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Abstract

Past work probing compositionality in sentence
embedding models faces issues determining the
causal impact of implicit syntax representations.
Given a sentence, we construct a neural mod-
ule net based on its syntax parse and train it
end-to-end to approximate the sentence’s em-
bedding generated by a transformer model. The
distillability of a transformer to a Syntactic
NeurAl Module Net (SynNaMoN) then cap-
tures whether syntax is a strong causal model of
its compositional ability. Furthermore, we ad-
dress questions about the geometry of semantic
composition by specifying individual SynNa-
MoN modules’ internal architecture & linearity.
We find differences in the distillability of var-
ious sentence embedding models that broadly
correlate with their performance, but observe
that distillability doesn’t considerably vary by
model size. We also present preliminary evi-
dence that much syntax-guided composition in
sentence embedding models is linear, and that
non-linearities may serve primarily to handle
non-compositional phrases.

1 Introduction

The principle of semantic compositionality sug-
gests that the meaning of a sentence should derive
from its subconstituents in a regular, structured
fashion (Montague, 1970). In recent years, trans-
formers (Vaswani et al., 2017) have become effec-
tive at producing sentential meaning representa-
tions useful for downstream tasks such as Natural
Language Inference, Image-Text Matching, and
Document Classification (Conneau et al., 2017;
Radford et al., 2021). However, it has famously
been conjectured that "You can’t cram the meaning
of a whole %&!$# sentence into a single $&!#*
vector" (Mooney, 2014). Since recent models do
appear to capture sentence meaning effectively, one
wonders how they compose arbitrarily many word
meanings together such that their relational struc-
ture is captured in a single, fixed-dimensional sen-

Figure 1: Distilling a transformer to a neural module
net structured by the sentence’s syntax

tence embedding.
Much work has sought to probe these models for

syntax representations and their causal relevance to
embedding output. Conneau et al. (2018) train lin-
ear probes to determine if models encode syntactic
features like tree distance and depth (Krasnowska-
Kieraś and Wróblewska, 2019; Hewitt and Man-
ning, 2019). One line seeks out direct mappings
between neural representations and tree structures
(McCoy et al., 2018; Chrupała and Alishahi, 2019;
Jawahar et al., 2019; Soulos et al., 2020; Murty
et al., 2023). Other work raises methodological is-
sues with probing (Eger et al., 2019; Zhu and Rudz-
icz, 2020) such as choice of formalism (Kuznetsov
and Gurevych, 2020) and semantic entanglement
(Maudslay and Cotterell, 2021). Ravichander et al.
(2021) raise the possibility that probing may iden-
tify causally un-used features; Tucker et al. (2021)
partly address this concern to show that some syn-
tactic features are causally relevant. Another line of
work explores the geometry of semantic represen-
tations (Reif et al., 2019; Hernandez and Andreas,
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2021) and the linearity (Barančíková and Bojar,
2019) of syntactic analogies (Zhu and de Melo,
2020).

Rather than directly analyze sentence embed-
ding models, Neural Module Nets (Andreas et al.,
2016b) seek to improve compositionality by modu-
larizing semantic functions. We see this effort as
ultimately similar to probing for structural represen-
tations since the former explores whether explicit
structure improves performance and the latter ex-
plores whether performant models implicitly learn
structure. Geiger et al. (2021) discovers logical
tree causal structures in BERT and Wu et al. (2021)
then guides model distillation using this structure.

Our work builds on these findings by strictly
taking syntax as the causal structure of sentential
semantics and linearity as the geometry of syntax-
guided composition; we conduct experiments to
test the distillability of transformer-based sentence
embedding models to a Syntactic NeurAl Module
Net (SynNaMoN), an architecture we introduce
that implements these two priors. The extent to
which a model can be distilled to a SynNaMoN
tells us about its internal syntax representations &
compositional ability.

2 Methods

2.1 Syntactic Neural Module Net

Figure 2: Constructing a sentence’s SynNaMoN from its
syntax tree; module input and output dimensionalities
labeled on the right.

