 points on the weighted F1 score
using the Med-Fact dataset in the best case. How-
ever, The improvements were generally less than
that obtained on the previous two datasets. One
possible explanation is that the Med-Fact and Gsci-
Fact datasets are dominated by biomedical and nat-
ural science topics that are not as related to the
climate-change domain as the health and medical
subject-dominated datasets.

3.2.4 COVID-Fact
We also examined the effect of transferring mod-
els trained on the generated dataset to a binary-
classification fact-checking dataset such as COVID-
Fact. In the COVID-Fact dataset, a claim can either
be “supported” or “refuted”. These claims have
been scrapped from COVID discussions made in
online forums such as Reddit. Five pieces of evi-
dence for each claim were collected from Google
search results using a cleaning process. We adopted
BERT and DeBERTa models in the experiments.
We again observed improvement even though the
Med-Fact dataset contains many scientific termi-
nologies and jargon, which one cannot expect from
COVID-Fact due to its creation process.
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Models BERT DeBERTa
COVID-Fact 0.60 0.85
Med-Fact + COVID-Fact 0.68+8 0.89+4

Table 2: Comparison of models’ performance (Weighted
F1 score) on COVID-Fact.

3.3 Claim Evaluation

We investigated the quality of the generated claims
by asking human annotators to evaluate claims
from four perspectives: fluency, contextually, faith-
fulness, and challenge level. We asked six annota-
tors to manually evaluate the claims by following
a guideline inspired by (Kuhn et al., 2013; Wright
et al., 2022). Table 6 in the Appendix contains in-
formation about the guideline, such as definitions
of these perspectives and associated scores.

The annotators consisted of Ph.D. students and
Ph.D. graduates in the fields of science, medicine,
psychology, and computer science. A random sam-
ple of 300 examples was taken, with 150 from the
Gsci-Fact corpus and 150 from the Med-Fact cor-
pus, ensuring an equal representation of the three
claim types: supported, refuted, and not-enough-
info. To minimize annotation costs while still lever-
aging the expertise of each annotator, the sample
was divided among eight experts, who were tasked
with evaluating the fluency, contextuality, and chal-
lenge level of the generated claims. The final scores
were obtained by averaging the annotations of all
experts on the related dataset.

For the fluency, the annotators found that 98%
of the generated claims have no grammatical errors
and are clearly understandable for both Gsci-Fact
and Med-Fact. The remaining 2% were deemed
understandable despite a few grammatical errors
and they were equally distributed among three la-
bels for both dataset. The annotators found that
98% of the generated claims in Med-Fact are in-
terpretable without additional context, while 96%
are interpretable without additional context in Gsci-
Fact. This minor difference could be due to the
diverse background of the annotators who evalu-
ated the Gsci-Fact dataset. 75% of the claims in
the Gsci-Fact dataset were marked as cannot be
answered without the evidence associated with the
claims. However, 95% of the claims in the Med-
Fact dataset were marked as not verifiable without
the associated evidence.

When evaluating the alignment between the
assigned labels generated during the generation

progress and the faithfulness scores assigned by
annotators during the annotation progress, a high
degree of agreement was observed. Specifically,
annotators concurred with 92% of the "supported"
claims in the Gsci-Fact dataset, with corresponding
agreement levels of 89% and 88% for the "refuted"
and "not-enough-info" claims, respectively. Simi-
lar results were obtained for the Med-Fact dataset,
with agreement levels of 93%, 91%, and 90% for
the "supported", "refuted", and "not-enough-info"
claims, respectively. Examples of each type of
claim with their evaluation scores can be found in
the Appendix, listed in Table 7 for a refuted claim,
Table 8 for a supported claim, and Table 9 for a
not-enough-info claim.

