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Abstract

Hate speech detection has been the subject of
high research attention, due to the scale of
content created on social media. In spite of
the attention and the sensitive nature of the
task, privacy preservation in hate speech detec-
tion has remained under-studied. The major-
ity of research has focused on centralised ma-
chine learning infrastructures which risk leak-
ing data. In this paper, we show that using
federated machine learning can help address
privacy the concerns that are inherent to hate
speech detection while obtaining up to 6.81%
improvement in terms of F1-score.

1 Introduction

Content moderation is a topic that intersects across
multiple fundamental rights, e.g., freedom of ex-
pression and the right to privacy; and interest
groups, e.g. scholars, legislators, civil society, and
commercial entities (Kaye, 2019). The availability
of public datasets has been crucial to the develop-
ment of computational methods for hate speech
detection. However, public data contains risks for
those whose content is available. On the other hand,
privately held data, e.g., data held by corporate enti-
ties, holds risks for those who are reporting content.
Such risks may be actualised through information
leaks in models (Hitaj et al., 2017) or the transmis-
sion of data (Shokri and Shmatikov, 2015), and can
impact people’s safety and livelihood.

In this work, we apply Federated Learning (FL,
McMahan et al., 2017) to address the lack of pri-
vacy in hate speech detection. FL is a privacy-
preserving training paradigm for machine learning
that jointly optimises for user privacy and model
performance. We posit that privacy is necessary
for users whose content is flagged and users who
are flagging content alike. We thus operationalise
privacy, in the context of hate speech detection

*Equal contribution.

Figure 1: Federated Learning: A centralised model is
hosted on a server and is distributed to client devices,
these compute weight updates, and transmit the updates
for aggregation into the centralised model. The cen-
tralised model is then redistributed to client devices.

and federated learning, to mean privacy in terms
of the content of reported content, and the report
itself. FL is an apt training paradigm for tasks
in which training data is highly sensitive, as FL
is designed to mitigate risks of information leaks
while also dealing with a high number of end-users,
information loss, and label imbalances (Lin et al.,
2022; Priyanshu and Naidu, 2021; Gandhi et al.,
2022). We apply the FL algorithms FedProx (Li
et al., 2020) and Adaptive Federated Optimization
(FedOpt, Reddi et al., 2021) to 5 machine learning
algorithms. We evaluate our approach on 8 previ-
ously published datasets for hate speech detection.
While using FL often implies a trade-off between
privacy and performance, we obtain performance
improvements of up to 6.81% in F1-score. We find
that that models trained using FL outperform cen-
tralised models across multiple tests (e.g., deroga-
tory language, spelling variation, and pronoun ref-
erence) in HATECHECK (Röttger et al., 2021).1

1All code is made available on Github.
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2 Prior Work

Although the areas of hate speech detection and FL
have each been subject to extensive research, the
study of their intersection remains in its infancy.

Federated Learning Federated Learning is a
privacy-preserving machine learning paradigm that
aims to reduce privacy risks by decentralising data
processing onto client devices (i.e., personal de-
vices), thereby foregoing the need for transmitting
“raw” user data, and thus minimising risks of per-
sonal data leaks caused by transmission of data.2

In FL, the machine learning model is located in
two places: On a centralised server, and on client
devices, which hold instances of the model dis-
tributed from the centralised model.Client devices
use the model to compute model updates. The
model updates are then transmitted to the server
and aggregated by the centralised model, which is
redistributed to the client devices. However, not all
transmitted weight updates are aggregated into the
model. FL operates with a notion of data loss in its
design, which is emulated by selecting a fraction
of clients whose updates are aggregated. Thus, FL
paradigm uses less data to train a models.

In our experiments, we apply two FL algorithms:
FedProx and FedOpt (Reddi et al., 2021). FedProx
introduces a proximal term to the Federated Averag-
ing algorithm (FedAvg, McMahan et al., 2017). Fe-
dAvg averages the weights computed on participat-
ing client devices in a round. FedProx introduces a
proximal term that functions as a regulariser to the
weight updates transmitted by participating clients,
which penalises local weight updates that diverge
from the global model. The FedAvg algorithm can
thus be understood as a special case of FedProx
with the proximal term set to 0.0.

FedOpt (Reddi et al., 2021) extends the adap-
tive optimisation strategies from centralised opti-
misation (e.g., Adam (Kingma and Ba, 2015) and
Adagrad (Duchi et al., 2010)) to explicitly account
for client and server optimisation. FedOpt handles
server optimisation distinctly from client optimi-
sation, by introducing a state to the server-side
optimisation routine. . This distinct handling of
server-side optimization enables more accurate and
heterogeneity-aware FL models, which can speed
up convergence.

FL has been applied to a number of tasks, in-
cluding emoji prediction (Ramaswamy et al., 2019;

2See Gitelman (2013) for a discussion on ‘raw’ data.

Gandhi et al., 2022), next-word prediction for mo-
bile keyboards (Yang et al., 2018), pre-training and
fine-tuning large language models (Liu and Miller,
2020), medical named entity recognition (Ge et al.,
2020), and text classification (Lin et al., 2022). For
instance, Lin et al. (2022) used FL to fine-tune a
DistilBERT model to perform classification on the
20NewsGroup dataset (Lang, 1995) using three dif-
ferent FL algorithms: FedAvg (McMahan et al.,
2017), FedProx (Li et al., 2020), FedOpt (Reddi
et al., 2021)) under non-IID partitioning.

