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Abstract

Can transformers learn to comprehend logical
semantics in natural language? Although many
strands of work on natural language inference
have focussed on transformer models’ ability
to perform reasoning on text, the above ques-
tion has not been answered adequately. This
is primarily because the logical problems that
have been studied in the context of natural
language inference have their computational
complexity vary with the logical and gram-
matical constructs within the sentences. As
such, it is difficult to access whether the dif-
ference in accuracy is due to logical semantics
or the difference in computational complexity.
A problem that is much suited to address this
issue is that of the model-checking problem,
whose computational complexity remains con-
stant (for fragments derived from first-order
logic). However, the model-checking problem
remains untouched in natural language infer-
ence research. Thus, we investigated the prob-
lem of model-checking with natural language
to adequately answer the question of how the
logical semantics of natural language affects
transformers’ performance 1. Our results imply
that the language fragment has a significant im-
pact on the performance of transformer models.
Furthermore, we hypothesise that a transformer
model can at least partially understand the log-
ical semantics in natural language but can not
completely learn the rules governing the model-
checking algorithm.

1 Introduction

Recent years have seen a surge of interest in the
application of neural networks to the topic of nat-
ural language inference (Raffel et al., 2019; Lan
et al., 2020; Yang et al., 2019), the central task of
which is to recover information entailed by, but
not explicitly stated in natural language texts (Lin
et al., 2019; Sinha et al., 2019; Geiger et al., 2018;

1dataset and code available at https://github.com/
iTharindu/reasoning-withing-a-structure

Wang et al., 2021). This problem is of theoretical
(as well as practical) interest because the ability
to understand the logical consequences of natu-
ral language sentences is an essential part of what
it is to understand the grammatical constructions
and closed-class expressions they contain. More
specifically, the ability of neural network models to
recognize logical entailments is constitutive of their
ability to understand the texts they are processing.

It is important to distinguish two strands of work
in this area. The first focuses on entailment as
defined by human-constructed datasets (Bowman
et al., 2015; Williams et al., 2018), where the in-
ferences depend on implicit background knowl-
edge and have a probabilistic character. The sec-
ond focuses on the recognition of formal logical
entailments, for which data sets can be machine-
generated using existing symbolic reasoning tech-
niques (Richardson et al., 2020; Richardson and
Sabharwal, 2021; Geiger et al., 2018). This latter
strand of work is particularly pertinent to the theo-
retical problem of whether neural network models
can learn the logical semantics of natural language.
Commonsense knowledge, human judgement and
considerations of plausibility are consciously ex-
cluded.

A logical problem of great theoretical interest
that has not been studied in the context of natural
language inference is the model-checking problem:
given a formula ϕ and a structure A, determine
whether ϕ is true in A (A |= ψ). The ability to
perform model-checking is indicative of a grasp of
the logical semantics of the expressions concerned.
In the context of natural language inference, we
are particularly interested in a variant of the model-
checking problem where the structure and the for-
mula are interpreted in natural language. It is note-
worthy to emphasise how the model-checking prob-
lem differs from other inference problems. In other
logical reasoning problems such as satisfiability,
computational complexity varies among multiple
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Figure 1: An instance of the model-checking problem, the domain of the structure is represented inD, and predicates
are characterised by P . A formula can be valid or not according to the structure (the formula on the left is valid,
while the one on the right is invalid). Corresponding natural language representations for both the structure and the
formula are also presented.

computational complexity classes (NLOGSPACE to
NEXPTIME for fragments considered in this study)
in language fragments of the finite variable space
(Pratt-Hartmann and Third, 2006; Pratt-Hartmann,
2010). In contrast, in the model checking problem,
the computational complexity remains in PTIME

for any fragment in the finite variable space (given
they are derived from first-order logic). Further-
more, inference in the model-checking problem
is fairly straightforward, which has also been evi-
dent by low computational complexity. Hence, the
model-checking problem provides an ideal problem
to analyse how different logically significant words
and grammatical constructs (semantics of logic in
natural language) affect transformers’ ability to rea-
son, as the underlying computational complexity
remains in PTIME.