Unlike prior work (Andreas et al., 2016a; Cirik
et al., 2018), SynNaMoN modules don’t approx-
imate high-level objectives like ‘Find’ or ‘Count’
but rather correspond to specific syntactic rules like
‘S → NP VP’ and ‘NP → DT JJ NN’. Each mod-
ule receives an input of dimensionality (1, N ∗D)

where N is the number of constituents on the syn-
tax rule’s right-hand side, and D is the dimensional-
ity of the embedding space (768)—in other words,
the input embeddings are concatenated. Though
computationally more expensive, concatenation en-
ables the module to learn an arbitrary function over
the inputs rather than restricting it to a function
over their sum or mean; this enables the module to
converge on its ideal composition function which is
likely not invariant under summation or averaging.
Finally, though our implementation of SynNaMon
includes ‘part-of-speech’ modules at the bottom
of the parse tree, one could conceivably remove
this bottom layer with the hypothesis that the word
embeddings already capture part-of-speech infor-
mation.

2.2 Internal Module Architecture
To explore the geometry of semantic composition
under syntax, we implement 3 module architec-
tures: a linear layer (Linear), a linear layer + a
ReLU activation (Nonlin), and a linear layer +
ReLU + another linear layer (Double). We ex-
plore these 3 architectures to see whether syntax is
enough of an inductive bias to linearly approximate
sentence embeddings, or if adding non-linearities
and additional layers considerably improves per-
formance. The extent to which adding parameters
improves our approximation of the teacher model
beyond the syntactic structure alone could reveal
how much isn’t captured by this inductive bias.

2.3 Linguistic Formalism
We choose to use the Transformational Grammar
presented by Penn Treebank (Marcus et al., 1994),
but in principle any Constituency Grammar could
be easily used with SynNaMoN, and Dependency
Grammars can be adapted with some effort. Since
prior work has shown how the choice of linguistic
formalism can significantly influence probing re-
sults (Kuznetsov and Gurevych, 2020), we float the
possibility of such an effect being at play in this
work as well. If a student SynNaMoN fails to cap-
ture much of the teacher embedding model, perhaps
it isn’t because of the teacher’s non-compositional
causal structure, but rather because the formalism
used to structure the SynNaMoN is inadequate. In-
deed, recent state-of-the-art neural approaches to
syntax parsing have learned grammatical tagsets
that often differ starkly from human-produced syn-
tactic theories (Kitaev et al., 2022). We leave these
problems to future work which may explore the ex-
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citing possibility that certain linguistic formalisms
(perhaps even semantic rather than syntactic) are
better proxies for a model’s compositional structure
than others.

3 Experiments

Our main experiment runs 5 sentence embedding
models (BERT-base (Devlin et al., 2019), MP-Net
(Song et al., 2020), GTR-T5-base, GTR-T5-large,
and GTR-T5-xl (Ni et al., 2021)) on 3 SynNaMoNs
with differing internal architectures (Linear, Non-
lin, Double; see Sec. 2.2). For BERT-base, we
extract input word embeddings for each token and
use the CLS token as the sentence embedding as
is common practice. For the other 4 models, we
encode each token alone to serve as its embed-
ding and use the output as the sentence embedding.
When words are encoded as more than 1 token, we
compute the mean across the subtokens to serve as
its word embedding.

In order to heuristically select a learning rate,
5 training runs were conducted with SynNaMoNs
optimizing for BERT-base, and learning rate manu-
ally set at increments between 10−5 and 10−3. We
finally chose a rate of 5×10−5, but recognize from
results that optimal learning rate will likely vary by
teacher model & SynNaMoN internal architecture.
Analysis would best be reported on the optimal
scores achieved by a SynNaMoN after hyperpa-
rameter tuning, but due to compute restrictions (1
NVIDIA K80 GPU with 12GB of RAM), this was
unfeasible.