In a closely related study, Basu et al. (2021)
apply FL, using the FedAvg algorithm to fine-tune
large language models to detect depression and
sexual harassment from small Twitter data samples.
They find that using large language models such as
BERT and RoBERTa outperform distilled language
models such as DistilBERT. Our work extends on
Basu et al. (2021) by introducing additional FL
algorithms and extending to a multi-class setting
for hate speech detection.

Thus, our work extends on prior work by i) ap-
plying FL to the task of multi-class hate speech de-
tection, a task which has proven difficult in part due
to the complex nature of pragmatics (Röttger et al.,
2021) and hate mongers seeking to evade content
moderation infrastructures (Crawford and Gille-
spie, 2016); ii) using the FedProx and FedOpt algo-
rithms rather than the FedAvg algorithm, thereby
reducing model vulnerability to divergent weight
updates; and iii) providing an in-depth analysis of
federated model performances.

Hate Speech Detection Prior work on hate
speech detection has primarily focused on privacy-
agnostic machine learning paradigms, using cen-
tralised models for classification. Such work has
investigated a number of machine learning mod-
els (e.g. SVMs (Karan and Šnajder, 2018), CNNs
(Park and Fung, 2017), and fine-tuned language
models (Swamy et al., 2019b)) and the develop-
ment of resources (e.g. Talat and Hovy, 2016). Re-
cently, Fortuna et al. (2021) proposed a standardis-
ation of classes across 9 publicly available datasets
and studied the generalisation capabilities of BERT,
fastText, and SVM models. In their work they
found limited success in inter-dataset generaliza-
tion. Our work thus extends on the task of hate
speech detection by introducing privacy-preserving
methods to multi-class hate speech detection. In
doing so, the privacy of those who flag content and
those whose content is flagged remain intact.
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Category Merged count Comb Change
aggression 6, 950 6, 950 -

aggressive hate speech 1, 561 1, 561 -
covert aggression 4, 242 4, 242 -

hate speech 13, 222 13, 205 −0.13%
insult 7, 879 7, 779 −1.27%

misogyny sexism 5, 000 5, 000 -
none 189, 869 188, 550 −0.69%

offensive 19, 192 19, 192 -
overt aggression 2, 710 2, 710 -

racism 1, 978 1, 978 -
severely toxic 1, 597 1, 527 −4.38%

threat 480 470 −2.08%
toxicity 40, 316 40, 134 −0.45%

Table 1: Label count of the raw datasets and Comb

3 Data

We combine our dataset using the standardisation
schema proposed by Fortuna et al. (2021).

Comb We reuse 8 of the 9 datasets used by For-
tuna et al. (2021) to form Comb.3 Comb then con-
sists of the datasets proposed by Talat and Hovy
(2016); Davidson et al. (2017); Fersini et al. (2018);
de Gibert et al. (2018); Swamy et al. (2019b);
Basile et al. (2019); Zampieri et al. (2019) and
the Kaggle toxic comment challenge.4 We perform
a stratified split of all training data into training
(70%), validation (10%), and test (20%) sets.5

Data Cleaning We address issues of extreme
class imbalance in Comb by removing the “abusive”
category as it only contains 2 documents. Follow-
ing an in-depth analysis of the Kaggle dataset
we find that the maximum length of tokens in the
dataset is 4950 while the median length of tokens in
Comb is 26. Moreover, we find that the longest 1%
of documents in the Kaggle dataset do not contain
unique tokens. Removing the longest 1% of com-
ments reduces the maximal document length to 727
tokens (see Appendix B.3 for further detail). Fol-
lowing our data cleaning processes, Comb comes
to consist of 293, 300 documents (see Table 1 for
an overview of changes).

4 Experiments

We experiment with 5 machine learning models in
their centralised and federated settings: Logistic

3The dataset proposed by (Founta et al., 2018) is not in-
cluded as it was not available to us.

4https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

5We do not use the test data provided with some datasets
to ensure uniformity, as test sets are not provided with all
datasets.

Regression Bi-LSTMs (Hochreiter and Schmidhu-
ber, 1997), FNet (Lee-Thorp et al., 2022), Dis-
tilBERT (Sanh et al., 2019) and RoBERTa (Liu
et al., 2019). We measure their performance using
weighted F1 scores. The centralised models form
our baselines, while the federated models form our
experimental models. For the Logistic Regression
and Bi-LSTMs, we perform word-level tokenisa-
tion using SpaCy (Honnibal and Montani, 2017).
For the FNet, DistilBERT, and RoBERTa, we use
the tokenisers provided with each model.6

4.1 Federated Training

FL is a machine learning training paradigm that dis-
tributes training onto client devices. All client de-
vices are split into overlapping subsets and the train-
ing data is partitioned and uniformly distributed to
client devices. A random client subset is selected
for training in each round, and their locally com-
puted weights are aggregated on the server. We
train our models for 300 rounds for 1, 5, or 20
epochs per round, and set the client fraction to 10%,
30%, or 50% which are randomly sampled from
100 client devices. We perform hyper-parameter
tuning for the client learning rate, server-side learn-
ing rate, and proximal term (see appendix B.1).