Figure 1 depicts an instance of the model-
checking problem, where the sentence "Some ac-
tors love every scholar" is True according to the
structure presented, as the assignment of "Hailee"
to the variable x makes the corresponding formula
(∃x(actor(x) ∧ ∀y(scholar(y) ⇒ love(x, y))))
True. However, when assessing the sentence "All
actors who are happy are scholars", there is no as-
signment that makes the formula (∀x((actor(x) ∧
happy(x)) ⇒ scholar(x))) True according to
the structure (the set of actors who are musicians is
{Hailee}, which is not a subset of scholars’, namely
{Alan, Tony}).

In our analysis of transformers’ capabilities in
the model-checking problem, we ask two funda-
mental questions, (1) can transformers perform
model-checking with natural language? (2) if so,
can transformers understand the logical seman-

tics of natural language: i.e. can transformers
comprehend the semantics of distinctively logical
words and grammatical concepts such as determin-
ers, relative clauses and anaphora? To answer the
above-mentioned questions, we construct a model-
checking dataset (FO2-MC dataset) utilising lan-
guage fragments. Unlike the work by Richardson
and Sabharwal (2021) and Geiger et al. (2018),
whose work was limited to only one language frag-
ment, we explore a varied set of fragments. The
consideration of linguistic complexity of language
fragments led us to ask an additional question:
How does the linguistic complexity of the fragment
affect the performance of the transformer model
when performing model-checking with natural lan-
guage?

The contributions of this paper are as follows:
(1) To the best of our knowledge, we are the first
to broaden natural language reasoning over formal
theories to include model-checking with natural
language; (2) We develop a novel algorithm for con-
structing a dataset for model-checking with natural
language; (3) We investigate whether transformers
can learn to understand the logical semantics of nat-
ural language; (4) In a first-of-its-kind study in rule
reasoning, we include complex fragments such as
anaphora and relative clauses with transitive verbs;
and (5) We provide a systematic analysis of how
the linguistic complexity of language fragments
affects rule reasoning.

2 Related Work

Our work follows the literature on evaluating neu-
ral approaches, especially transformer models on
deductive and linguistic reasoning tasks (Richard-
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son and Sabharwal, 2021; Richardson et al., 2020;
Sinha et al., 2019; Geiger et al., 2018; McCoy et al.,
2019; Betz et al., 2021). Moreover, it is also related
to other research approaches that have been con-
ducted on data synthesis for rule reasoning prob-
lems (Lin et al., 2019; Weston et al., 2016; Tafjord
et al., 2019). However, our study is distinct from
the above-mentioned work in two ways. Firstly,
we focus on an unexplored problem space, model-
checking with natural language. Secondly, unlike
the above literature, we explore multiple language
fragments and provide a deconstruction of how the
linguistic complexity of language fragments affects
the performance of transformer models in a rule
reasoning task.

Our work can also be viewed as broadening the
research conducted on training neural networks to
perform algorithmic tasks, including learning to
solve SAT problems (Selsam et al., 2019; Narodyt-
ska et al., 2020), propositional inference (Evans
et al., 2018), semantic parsing (He and Choi,
2020; Kamath and Das, 2019), symbolic integra-
tion (Lample and Charton, 2020) and natural theo-
rem proving (Weber et al., 2019; Minervini et al.,
2020; Saha et al., 2020; Gontier et al., 2020). In our
study, we aim to investigate the transformers’ abil-
ity to emulate the algorithm governing the model-
checking problem and comprehend the logical se-
mantics of natural language.

When defining language fragments, we follow
the definition set out by Pratt-Hartmann (Pratt-
Hartmann, 2003, 2004; Pratt-Hartmann and Third,
2006; Pratt-Hartmann and Moss, 2009), who de-
scribed it more precisely as a subset of a language
equipped with semantics that translates sentences
into a formal system such as first-order logic. More-
over we employ their work on fragments of first-
order logic as the foundation when constructing
the dataset. Notably, Pratt-Hartmann (2004) has in-
vestigated the complexity of fragments’ first-order
logic, and we limit our analysis in this paper to
fragments that have been examined in that study.
Moreover, we also closely follow the cognitive sci-
ence literature on model-checking and quantifier
verification (McMillan et al., 2005; Szymanik et al.,
2013; Szymanik and Zajenkowski, 2010) when
defining our experimental evaluation. It provides
us with a baseline to compare results from trans-
former models with the empirical studies that have
been conducted with humans.