3.4 Further Analysis

It has been observed that general-domain natural-
language-inference datasets can have a significant
amount of bias (Poliak et al., 2018), and we won-
dered if Med-fact and Gsci-Fact contain such a
bias. We investigated the claim-only bias because
the aim of the fact-checking task is to evaluate the
model’s ability to examine the semantic relation-
ship between a claim and the supporting data. We
tested all the baseline models using just the claim
as an input. We discovered that the model’s perfor-
mances (weighted F1 scores) dropped to at most
35%, which indicating that the label-associated
bias is not presented. We interpret this result as
that the domain-specific evidence associated with
the claim is required to make the correct prediction.

4 Related Work

Recent work in automated fact-checking has made
progress in the battle against the spread of false in-
formation in the news (Pomerleau and Rao, 2017),
social media posts, online forums (Vlachos and
Riedel, 2014; Mihaylova et al., 2018), and popu-
lar Wikipedia articles (Thorne et al., 2018). There
has also been substantial work done that uses state-
ments of fact-checking organizations (Augenstein
et al., 2019a; Alhindi et al., 2018).

All the work mentioned so far has focused on
claims and related documents from the general do-
main. However, the proposed models and datasets
created can be difficult to apply to scientific do-
mains because of the domain mismatch. Limited
research has been conducted with datasets and mod-
els that focus on verifying claims made in scientific
releases against scientific documents. For exam-
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Model SciFact HEALTHVER CLIMATE-FEVER
BERT 0.65 0.72 0.58
DeBERTa 0.77 0.78 0.64
Longformer 0.70 0.77 0.63
SciBERT 0.65 0.69 0.52
BioBERT 0.64 0.73 0.51
BERTMed 0.78+13 0.91+19 0.62+4

DeBERTaMed 0.86+9 0.94+16 0.75+11

LongformerMed 0.76+6 0.93+16 0.73+10

SciBERTMed 0.68+3 0.88+19 0.55+3

BioBERTMed 0.76+12 0.92+19 0.59+8

BERTGsci 0.78+13 0.90+18 0.61+3

DeBERTaGsci 0.83+6 0.92+14 0.70+6

LongformerGsci 0.79+9 0.93+16 0.64+1

SciBERTGsci 0.650 0.87+18 0.55+3

BioBERTGsci 0.70+6 0.90+17 0.52+1

Table 3: The results of transferring models trained on Med-Fact and Gsci-Fact to SciFact, HEALTHVER and
CLIMATE-FEVER datasets. The first five rows show the baseline results (weighted F1) without the transfer. The
second set of 5 rows shows the results and improvements from training on Med-Fact first. The last 5 rows show the
results of models trained on Gsci-Fact first.

ple, in (Roozenbeek et al., 2020; Saakyan et al.,
2021), claims about COVID-19 made on social
media platforms were researched. The general
health-related claims made in science releases were
studied by (Sarrouti et al., 2021). Additionally,
claims about climate change and retrieved evidence
from Wikipedia were studied by (Diggelmann et al.,
2020). However, these models and datasets were
designed to verify claims written in less technical
language from public science releases and media
posts on platforms such as Reddit (Saakyan et al.,
2021). We are aware of only one dataset (SciFact)
that focuses on claims extracted from scientific ar-
ticles against scientific documents (Wadden et al.,
2020a).

In recent years, a variety of techniques have been
developed to enhance fact-checking abilities. One
such model is based on multi-layer perceptrons
(MLP) (Riedel et al., 2017), and another is based
on attention mechanisms (Parikh et al., 2016). Both
models were used as baselines in claim verification
on the FEVER dataset (Thorne et al., 2018). Ad-
ditionally, a Graph Neural Network (GNN) based
approach (Liu et al., 2020)) was used for propagat-
ing nodes represented by evidence (Ye et al., 2020).
Semantic role labeling and logical reasoning tools
can also improve GNN-based approaches (Chen
et al., 2020). In (Zhou et al., 2019), a graph-based
evidence aggregating and reasoning (GEAR) frame-
work was employed to aggregate multi-evidence

data.