In our work, we conceptualise client devices as
users who witness and report hate speech. We
simulate the client devices and ensure that data is
independently and identically distributed (I.I.D.) on
client devices.7 We use the FedProx and FedOpt
algorithms to aggregate client updates on the server.
FedProx introduces a regularisation constant to the
server-side aggregation step, the proximal term to
address issues of divergence in weights and statis-
tical heterogeneity in FedAvg. FedOpt seeks to
create more robust models by introducing a sepa-
rate optimiser for the server-side model to account
for data heterogeneity.

5 Analysis

Considering the baseline models in Table 4, we
see that the Logistic Regression tends to under-
perform, while the RoBERTa model posts the best
performances. Although FL-based models often
outperform our baselines, we note that when FL

6Please refer to Appendix A for further experiments and
analyses on the Vidgen et al. (2021) dataset.

7We use an I.I.D. setting for data as 40% of all social media
users and 64% of those under 30 in the USA have experienced
online harassment (Pew Research Center, 2021). I.e. while
hate speech is not frequent, it is often experienced by users.
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Logistic Regression Bi-LSTM FNet DistilBERT RoBERTa
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

c = 10%
e = 1 70.22 53.15 58.47 71.04 58.19 61.28 72.61 59.20 62.20 73.98 60.75 63.79 74.76 64.43 66.16
e = 5 70.83 63.31 66.35 70.84 66.51 67.72 73.52 68.33 70.42 74.54 69.46 70.85 74.59 69.68 71.48
e = 20 70.18 67.41 68.67 69.17 69.25 69.10 73.10 68.02 69.73 73.28 71.06 71.94 73.11 71.48 72.07

c = 30%
e = 1 71.23 53.50 58.89 71.58 58.82 61.72 73.62 61.13 63.97 74.84 64.03 66.14 75.02 64.33 66.41
e = 5 70.82 64.44 67.01 70.65 65.90 67.27 73.35 68.30 70.36 74.82 69.44 70.68 74.41 69.98 71.81
e = 20 70.30 68.13 69.09 69.34 69.26 69.15 72.35 68.03 69.74 73.33 71.39 72.15 73.65 70.86 71.96

c = 50%
e = 1 71.11 53.12 58.58 71.59 58.71 61.73 73.93 61.89 64.51 74.88 63.58 65.85 74.42 63.57 65.87
e = 5 70.89 64.26 66.80 70.70 66.16 67.54 72.90 68.27 70.18 74.44 69.68 70.88 74.90 69.46 70.86

e = 20 70.28 68.00 69.01 69.25 68.84 68.20 72.90 68.42 70.16 73.71 71.51 72.34 73.53 71.18 72.01

Table 2: Results of FedProx experiments on Comb.

Logistic Regression Bi-LSTM FNet DistilBERT RoBERTa
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

c = 10%
e = 1 68.29 52.48 58.46 71.80 58.34 61.70 72.64 59.78 62.49 74.51 63.87 65.03 72.02 64.21 64.57
e = 5 68.20 59.38 63.14 70.63 63.73 66.10 72.39 69.11 70.51 74.33 69.61 70.48 75.55 69.44 70.34

e = 20 68.30 59.56 63.23 69.74 65.32 67.27 71.87 70.69 71.15 72.21 71.34 71.66 73.17 72.20 72.61

c = 30%
e = 1 67.68 51.05 57.19 71.56 58.97 62.10 72.24 57.11 61.21 74.90 64.16 66.79 73.88 66.07 65.79
e = 5 66.65 60.31 63.10 69.48 62.63 65.57 72.01 69.14 70.30 72.82 69.59 70.75 74.38 71.54 71.69
e = 20 67.18 62.50 64.60 69.74 65.69 67.49 71.91 70.02 70.79 71.55 70.33 70.86 72.97 72.10 72.05

c = 50%
e = 1 67.25 54.85 59.82 71.35 59.63 62.59 73.03 62.28 64.64 73.31 63.98 65.64 74.85 66.80 67.75
e = 5 66.63 60.21 63.04 69.56 63.02 65.58 70.63 68.06 69.21 72.53 69.66 70.80 73.78 71.27 71.18
e = 20 66.70 62.51 64.41 69.16 66.16 67.54 70.98 69.74 70.21 70.65 68.99 69.69 72.67 70.51 71.51

Table 3: Results of FedOpt experiments on Comb.

Centralised Federated
Precision Recall F1 F1

LogReg 69.11 57.45 62.20 69.09
Bi-LSTM 71.43 66.64 67.90 69.15
FNet 71.35 64.73 66.58 71.15
DistilBERT 73.99 69.01 69.39 72.34
RoBERTa 75.45 70.58 71.03 72.61

Table 4: Results for the centralised and best performing
FL models. The FL models have been chosen across
FedProx and FedOpt based on F1 scores.

models are trained with lower client fractions and
epochs, they tend to be outperformed by the base-
lines. Models trained using FedProx outperform
the centralised baselines (see table 2).8 For in-
stance, we see large improvements for FNet and
Logistic Regression (4.5 and 6.8 points in terms
of F1- score, respectively). Comparing the perfor-
mances of models trained using FedOpt (table 3)
with those trained using FedProx, we observe that
the former (in particular FNet and RoBERTa) tend
to outperform the latter for lower client fractions
and epochs. In general, we find that the best FL
models outperform their centralised counter-parts
(see Tables 2 and 3). In fact, the best performing
RoBERTa, DistilBERT, and FNet models trained
using FL algorithms outperform their centralised
baselines, with FNet obtaining a 3-4 point improve-
ment over centralised models in terms of F1 score.9

8For tables 2 and 3, c refers to the client fraction used and
e refers to the number of epochs on client devices.