Additionally, due to the number of modules
(originally 900, each with 1M parameters on av-
erage), we encountered frequent out-of-memory
errors both on CPU & GPU. Since each mod-
ule corresponds to a syntax rule and is initialized
upon encountering the rule in the dataset, we con-
strained our data to minimize the number of mod-
ules needed.

Specifically, we first constrained our trees to
those of height 4 & 5 (n=16492) in PTB, and then
further constrained the trees to those that use a
subset of the 300 most common production rules
among them. This resulted in 1494 trees, from
which we generated a train-validation split of 1250-
244. Furthermore, we ensured that all the produc-
tions present in trees of the validation split were
also included amongst trees in the training split. All
this finally resulted in 273 production rules present
in our dataset, and the instantiation of 273 modules.

4 Results

In Tab. 1, we present scores for all 5 sentence
embedding models across the 3 SynNaMon archi-
tectures. We compute the average MSE between
sentence embeddings in the complete dataset for
each model and divide each model’s MSE loss by
this mean distance to normalize results. The nor-
malized scores we present may intuitively be seen
as the portion of variance in a model’s sentence em-
beddings that a SynNaMoN fails to explain. From
a probing perspective, the lower a model’s score,
the more it can be causally approximated by com-
position along syntactic lines.

Sent. Emb. Model Linear Nonlin Double
BERT-base-CLS .765 4.17 .625

MP-Net-base .606 .963 .538
GTR-T5-base .541 .844 .499
GTR-T5-large .550 .898 .502

GTR-T5-xl .536 .775 .498

Table 1: Best validation MSE loss of sentence embed-
ding models on each SynNaMoN probe, normalized by
chance-level MSE between embeddings

First, notice that GTR-T5-xl outperforms all the
other models across all the SynNaMoN architec-
tures. This seems to confirm our expectation that
larger models should produce more compositional
sentence embeddings. However, GTR-T5-xl only
marginally outperforms other sizes of GTR-T5 (ex-
cept on Nonlin, for which it does far better), sug-
gesting that size actually isn’t a significant factor
in compositionality. The lower performance of
GTR-T5-large further corroborates this, but con-
sidering its anomalously lower average embedding
MSE, the issue requires more work. The fact that
GTR-T5 models all display high compositionality
despite variance in size suggests something about
their architecture or training approach is impor-
tant—perhaps the representational bottleneck.

All 3 GTR-T5 models perform better than MP-
Net, which in turn outperforms BERT CLS. This
first fact is slightly surprising considering that on
standard sentence representation tasks (Reimers
and Gurevych, 2019), MP-Net (63.30) marginally
outperforms all GTR-T5 (base: 59.40, large: 62.38,
xl: 62.88) models. Evaluation of these sen-
tence embedding models on large-scale, human-
interpretable compositionality tasks may reveal that
GTR-T5 does indeed produce better compositional
representations than MP-Net. Although BERT’s
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Figure 3: Normalized validation learning curves for Lin-
ear SynNaMoN on sentence embedding models (blue:
BERT, orange: MP-Net, red: GTR-T5-large, green:
GTR-T5-base, purple: GTR-T5-xl)

CLS token embedding is widely used for sentence
representation, these results show that it fails to
capture nearly as much compositional information
as more targeted sentence embedding models.

Next, observe that although distilling to a Dou-
ble SynNaMoN is intuitively easier than to a Lin-
ear SynNaMoN due to increased parameterization,
there aren’t always major improvements in distilla-
bility. It is possible that the geometric expressivity
of the Double SynNaMoN will kick in with scaling
of training data, but we hypothesize that this Dou-
ble score will still approach a limit for all sentence
embedding models. This is because syntax only
describes a subset of sentence meaning, and the
strictness of SynNaMoN’s structure prevents this
non-compositional component from being learned.