3 Data Construction

To decide whether transformer models can learn to
understand logical semantics of natural language
from formulae (sentences) and structures repre-
sented in natural language, we developed an al-
gorithm (shown in Algorithm 1) to construct a bal-
anced dataset designed to be free from trivial lin-
guistic patterns that are easily exploitable. This
section will outline the data construction methodol-
ogy in detail.

We sample a set of words (Proper nouns PrN,
nouns N, verbs Vb, adjectives Adj) from a prede-
fined vocabulary (V ′) to form a list of words V . The
proper nouns in V are used to define the domain
D of the structure, while the nouns, verbs and ad-
jectives are used for defining the set of predicates
P .

When generating sentences, we follow a
template-based approach. A language template
is a sentence of natural language with open-clause
words replaced by schematic variables; for exam-
ple, Some N1 V is every N2. Through substitution
of vocabulary items of the appropriate category,
we can generate natural language sentences, i.e.,
Some artists admire every doctor. A simple way
of defining a fragment of natural language (lan-
guage fragment) is via a finite set of template sen-
tences. For example, the classical syllogistic frag-
ment can be defined as the sentences confirming
the sentence schemata, All N1 are N2, Some N1 is
N2, No N1 are N2 and Some N1 are not N2. The
formula template is a formula of first-order logic
with non-logical symbols replaced by schematic
variables; for example, ∃x(N1(x) ∧ ∀N2(B(y)⇒
V (x, y))). An instance of that formula is the result
of the substitution of non-logical symbols of the
appropriate type for the schematic variables, i.e.,
∃x(artist(x) ∧ ∀y(doctor(y)⇒ admire(x, y))).
A language template translates to schematic for-
mulae in a natural way. For example, the classi-
cal syllogistic translates to the schematic formulae
∀x(N1(x)⇒ ±N2(x)) and ∃x(N1(x)∧±N2(x)).

Let ΦL denote the set of first-order formula tem-
plates that can be translated to natural language
templates L. Given a language fragment L and
a vocabulary V , we can obtain a set of formulae
ΦL(V), such that ΦL(V) is a fragment of first-order
logic over the vocabulary V , i.e., ΦL(V) only con-
tains the vocabulary V . The first-order formula ϕ is
selected from the ΦL(V), and then the formula ϕ is
translated to a natural language sentence sϕ using a
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template L. A summary of the language fragments
we used in our evaluation is provided in the next
section.

Algorithm 1 Data Construction - Model-Checking
with Natural Language

Input : Language Fragment L and its
corresponding set of first order logic formulae
templates ΦL along with its equivalent natural
language templates TL. Vocabulary V that contains
Nouns(N), Adjectives(Adj), Verbs(Vb) and Proper
nouns(PrN). Template T to convert structure to
natural language. Maximum number of domain
elements per datapoint n, and maximum number
of predicates m

Output : Model-checking dataset D

1: D ← {}
2: repeat
3: V ← randomly select list of words where

V ⊂ V ′ such that |{PrN}| ≤ n and |{N ∪
Adj ∪ V b}| ≤ m

4: ϕ← randomly generate first order formula
using the set of first-order logic formulae
ΦL(V)

5: sϕ ← converts ϕ to a natural language sen-
tence using the template L

6: ℓ ← randomly generate ℓ where ℓ ∈
{True, False}

7: D← {PrN}, P← {N ∪Adj ∪ V b}
8: repeat
9: A ← generate structure randomly using

the signature (vocabulary) V
10: if (ℓ = True and A |= ϕ) or (ℓ = False

and A ̸|= ϕ) then
11: correct-structure-found← True
12: end if
13: until correct-structure-found
14: MA ← converts A to a natural language