9See Section 5.1 for an analysis using HateCheck (Röttger
et al., 2021).

While FL often indicates a trade-off between
privacy and performance, we find that the best FL
models outperform the centralised baselines. We
believe that the improved performance stems from
the dataset being split into smaller segments, in
congruence with findings from prior work. For in-
stance, Nobata et al. (2016) show that splitting data
into smaller temporal segments helped improve
classification performance overall. We believe that
a similar effect may be evident with FL models that,
by design split data into small segments and dis-
regard a fraction of the clients. Further, it may be
the case that some data within hate speech datasets
hinders generalisation. Only using subsets of the
data for training may therefore aid generalisation.

5.1 Hate Check Evaluation

This section extends the experiments to qualita-
tively evaluate the effectiveness of federated and
centralised models under different axis of hate
speech using HATECHECK (Röttger et al., 2021).
HATECHECK is a suite of functional tests for hate
speech detection models. HATECHECK provides
an in-depth examination of model performances
across different potential challenges for machine
learning models trained for hate speech detection.

The HATECHECK (Röttger et al., 2021) dataset
consists of 29 tests, 18 of which test for distinct
expressions of hate while the remaining 11 test
for non-hateful expressions. The dataset contains
3.728 labelled samples, 69% of which are ‘Hate‘
and while the remaining 31% are labelled as ‘Not-
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Functionality
Accuracy (%)

Logistic Regression Bi-LSTM FNet DistilBERT RoBERTa
Central Fprox FOpt Central Fprox FOpt Central Fprox FOpt Central Fprox FOpt Central Fprox FOpt

F1: Expression of strong negative emotions (explicit) 96.4 100.0 97.1 80.7 100.0 95.7 75.0 98.6 97.9 90.0 99.3 87.9 89.3 87.9 92.9

F2: Description using very negative attributes (explicit) 95.0 100.0 97.9 65.7 99.3 99.3 87.1 100.0 100.0 96.4 100.0 97.7 92.9 93.6 95.0

F3: Dehumanisation (explicit) 97.9 100.0 94.3 77.9 100.0 100.0 85.0 100.0 100.0 97.1 100.0 93.6 90.7 94.3 94.3

F4: Implicit derogation 87.1 95.7 75.7 70.7 94.3 92.9 62.1 99.3 96.4 72.9 82.9 82.9 77.1 78.6 80.7

F5: Direct threat 90.2 99.3 94.0 80.0 96.2 88.0 82.0 100.0 98.5 88.0 98.5 91.7 91.0 95.5 91.7

F6: Threat as normative statement 94.3 99.3 96.4 80.7 99.3 98.6 70.0 100.0 100.0 90.0 100.0 94.3 96.4 90.7 91.4

F7: Hate expressed using slur 87.5 99.3 98.6 75.7 88.2 96.5 86.1 98.6 96.5 91.0 94.4 90.0 88.2 84.7 86.1

F8: Non-hateful homonyms of slurs 6.7 16.7 43.3 10.0 43.3 40.0 16.7 23.3 26.7 23.3 50.0 33.3 26.7 40.0 36.7

F9: Reclaimed slurs 4.9 4.9 40.7 2.5 42.0 27.2 9.9 11.1 13.6 6.2 7.4 12.4 4.9 16.1 17.3

F10: Hate expressed using profanity 100.0 100.0 100.0 93.6 96.4 96.4 94.3 100.0 100.0 97.9 100.0 100.0 100.0 100.0 100.0

F11: Non-hateful use of profanity 2.0 13.0 38.0 19.0 47.0 40.0 6.0 11.0 19.0 15.0 13.0 16.0 3.0 11.0 17.0

F12: Hate expressed through reference in subsequent clauses 100.0 100.0 90.0 91.4 98.6 98.6 86.4 100.0 100.0 95.0 98.6 96.4 90.0 92.9 92.1

F13: Hate expressed through reference in subsequent sentences 100.0 100.0 96.2 85.0 96.2 94.7 84.2 100.0 100.0 95.5 99.3 97.0 96.2 94.0 95.5

F14: Hate expressed using negated positive statement 92.9 99.3 84.3 57.9 89.3 93.6 52.1 100.0 100.0 77.9 93.6 76.4 61.4 81.4 90.7

F15: Non-hate expressed using negated hateful statement 6.0 30.0 58.7 25.6 53.4 41.4 27.1 23.3 33.8 17.3 27.1 43.6 31.6 51.1 56.4

F16: Hate phrased as a question 95.7 100.0 95.0 81.4 93.6 96.4 61.4 95.0 95.0 92.1 96.4 91.4 82.1 95.0 87.9

F17: Hate phrased as an opinion 99.0 100.0 92.5 89.5 99.0 97.7 81.2 100.0 94.0 91.0 98.5 93.2 86.5 93.2 87.2

F18: Neutral statements using protected group identifiers 20.6 56.3 77.0 42.1 75.4 62.7 50.0 55.6 69.0 69.0 68.3 75.4 69.0 92.9 87.3

F19: Positive statements using protected group identifiers 18.0 42.9 80.0 46.0 64.6 41.3 45.5 37.0 59.3 38.6 49.2 73.1 48.1 78.8 92.1