Recently, transformer-based language models
have produced the best performance on fact-
checking in general and scientific domains. These
claim-verification models usually take concate-
nated claim and evidence pairs and process them
with multi-layer transformer-based models to ob-
tain representations for classifying relationships
between the claim and the evidence. Pre-trained
BERT models have often been used for classifica-
tion (supported, refuted, and not enough info). For
claim verification, BERT-based models are preva-
lent (Soleimani et al., 2019; Portelli et al., 2020;
Chernyavskiy and Ilvovsky, 2019; Nie et al., 2019;
Tokala et al., 2019), while Longformer has been
used for verdict prediction (Wadden et al., 2020b;
Wright et al., 2022).

Advancements in pre-trained transformer-based
sequence-to-sequence language models, such as
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2019)), have allowed researchers to create fully
automatic pipelines for claim generation. In partic-
ular, negation generation and explanation genera-
tion of claims have been studied in the general-
domain fact-checking task (Kotonya and Toni,
2020; Thorne et al., 2021). Entity-centric approach
(Pan et al., 2021) uses entities in the scientific text
to generate claims and has been applied to scientific
claim generation by (Wright et al., 2022).
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5 Discussion

Because of the annotation cost, most large-scale
fact-checking datasets are synthetically generated.
For example, the popular fact-checking dataset,
Fever (Thorne et al., 2018), contains a limited num-
ber of claims annotated by humans. The rest of the
claims were synthetically augmented using para-
phrasing, negating, and substituting the original
claims. However, such methods have been found to
weaken results in several studies since real-world
claims have different structures than the syntheti-
cally augmented claims (Augenstein et al., 2019a;
Sarrouti et al., 2021). When generating a refuted
claim, simply adding “not” to a supported claim
does not always reflect the structure of real-world
refuted claims. In our approach, we use the expert-
selected distractors to generate refuted claims. The
quantity of refuted claims is another weak point
of the existing datasets. The amount of “refuted”
claims is dramatically less than that of the “sup-
ported” claims in the existing datasets. This results
in unbalanced fact-checking datasets (see the Table
5 in the Appendix). Both Med-Fact and Gsci-Fact
have a balanced class distribution containing the
same number of supported and refuted claims.

It is worth mentioning that the supporting doc-
uments for the claims that cannot be judged by a
given document have been left as empty in (Thorne
et al., 2018) and fact-checking datasets that are
designed for binary labels (“supported” and “re-
futed”) (Saakyan et al., 2021). In our proposed
methods, we were able to retrieve related docu-
ments by using their dense-vector representations
and consider them as documents for “not-enough-
info” type of claims.

Finally, we want to discuss the entity-centric
claim generation process (Pan et al., 2021; Wright
et al., 2022). The first step of this process is
selecting entities in a text to generate claims from
them. These entities become the main objects
of the generated claims. The weakness of this
approach, according to (Pan et al., 2021) is that
the generated claims can be superficial, and the
verification of these claims can be done without
the models’ reasoning capabilities or knowledge
of common sense. The degree of importance of
these entities can differ for a scientific text that
contains entities from multiple domains. Since
there is no mechanism to indicate how important
the selected entity is compared to the other entities
in the given text, this approach might result in a

poor selection of entities and, therefore, poor claim
data. In our proposed method, using the multiple
choices/entities of the question likely avoids that
problem, because domain experts select the entities
in the questions.

6 Conclusion

We have presented Multi2Claim, a pipeline that
converts multiple-choice questions to fact-checking
datasets. We specifically focus on challenging sci-
entific domains, where the claim verification pro-
cess can be complicated due to scientific jargon and
complex assertions about fields. We presented two
large-scale scientific fact-checking datasets created
with this pipeline in biomedical (Med-Fact) and
general science domains (Gsci-Fact). We testified
these dataset for possible biases and the generated
datasets were evaluated from various perspectives.
Baseline models for these balanced large-scale sci-
entific fact-checking datasets were also presented.
We conducted extensive experiments to examine
the benefits of the generated datasets on the ex-
isting scientific fact-checking dataset, which suf-
fer from low numbers of samples and unbalanced
labels. We consistently obtained improvements
for all scientific fact-checking datasets, including
binary-labeled datasets such as COVID-Fact.