using a template T
15: D← D ∪{MA, sϕ, ℓ}
16: until stop condition is met

The label ℓ is selected randomly from the set
{True, False}. Once ℓ and ϕ are defined, the
structure A = (D, {P}A) is generated, where
D is the domain and P is the set of predicates
and {P}A represents an interpretation of P in A
and the signature of the structure is V . Assign-
ment of each domain element to the P in the
structure A is done randomly, such that for ev-

ery domain element di in D and predicate Pi,
prob(di assign to Pi) = p1 if Pi is a unary pred-
icate, and for every domain element di, dj in D
and predicate Pi, prob((di, dj) assign to Pi) = p2
if Pi is a binary predicate. In our experimenta-
tion, we select p1 = 0.5 and p2 = 0.752, so that
for each predicate Pi, |PA

i | is a normal distribu-
tion with a mean of approximately |D|

2 , so the loop
(in line 8-13) terminates within a reasonable time.
We iteratively build structures randomly, and per-
form model-checking using a model-checker until
a structure that meets the criteria defined by the
label is found; i.e. if ℓ = True, then the formula
is True according to the structure, A |= ϕ and
vice-versa. Once such structure is identified, it
is converted into a paragraph in natural language,
MA using a template T .

Another way to create a data point would be to
generate A and ϕ and perform the validity check us-
ing a model-checker to acquire the label as opposed
to pre-defining the label and iteratively constructing
A to match the label. However, such an approach
can introduce easily exploitable linguistic patterns
such as having the label False for most sentences
containing determiners all, every or no, or having
label True for sentences containing determiners
some or a.

When constructing sentences, we make sure
each predicate only appears once within a sentence.
So sentences like every artist is an artist would
not be generated. Furthermore, we also remove
cases where no elements are assigned to a predi-
cate Pi and perform re-balancing, since they also
introduced easily exploitable patterns. For exam-
ple, the sentence "every musician who is a actor is
happy" is trivially True if there are no musicians
or actors.

3.1 Language fragments

A language fragment is defined as a language that
is equipped with semantics that translates its sen-
tences to a formal system, such as first-order logic.
We defined our language fragments based on the
work of Pratt-Hartmann (2004). Table 1 shows the
language fragments used, along with an example
for each fragment and the corresponding first-order
formula. As indicated in the data construction algo-
rithm, we employ a template-based approach when
implementing both language fragments and their
formal method representations. We limit our evalu-
ations to fragments of first-order logic and bound
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Language Fragment Example

Syllogistic Every musician is a artist
∀x(musician(x)⇒ artist(x))

Relational syllogistic (Re-Syl) All teachers remember some engineer
∀x(artist(x)⇒ ∃y(engineer(y) ∧ remember(x, y)))

Relative clauses without
transitive verbs (Rel)

All economists who are not happy are cynics
∀x((economist(x) ∧ ¬happy(x)⇒ cynic(x))

Relative clauses with transitive
verbs (Rel-TV)

No cynic like any scholar who is a expert
∀x(cynic(x)⇒ ∀y((scholar(y) ∧ cynic(y))⇒ ¬like(x, y)))

Anaphora Some judge warns no juror who hate him
∃x(judge(x) ∧ ∀y((juror(y) ∧ hate(y, x))⇒ ¬warn(x, y)))

Table 1: Language fragments we utilised along with an example for each of them and its corresponding first-order
logic formula.

the number of functions within a formula to have
a maximum of four. We also limit the maximum
number of quantifiers per formula to two, produc-
ing only unary or binary formulae. The rationale is
to have natural sounding sentences. As outlined in
the description of the template structure provided
in Appendix A: Templates of Language Frag-
ments, to address the ambiguity that can arise with
anaphora or relative clauses, we bind the anaphora
or relative clauses to the same element. For exam-
ple, anaphora always refer to the first noun in the
sentence. Even though we limit our data construc-
tion and evaluation to only these fragments, we
emphasise that the data construction methodology
and experimental evaluation we have conducted
can be executed with any arbitrary fragment of nat-
ural language.

3.2 Boolean Coordinators

One interesting experiment is to evaluate how trans-
former models perform when Boolean coordina-
tors are introduced to the sentences. To that end,
we used Boolean coordinators (

∧
(and),

∨
(or)) to

combine sentences and create more difficult prob-
lem instances. The resultant first-order formula
Ψ of such sentences can be formed by combining
individual first-order formulae using either

∧
or

∨
.