F20: Denouncements of hate that quote it 1.7 19.0 55.5 14.5 44.5 28.3 31.2 45.1 33.5 16.2 48.6 38.7 15.6 36.4 37.0

F21: Denouncements of hate that make direct reference to it 4.2 15.6 47.5 21.3 46.8 36.9 27.7 22.7 34.0 12.1 16.3 30.5 19.1 39.0 43.3

F22: Abuse targeted at objects 10.8 45.1 70.8 46.1 70.8 52.3 53.8 47.7 58.5 55.4 66.2 66.2 60.0 73.8 75.4

F23: Abuse targeted at individuals (not as member of a prot. group) 4.6 29.2 61.5 29.2 69.2 52.3 20.0 24.6 38.5 20.0 29.2 38.5 23.1 15.4 69.2

F24: Abuse targeted at non-protected groups (e.g. professions) 14.5 24.2 62.9 27.4 74.2 53.2 35.5 40.3 46.8 41.9 43.5 59.7 29.0 45.2 66.1

F25: Swaps of adjacent characters 97.7 99.2 90.2 82.7 95.5 95.5 72.2 98.5 98.5 78.2 97.0 78.9 71.4 89.5 80.5

F26: Missing characters 83.8 100.0 81.6 72.8 97.1 98.8 74.6 97.7 92.4 84.4 94.8 98.8 89.0 90.2 92.5

F27: Missing word boundaries 97.9 100.0 99.2 82.3 100.0 100.0 79.4 100.0 93.6 79.4 90.8 86.5 93.6 90.8 90.8

F28: Added spaces between chars 83.8 100.0 86.1 72.8 97.1 98.8 74.6 97.7 92.5 84.4 94.8 98.8 89.0 90.1 92.5

F29: Leet speak spellings 99.4 100.0 98.8 80.9 99.4 98.8 65.9 98.2 93.6 75.1 84.4 75.1 75.1 83.8 86.7

Table 5: Results on the HateCheck test suite.

Hate‘. We evaluate all the models that have been
trained for this manuscript, including the model
examined in appendix A. We evaluate our trained
models HATECHECK’s binary form by mapping all
classes positive classes to “hate” and the negative
class to “not-hate”.10

Conducting the HateCheck functional tests for
the models trained on the Comb dataset, we see
(please refer to table 5) that the federated learning
models perform on par or better than the centralised
models on a macro scale. The federated Bi-LSTM
and FNet models yield strong improvement of 3
- 5%. On the other hand, there is a slight perfor-
mance dip (0.5 - 1%) for the federated DistilBERT
and RoBERTa models. Moreover, through a fine-
grained analysis of model performance, we observe
that all the models (centralised and federated) per-
form acceptable performances for different types of
derogatory, pronoun reference, phrasing, spelling
variations, and threatening language. However, all
models perform poorly for the tests for counter
speech, indicating that while the models learn to
recognise some forms of hate, they cannot accu-
rately recognise responses to it. Furthermore, we
see that RoBERTa performs slightly better than all
the other model variants on non-hate group identity

10The Comb dataset uses ‘none’ as its negative class, the
Binary Dataset (Vidgen et al., 2021) has ‘Not-hate’ as non-
hateful label, and Multi-class Dataset Vidgen et al. (2021) has
‘None’ as non-hateful label

and abuse against non-protected targets. RoBERTa
and DistilBERT achieve the best performances for
slurs. Overall, we find that RoBERTa and Distil-
BERT consistently perform well across many of the
functional tests which might be due to having been
pre-trained on large amount of language data. How-
ever, the pre-training also induces certain biases
which limit the models’ performance on profanity.
The Bi-LSTMs outperform all the models on non-
hateful profanity but simultaneously under-perform
on hateful profanity.

6 Conclusion

Private and sensitive data can risk being exposed
when developing and deploying models for hate
speech detection. We therefore examine the use
of Federated Learning, a privacy preserving ma-
chine learning paradigm to the task of hate speech
detection to emphasise privacy in hate speech de-
tection. We find that using Federated Learning
improves on the performance levels achieved us-
ing centralised models, thus affording both privacy
and performance. In future work, we intend to
examine interpretability and explainability for fed-
erated learning to gain a better understanding of
the causes of such performance increases.
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Limitations

While Federated Learning introduces increased pri-
vacy in the process of hate speech detection, a real
time system may be vulnerable to attacks that can
lead to privacy leakages. For instance, the weights
being transferred from the clients to the server may
reveal information about the local dataset to an ad-
versary (Bhowmick et al., 2018; Melis et al., 2019).
However unintended these leakages may be, they
still pose a significant threat and might limit the
privacy claim.

The Federated Learning models trained in our
work rely on 8 of the 9 datasets used by Fortuna
et al. (2021), as we could not gain access to the
final dataset. We do not test the biases introduced
in Federated Learning models upon combining and
normalising these datasets under the schema pro-
posed by Fortuna et al. (2021, 2020). Additionally,
the dataset division for the simulation is done under
the assumption of I.I.D. conditions which might not
always be true for real-world scenarios.