We hope this work will lead to more break-
throughs in scientific fact-checking, which has re-
ceived little attention due to the expensive and time-
consuming annotation process that has to be done
by domain experts. We also hope that the proposed
pipeline and baseline models will help develop re-
liable models that will play an essential role in the
scientific claim verification process.

Limitations

The proposed method has several limitations. Our
claim generation pipeline relies on multiple-choice
question-answering datasets since we limited our-
selves to reliable and safe generation progress by
using human-created scientific questions and an-
swers. Another limitation is the lack of empha-
sis on retrieving explicit rationals and reasoning
over the retrieved rationals due to the high cost of
domain-specific rational annotation progress. For
future work, we will extend this pipeline to gener-
ate claims from plain scientific texts with additional
reasoning capabilities.
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Appendix

A Computing Sources and Experimental Setup
In all of our experiments, we used NVIDIA Quadro
RTX 8000 graphics processing unit with 48GB of
RAM capacity.

In the verdict prediction experiments, we used
the model checkpoints that were provided by Hug-
gingface (Wolf et al., 2019). BERT, SciBERT, and
BioBERT have 12 layers and 12 transformer blocks
in each layer, the size of the hidden layer is 768.
The Longformer model has 12 layer with a hidden
dimension of 512. DeBERTa model has a hidden
size of 768 and 12 layers.

The exact number of model parameters that we
used in this work is shown in the table 4.

Models Parameters
BERT 109,484,547
Longformer 148,661,763
DeBERTa 184,424,451
SciBERT 109,920,771
BioBERT 108,312,579
BART 139,420,416

Table 4: Parameters per model

B Hyper-parameters
In the generation part, we used maximum 256 for
the max length of the sequence to be generated.
The number of highest probability vocabulary to-
kens to keep for top-k-filtering was 10. We re-
turned one of the independently computed returned
sequences for each element in the batch. We used
the spaCy named entity recognition model from
Scispacy to find similarities between the correct op-
tion and the other three options4. In the not enough
info claim type generation, we used the ’allenai-
specter’5 SPECTER model’s checkpoint, which
was originally stored in the Allen AI repository.
For all of the verdict prediction models, we used
a variant of the Adam optimizer (AdamW) with a
1e-5 learning rate and other parameters set to de-
fault. The epoch number was usually 5, and we
did experiments with a range of (3–40) batch num-
bers with regard to the availability of the GPU. For
evaluation, we used the sklearn library’s f1-score
function

C Dataset Statistics and Evaluation
4https://allenai.github.io/scispacy/
5https://huggingface.co/allenai/specter
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Datasets Context Label distribution Total size Query length Document length
SciFact Biomedicine S:556, R:337, N:516 1.4K 12.9 232.9
HEALTHVER Health S:4.3K, R:2.8K, N:5.3K 12.5K 18.4 34.8
CLIMATE-FEVER Climate change S:654, R:253, N:474, D:154 1.5K 20.5 77.5
COVID-Fact Covid S:1.2K, R:2.7K 4K 13.3 77.9
Med-Fact Biomedical S:50K, R:50K, N:50K 150K 13.7 125.1
Gsci-Fact General Science S:10.7K, R:10.7K, N:10.7 32.2K 12.8 74.1

Table 5: Statistics of the datasets that we considered in this study for scientific-fact-checking task. The letters S, R,
N, D stand for supported, refuted, not enough info and disputed claims, respectively. The last two columns show the
average lengths of the claims and the documents.

Fluency 3-The claim is free of grammatical errors, and its meaning is clear.
2-The claim is understandable despite some grammatical errors.
1-The claim is incomprehensible.
.

Contextuality 1-The claim can be interpreted without any additional context.
0-Without the original context, the claim cannot be interpreted meaningfully.

Faithfulness 1-The claim is correct with respect to the explanation.
2-The claim is incorrect with respect to the explanation.
3-The claim is related to the explanation, but the verdict of the claim cannot be inferred from the
explanation.
4-The claim is not related to explanation in any sense.