Model-checking is then performed on Ψ (is A |= Ψ
or A ̸|= Ψ?), and the condition in Algorithm 1 (line
11) is modified accordingly.

The natural language sentences are combined
accordingly using the coordinating conjunctions
and or or. We did not consider the case where
and as well as or are present in the final sentence,
since the order of operations cannot be enforced in
natural language settings and hence would be am-

biguous. We evaluated transformer models varying
the number of coordinators k, where k = {0, 1, 2},
to investigate how incorporating Boolean coordina-
tors affect the accuracy.

4 Experimental Setup

In this section, we describe the experiments we con-
ducted in order to address our research questions.

4.1 Problem definition

Formally the FO2-MC dataset can be defined
as {(p(d), ℓ(d))}|D|

d where p(d) is an instance of
the model-checking problem (concatenation of the
structureMA and sentence sϕ delimited by a sep-
arator SEP token), and ℓ ∈ {True, False} is the
label. The task is to correctly predict the label ℓ,
thereby reducing it to a binary classification prob-
lem.

4.2 Transformer models

To investigate the capabilities of transformers in
model-checking with natural language, we per-
formed experiments on the FO2-MC dataset using
three prominent transformer architectures: BERT,
RoBERTa and T5.

BERT. Bidirectional Encoder Representations
from Transformers or BERT (Devlin et al., 2018)
use bi-directional conditioning in all of its net-
work’s layers to consider both the left and right con-
text. BERT has become the standard transformer
architecture and has been evaluated against many
NLI datasets (Richardson et al., 2020; McCoy et al.,
2019), hence we believe it provides a baseline for
assessing the complexity of the task and difficulty
of theFO2-MC dataset. We used the BERT-base
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(uncased) model with around 110M parame-
ters.

RoBERTa. Robustly Optimized BERT Pretrain-
ing Approach or RoBERTa (Liu et al., 2019) is
based on the BERT architecture but trained in
a more optimised manner. It has been used for
rule reasoning tasks such as RuleTaker (Clark
et al., 2021), and is considered as another base-
line model in our experiments. We made use of the
RoBERTa-base model which has around 125M
parameters.

T5. Following the work done by Tafjord et al.
(2021) and Richardson and Sabharwal (2021) on
rule reasoning, we primarily centre our experiments
around Text-to-Text Transfer Transformer or T5
models (Raffel et al., 2019). T5 frames all NLP
tasks (e.g., classification, translation, semantic tex-
tual similarity) into a unified text-to-text format
where both input and output are always strings;
this is slightly different from BERT and RoBERTa
which, when fine-tuned on classification tasks, out-
put a class label. In our experiments, we employed
two T5 models: T5-base with approximately
220M parameters and T5-large with approxi-
mately 700M parameters.

In experimenting with each of the three types
of models above, we utilised the Huggingface li-
brary (Wolf et al., 2019). The transformer models
are fine-tuned to predict the target label (True or
False) by optimising for the binary cross-entropy
loss over the targets using the Adam optimiser
(Kingma and Ba, 2015). Since the dataset is bal-
anced (i.e., both training and test data have approx-
imately an equal number of samples labelled as
True and False), we made use of accuracy as our
evaluation metric.

4.3 Proposed Dataset and Evaluation
To answer the question of whether transformers can
perform model-checking with natural language, we
trained transformer models, namely, T5, BERT and
RoBERTa, using the FO2-MC dataset in the man-
ner mentioned above. During data construction, we
incorporated the same vocabulary as Richardson
and Sabharwal (2021), with the addition of transi-
tive verbs where the number of verbs is equivalent
to the number of adjectives. The vocabulary con-
tains approximately 2000 names (proper nouns),
156 nouns, 64 adjectives and 65 verbs. The names
are used as the domain elements while nouns, ad-
jectives and verbs form predicates, whereas verbs