Ethical Considerations

Although our methods for hate speech detection
provide increased privacy to downstream users of
content moderation technologies, i.e. users of on-
line platforms, there are significant risks to it. First,
our proposed technology has dual use implications,
as it can also be applied maliciously, for instance to
limit the speech of specific groups. Second, while
this work uses publicly available datasets, there is
an inherent tension between the public availabil-
ity of data and privacy risks. Finally, although all
model updates occur on local client devices, feder-
ated learning is not a silver bullet which addresses
issues of systemic violence of content moderation
Thylstrup and Talat (2020), or issues of privacy.
Rather, federated learning can provide an avenue
for engaging in meaningful conversations with peo-
ple and their experiences and needs for content
moderation and privacy.
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A Learning From the Worst

Extending the experiments conducted in section 4,
we aim to analyse if our claims are corroborated
when we expose the complete setup of federated
as well as centralised models to other datasets. We
perform this analysis on the “Learning from the
Worst” dataset (Vidgen et al., 2021).

A.1 Dataset
Binary Dataset We use the Dynamically Gen-
erated Hate Dataset v0.2.2 provided by Vidgen
et al. (2021) which contains 41, 255 entries. We
use the training, testing, and validation sets pro-
vided by Vidgen et al. (2021). This dataset consists
of two categories: hate and not-hate. The category
distribution is shown in table 6.

Multi-class Dataset We use the same Dynam-
ically Generated Hate Dataset v0.2.2 provided
by Vidgen et al. (2021). However, we make use
of the multi-class labels provided in the original
dataset. It consists of seven categories: none (i.e.
not-hate), derogation, not-given, animosity, dehu-
manisation, threatening, and support (see table 6
for class distribution).
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Binary categories Multi-class categories Count
Not-hate None 18, 993

Hate

Derogation 9, 907
Not Given 7, 197
Animosity 3, 439

Dehumanisation 906
Threatening 606

Support 207

Table 6: Label distribution of Vidgen et al. (2021)
v.0.2.2.

Model Binary Dataset Multi-class Dataset
Precision Recall F1 Precision Recall F1

LogReg 63.38 52.58 54.98 56.68 35.46 40.92
Bi-LSTM 63.56 52.90 55.38 58.44 41.70 45.91
FNet 27.75 48.05 33.74 53.41 23.46 27.60
DistilBERT 71.56 71.72 68.63 78.25 52.96 59.27
RoBERTa 76.18 77.50 74.37 80.26 62.69 67.91

Table 7: Centralised model performances for binary
and multi-class datasets

A.2 Analysis

We follow the training procedures outlined in sec-
tion 4 on the binary and multi-class versions of
the Vidgen et al. (2021) dataset and consider the re-
sults on the multi-class dataset (see Tables 7 and 8).
We observe similar performance trends for the Lo-
gistic Regression and Bi-LSTM models in table 9
to those for Comb. This pattern extends to the
Transformer-based models with the exception of
the RoBERTa model. The federated RoBERTa ob-
tains a slightly lower F1 score than the centralised
version in (64.92 and 65.73, respectively).

The pattern of performances for the binary
dataset varies from our main dataset. Here, we
observe in Table 8 that the FNet model adapts well
to the federated setting, with both FedProx and Fe-
dOpt algorithms significantly improving on their
centralised counter-part (65.14 and 35.51, respec-
tively) (see Table 9). Moreover, we find that the
models optimised using FedProx algorithm outper-
form those using the FedOpt algorithm for all feder-
ated learning settings with the exception of the Dis-
tilBERT variant with c = 50% and e = 5. For the
binary dataset, we observe that all federated models
except for RoBERTa perform better across client
fractions when trained for lower epochs. For the
multi-class dataset, however, all federated models
have improved performance across client fractions,
when the models are trained for a higher number of
epochs. We observe from our results that there is a
slight performance decrease for the federated ver-

sions of the Bi-LSTM, RoBERTa, and DistilBERT,
when compared to the centralised models. A small
decrease in performance however is expected for
federated learning, due to its emphasis on privacy
protections. In spite of small differences, the exper-
iments on both the binary and multi-class versions
of Vidgen et al. (2021) closely resemble the results
obtained on Comb, suggesting that federated learn-
ing is applicable across datasets for hate speech
and class distributions.

We see a similar trend as Comb while perform-
ing the HATECHECK functional tests on the bi-
nary and multi-class dataset. The Logistic Regres-
sion adapts poorly across different types of counter
speech, slurs, non-hate group identity, negation,
and abuse against non-protected targets. Moreover,
we also observe that Bi-LSTM and FNet yield poor
performance for different types of negation and
non-hate group identity. We find that in most cases,
models trained on the binary dataset achieve higher
performances than the models trained on its multi-
class counterpart.

B Model Exploration

This section highlights the different model settings
and hyper-parameter selection strategies used while
training the models on Comb and Vidgen et al.
(2021) in appendix A. We also provide a token
level analysis conducted by on Comb.

B.1 Hyper-parameter Search

We use Weights and Biases (Biewald, 2020) as
our experiment tracking tool for all experiments.
We run a Bayesian search for finding the optimal
client learning rate, server-side learning rate, and
the proximal term. In our hyper-parameter search
for the value of proximal term, we conduct a cate-
gorical search. Following Li et al. (2020), we set
the possible values to 0.001, 0.01, 0.1, and 1.