Challenge 1- I can confidently say whether the claim is correct or incorrect without reading the explanation.
0- I cannot confidently say whether the claim is correct or incorrect without reading the explanation.

Table 6: Manual evaluation criteria for fluency, contextuality, faithfulness and challange.

Claim Diarrhoea is a common symptom of haloperidol toxicity.
Explanation Symptoms of haloperidol toxicity are usually due to exaggerated side effects. Most often encountered

are: Severe extrapyramidal side effects with muscle rigidity and tremors, akathisia, etc. Hypotension or
hypeension Sedation Anticholinergic side effects (dry mouth, constipation, paralytic ileus, difficulties
in urinating, decreased perspiration), coma in severe cases, accompanied by respiratory depression
and massive hypotension, shock. Rarely, serious ventricular arrhythmia (torsades de pointes), with or
without prolonged QT-time Epileptic seizures.

Fluency-3 The claim is free of grammatical errors, and its meaning is clear.
Contextuality-1 The claim can be interpreted without any additional context.
Faithfulness-2 The claim is incorrect with respect to the explanation
Challange-0 I cannot confidently say whether the claim is correct or incorrect without reading the explanation.

Table 7: An example of evaluation of a refuted claim from the Med-Fact dataset.
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Claim Zinc is more easily oxidized than iron.
Explanation One way to keep iron from corroding is to keep it painted. The layer of paint prevents the water and

oxygen necessary for rust formation from coming into contact with the iron. As long as the paint
remains intact, the iron is protected from corrosion. Other strategies include alloying the iron with
other metals. For example, stainless steel is mostly iron with a bit of chromium. The chromium
tends to collect near the surface, where it forms an oxide layer that protects the iron. Zinc-plated or
galvanized iron uses a different strategy. Zinc is more easily oxidized than iron because zinc has a
lower reduction potential. Since zinc has a lower reduction potential, it is a more active metal. Thus,
even if the zinc coating is scratched, the zinc will still oxidize before the iron. This suggests that this
approach should work with other active metals. Another important way to protect metal is to make
it the cathode in a galvanic cell. This is cathodic protection and can be used for metals other than
just iron. For example, the rusting of underground iron storage tanks and pipes can be prevented or
greatly reduced by connecting them to a more active metal such as zinc or magnesium. This is also
used to protect the metal parts in water heaters. The more active metals (lower reduction potential)
are called sacrificial anodes because as they get used up as they corrode (oxidize) at the anode. The
metal being protected serves as the cathode, and so does not oxidize (corrode). When the anodes
are properly monitored and periodically replaced, the useful lifetime of the iron storage tank can be
greatly extended.

Fluency-3 The claim is free of grammatical errors, and its meaning is clear.
Contextuality-1 The claim can be interpreted without any additional context.
Faithfulness-1 The claim is correct with respect to the explanation.
Challange-0 I cannot confidently say whether the claim is correct or incorrect without reading the explanation.

Table 8: An example of evaluation of supported claim from the Gsci-Fact dataset.

Claim Glycogen phosphorylase requires thiamine pyrophosphate.
Explanation Glycogen phosphorylase removes glucose as glucose-1-phosphate from glycogen (phosphorolysis). It

contains pyridoxal. Formation of branches in glycogen phosphate (PLP) as a prosthetic group. The
alpha-1,4 linkages in the glycogen are cleaved and removes glucose units one at a time. Enzyme
sequentially hydrolyses alpha-1,4 glycosidic linkages, till it reaches a glucose residue, 3-4 glucose
units away from a branch point. It cannot attack the 1,6 linkage at branch point.

Fluency-3 The claim is free of grammatical errors, and its meaning is clear.
Contextuality-1 The claim can be interpreted without any additional context.
Faithfulness-3 The claim is related to the explanation, but the verdict of the claim cannot be inferred from the

explanation.
Challange-0 I cannot confidently say whether the claim is correct or incorrect without reading the explanation.

Table 9: An example of evaluation of not-enough-info claim from the Med-Fact dataset.
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