For example, a strictly syntactic compositional
interpretation of "village on the river", would rep-
resent the village as being literally on top of the
river since this is the semantic geometry learned
for syntactic structures of the form "NP on NP". A
SynNaMoN that includes non-linearities may better
learn the geometry of this non-literal "on" relation,
but a transformer model would best learn to handle
non-compositional phrases due to its lack of strict
syntactic constraints. Our broader takeaway from
comparing Linear & Double scores is that much
composition along syntactic lines is linear, and non-
linearities in transformers primarily serve a purpose
other than syntax-guided composition—perhaps in
handling non-compositional phrases.

On a less theoretical note, we observe that our
learning curves for Linear SynNaMoN on GTR-T5
(Fig. 3) are clearly overfitted due to fixing hyperpa-
rameters as mentioned in Sec. 3. We remediate this

Figure 4: Generalization ability of Determiner Phrase
module’s linear geometry varies by part-of-speech

issue in Tab. 1 by reporting the best scores (mini-
mum across epochs) for each learning curve. Since
we want to construct the best possible SynNaMoN
for a transformer model (as this most accurately
reveals the transformer’s distillable compositional
ability), scores could be slightly improved with
further hyperparameter tuning.

4.1 Analysis

Finally, we explore a single module to determine
whether its compositional geometry meets intuitive
notions of semantic generalization. Due to method-
ological difficulties with assessing a single module
extracted from our end-to-end training paradigm,
we train a Linear module for ‘NP → Det N’ on
its own. Determiner-noun composition intuitively
lies on a spectrum with adjective-noun composi-
tion on the other end and quantifier-noun composi-
tion in between. While quantifiers like ‘some’ and
‘all’ seem more like determiners, other quantifiers
like ‘several’ and ‘twelve’ appear more compara-
ble to adjectives like ‘swarming’ and ‘grouped’.
Intuitively then, we should expect the geometry of
quantifier-noun composition to be intermediate to
determiners and adjectives.

And this behavior is precisely what we find in
our ‘NP → Det N’ module. Since it’s trained on
determiners, it obviously has the lowest MSE for
this part-of-speech; we include noun-noun pairs
(e.g. ‘tree cow’) as a control. As seen in Fig. 4, the
module generalizes to quantifiers intermediately to
determiners and adjectives. This demonstrates how
SynNaMoN modules may enable interesting anal-
yses of the compositional geometry of syntactic
operations in sentence embedding models.
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5 Conclusion

The human ability to apprehend the unitary mean-
ing of a sentence corresponds to a neural model’s
ability to construct compositional sentence embed-
dings. In this work, we introduced Syntactic Neu-
ral Module Nets and used it in a distillation ap-
proach to assess how well syntax explains the sen-
tential semantics computed by a transformer model.
We showed that some models are more composi-
tional by this metric, syntax-guided composition
is largely linear, and modules learn composition
functions that correspond to our semantic intuition.

Future work could explore this approach’s align-
ment with other compositionality metrics and the
non-compositional semantics left uncaptured by
SynNaMoNs. We are also interested in how Syn-
NaMoNs of different linguistic formalisms vary in
distillability, as well as other potential use cases of
SynNaMoNs beyond probing.

6 Limitations & Ethics Statement

Since longer sentences have more complex syn-
tax, they require more modules on GPU and can
run into out-of-memory issues. However, there is
a hard upper-bound on total number of modules
since there are limited syntax rules in the grammar.
In addition, we may never need to train on long
sentences if all modules can be effectively trained
on short sentences and then generalize composi-
tionally.

As an approach to probing language models,
SynNaMoN contributes to an ethical NLP vision
that seeks to address how models learn human bi-
ases that have societal effects from corpus data.
Understanding syntax representations in models
could be important in such a pursuit since some of
these bias effects are syntactically mediated. For
example, LMs with gender role biases could in-
ternally represent these biases as syntactic gender
agreement e.g. ‘man’ agrees with ’doctor’ and
‘woman’ agrees with ‘nurse’ (Prates et al., 2020).
By understanding the causal structure of sentential
semantics in LMs, we can better disentangle syntax
from spurious correlations transmitted by societal
structures.
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