B.2 Model Descriptions

We implement all models using PyTorch (Paszke
et al., 2019) and Huggingface libraries (Wolf et al.,
2020). We train the Logistic Regression and Bi-
LSTM models for 300 rounds, and transformer-
based models for 50 rounds. We implement early
stopping based on the weighted validation F1
scores, with the patience set to 10 rounds. After
conducting our hyper-parameter search, we choose
our hyper-parameters (see table 11 and table 12).
The measure the performances of all our models
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Binary (FedProx) Binary (FedOpt) Multiclass (FedProx) Multiclass (FedOpt)
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

e = 1 59.43 59.52 59.34 57.38 57.44 57.36 45.55 39.62 41.34 45.06 37.56 40.15
c = 10% e = 5 60.13 59.99 60.01 55.93 55.79 55.76 47.03 44.71 45.58 44.93 43.91 44.25

e = 20 60.08 59.94 59.97 56.08 55.98 55.97 47.68 48.01 47.77 46.17 46.39 46.11
Logistic e = 1 59.78 59.69 59.71 55.88 55.74 55.71 47.28 34.94 38.20 43.26 36.66 39.07

Regression c = 30% e = 5 60.79 60.80 60.80 55.11 55.02 55.01 48.12 47.58 47.74 44.77 42.05 43.17
e = 20 60.76 60.41 60.41 54.93 54.80 54.76 47.27 47.94 47.50 45.26 46.44 45.51
e = 1 60.60 60.55 60.57 54.46 54.36 54.33 46.92 34.00 37.08 42.78 36.52 38.44

c = 50% e = 5 60.76 60.73 60.74 54.58 54.52 54.51 47.54 46.68 46.96 43.60 42.26 42.85
e = 20 60.79 60.55 60.57 54.85 54.72 54.66 47.55 48.91 48.10 44.28 44.93 44.41
e = 1 61.15 61.26 61.00 61.05 61.17 60.96 38.54 38.02 35.96 40.16 38.75 38.23

c = 10% e = 5 57.63 57.55 57.57 57.93 57.88 57.89 46.09 45.68 45.84 45.88 43.57 44.34
e = 20 58.15 58.14 58.15 58.70 58.65 58.66 45.24 47.79 45.92 45.49 49.88 45.94
e = 1 61.72 61.74 61.13 60.26 60.37 60.13 40.23 36.64 34.89 43.64 31.18 32.74

Bi-LSTM c = 30% e = 5 58.48 58.48 58.48 59.36 59.42 59.36 45.77 44.33 44.97 46.30 43.19 44.00
e = 20 57.07 57.06 57.06 59.37 59.35 59.36 45.06 47.07 45.58 46.68 50.00 47.19
e = 1 60.73 60.84 60.66 60.50 60.58 60.20 45.05 32.61 34.86 43.98 33.39 35.40

c = 50% e = 5 57.90 57.93 57.91 59.51 59.55 59.52 45.59 44.88 45.22 46.85 45.15 45.77
e = 20 57.30 57.28 57.29 59.26 59.25 59.25 45.50 48.40 46.00 46.73 50.02 47.37
e = 1 72.84 71.99 72.16 73.13 70.57 70.65 38.33 32.35 25.99 39.64 33.78 23.90

c = 10% e = 5 69.48 69.58 69.51 69.93 69.10 69.22 54.00 54.95 54.11 40.93 26.84 17.58
e = 20 69.84 68.99 69.11 70.03 69.97 69.99 50.80 52.13 51.37 49.16 50.48 49.39
e = 1 72.48 71.76 71.91 72.31 71.53 71.69 53.24 39.65 40.27 51.74 35.40 37.36

FNet c = 30% e = 5 70.59 70.29 70.38 71.47 70.72 70.87 53.02 52.47 51.62 43.53 28.59 22.33
e = 20 69.06 68.93 68.98 69.96 69.93 69.94 51.03 52.98 51.43 49.66 52.62 49.74
e = 1 72.64 72.47 72.54 72.61 72.47 72.53 58.49 40.30 43.27 49.48 32.74 33.23

c = 50% e = 5 69.67 69.28 69.39 70.19 69.92 70.00 54.31 53.25 53.54 50.44 50.07 49.82
e = 20 67.71 67.62 67.66 68.21 68.14 68.17 51.62 51.75 51.55 48.10 50.00 48.27
e = 1 74.62 74.76 74.67 74.20 74.43 74.21 58.99 42.73 45.33 63.91 49.15 52.88

c = 10% e = 5 73.74 73.05 73.21 72.35 72.17 72.24 60.72 58.22 59.27 60.41 57.57 58.71
e = 20 72.92 72.39 72.53 70.77 70.43 70.53 59.61 59.14 59.24 58.78 59.38 58.95
e = 1 74.90 74.77 74.82 73.73 73.84 73.78 58.95 43.48 45.98 54.13 40.11 39.49

DistilBERT c = 30% e = 5 73.34 73.14 73.22 70.98 70.89 70.93 60.66 58.46 59.39 60.73 58.97 59.72
e = 20 73.02 72.82 72.90 70.37 70.17 70.24 58.79 58.85 58.71 58.22 58.80 58.28
e = 1 74.94 74.88 74.91 73.60 73.72 73.64 59.74 43.91 46.44 55.35 40.25 41.26

c = 50% e = 5 73.35 73.02 73.13 70.51 70.23 70.32 60.52 58.39 59.26 60.35 59.26 59.71
e = 20 73.07 72.67 72.79 70.08 69.84 69.92 58.85 58.39 58.54 58.41 58.60 58.36
e = 1 80.72 80.90 80.78 80.74 81.01 80.46 62.50 48.67 51.76 66.26 54.58 58.04

c = 10% e = 5 80.97 80.94 80.95 80.20 80.38 80.27 65.33 64.86 64.92 63.97 62.20 62.93
e = 20 81.71 81.82 81.76 80.34 80.40 80.37 63.74 64.28 63.85 63.68 63.80 63.65
e = 1 81.61 81.76 81.67 80.79 80.98 80.86 64.77 47.26 50.49 65.87 58.10 60.41

RoBERTa c = 30% e = 5 81.27 81.33 81.30 79.92 80.10 79.98 65.27 64.31 64.64 63.58 63.19 63.22
e = 20 81.22 81.37 81.28 79.17 79.32 79.23 64.59 64.82 64.54 63.14 63.16 62.96
e = 1 80.82 80.81 80.82 80.84 81.09 80.91 64.81 45.97 49.10 66.27 58.58 61.14

c = 50% e = 5 81.76 81.86 81.80 79.66 79.75 79.70 65.19 64.50 64.68 64.13 63.77 63.82
e = 20 81.32 81.41 81.36 79.85 79.94 79.89 64.83 64.62 64.56 63.54 63.19 63.29

Table 8: Results of binary and multi-class classification experiments run on the datasets released by Vidgen et al.
(2021) using the Federated Learning setup (FedProx and FedOpt). c is the percentage of clients whose updates are
considered. e is the number of local epochs on edge device.

Model Binary Dataset Multi-class Dataset
Server trained Federated Server trained Federated

LogReg 59.61 60.74 39.79 48.10
Bi-LSTM 61.98 61.13 42.18 47.37
FNet 35.51 72.54 45.52 54.11
DistilBERT 74.95 74.91 59.76 59.72
RoBERTa 80.64 81.80 65.73 64.92

Table 9: Results comparing the F1 scores for server-
based approaches and federated approaches for binary
and multi-class datasets proposed by Vidgen et al.
(2021)

using precision, recall and weighted F1 scores.

B.3 Token Level Analysis
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Figure 2: fraction of token occurrences (of 50 most fre-
quent tokens) in the discarded data

Table 10 shows the preliminary explorations of the
token-level distributions for the combined dataset
(Section 3) with two tokenisation methods: word-
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Dataset Tokenization Minimum 99%ile Maximum

Talat and Hovy (2016)
Word-level 1 34 54

Subword-level 3 60 101

Davidson et al. (2017)
Word-level 1 37 94

Subword-level 2 83 412

Fersini et al. (2018)
Word-level 2 36 47

Subword-level 3 64 93

de Gibert et al. (2018)
Word-level 1 67 374

Subword-level 1 93 592

Swamy et al. (2019a)
Word-level 1 175 1481

Subword-level 1 233 3209

Basile et al. (2019)
Word-level 1 59 74

Subword-level 3 105 156

Zampieri et al. (2019)
Word-level 2 69 112

Subword-level 4 152 221

Kaggle
Word-level 1 727 4950

Subword-level 2 872 4952

Table 10: Word-level and subword-level (BPE) token sequence length distribution for Comb dataset described in
Section 3

level using SpaCy (Honnibal and Montani, 2017)
and subword-level using the BPE algorithm.11

Based on our analysis, we draw the following con-
clusions: 1) token length is highly imbalanced for
different datasets in Comb, particularly in Kaggle
dataset4; 2) 99th percentile token length in Kaggle
dataset4 is reflected in the remaining dataset. Con-
sidering this, we remove longest 1% of documents
from the Kaggle dataset4 to achieve faster computa-
tion. Through this exclusion process, the maximal
token length of documents is reduced from 4950 to
727 tokens, without a substantial loss of informa-
tion.

11https://github.com/VKCOM/YouTokenToMe
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Model Combined Datasets Binary Dataset Multi-class Dataset
bs client_lr µ bs client_lr µ bs client_lr µ

LogReg 128 0.01 0.01 64 0.01 0.01 64 0.01 0.01
Bi-LSTM 128 0.001 0.01 64 0.001 0.01 64 0.001 0.01
FNet 32 0.0001 0.1 32 0.0001 0.001 32 0.0001 0.001
DistilBERT 32 0.00004 0.01 32 0.00002 0.01 32 0.00002 0.01
RoBERTa 16 0.00002 0.01 24 0.00002 0.01 32 0.00002 0.01

Table 11: Model hyper-parameters for server-based and federated models for the Vidgen et al. (2021). ‘bs’ repre-
sents batch size, ‘client_lr’ represents client learning rate, µ represents proximal term for FedProx algorithm.

Model Combined Datasets Binary Dataset Multi-class Dataset
bs client_lr server_lr bs client_lr server_lr bs client_lr server_lr

LogReg 128 0.01 0.01 64 0.01 0.001 64 0.01 0.01
Bi-LSTM 128 0.001 0.01 64 0.001 0.001 64 0.001 0.001
FNet 32 0.0001 0.001 32 0.0001 0.0001 32 0.0001 0.0001
DistilBERT 32 0.00004 0.001 32 0.00002 0.0001 32 0.00002 0.0001
RoBERTa 16 0.00002 0.001 24 0.00002 0.0001 32 0.00002 0.0001

Table 12: Model hyper-parameters for server-based and federated models for the Vidgen et al. (2021). ‘bs’ rep-
resents batch size, ‘client_lr’ represents client learning rate, ‘server_lr’ represents server learning rate for FedOpt
algorithm.
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