constitute binary predicates while the nouns and ad-
jectives form unary predicates. Furthermore, when
generating the model, we limited the number of do-
main elements to be less than 4 (|D| ≤ 4) and the
number of predicates to be less than 8 (|P| ≤ 8).
We trained transformer models using training in-
stances that include sentences that belong to lan-
guage fragments we introduced in Section 3.1, i.e.,
syllogistic, relational syllogistic (Re-Syl), relative
clauses (Rel), relative clauses with transitive verbs
(Rel-TV) and anaphora. In each case (for each lan-
guage fragment), models were trained with 500K
unique data points and evaluated against a held-
out 100K test set (see Table 2). Moreover, we
experimented with training the models (T5-base
and T5-large) using a dataset that contains sen-
tences belonging to all the fragments, so that we
could investigate how simpler fragments help trans-
formers understand the logical semantics of natural
language of complex ones (see Table 3). The train-
ing set in this experiment comprises 500K unique
data points with approximately 100K data points
belonging to each language fragment. The results
of this experiment, along with the results depicted
in Table 2, also provide the answer to the ques-
tion of how the linguistic complexity of the lan-
guage fragment affects the performance of trans-
formers in model-checking with natural language.
To better understand model generalisation and scale
invariance, we evaluated the transformer model
(T5-large) on a held-out evaluation set whose
structure contains more domain elements (see Ta-
ble 4) or more predicates (see Table 5) than that of
the training set. To comprehend how Boolean co-
ordinators affect the accuracy of transformer mod-
els across different language fragments, we also
trained and evaluated with data points whose sen-
tences have Boolean coordinators in them.

4.4 Results and discussion

Transformer models can solve model-checking
with natural language problems with satisfac-
tory accuracy, given adequate training instances,
as depicted in Table 2. For all language fragments,
transformers manage to yield an accuracy of over
70%. It is also evident from Table 2 that there is no
significant difference in performance between the
considered transformer models.

The linguistic complexity of the language frag-
ments that generate the sentence has a signifi-
cant impact on the overall performance, as il-
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Model Syllogistic Re-Syl Rel Rel-TV anaphora
T5-base 99.9 76.6 95.0 73.6 70.3

BERT-base 99.0 78.2 90.7 75.6 73.9
RoBERTa-base 99.6 79.2 90.1 72.1 71.0

Table 2: Accuracy of transformer models (BERT, T5 and RoBERTa) across different language fragments.

Model All Syllogistic Re-Syl Rel Rel-TV anaphora
T5-base 75.9 80.0 76.7 74.8 74.2 73.6
T5-large 88.2 99.8 81.8 99.3 82.3 77.7

Table 3: The transformers are trained using a dataset that contains sentences belonging to all language fragments.
The results are broken down into respective language fragments, and All indicates the overall (average) accuracy
across the language fragments.

Language
Fragment |D| |D|+1 |D|+2 |D|+4

Syllogistic 99.8 92.2 87.5 76.1
Re-Syl 81.8 67.6 63.2 55.6

Rel 99.3 90.4 84.2 73.3
Rel-TV 82.3 67.3 62.1 56.4

anaphora 77.7 65.0 61.1 49.9

Table 4: The accuracy of the T5-large model evalu-
ated on out-of-scope data; the training instances have a
maximum of 4 domain elements |D| ≤ 4 while the eval-
uation set contains 5 (|D|+ 1), 6 (|D|+ 2), 8 (|D|+ 4)
domain elements, the number of predicates remains the
same between train and evaluation sets.

lustrated in Tables 2 and 3. Transformers achieve
near-perfect performance for fragments such as syl-
logistic and Rel. However, they only achieve a mod-
erate level of accuracy for fragments such as Re-
Syl, Rel-TV, and anaphora. The later-mentioned
fragments have transitive verbs, which results in
the respective structures containing binary relation-
ships. It is harder to learn binary relationships as
opposed to unary ones. Furthermore, the sentences
in the fragments Re-Syl, Rel-TV, and anaphora
can have two quantifiers, while the sentences in
fragments syllogistic and Rel are restricted to only
one. As depicted in Table 6, the number of quanti-
fiers in the sentence influences the performance of
the transformer models in solving model-checking
problems. Sentences with two quantifiers are more
difficult to decode than sentences with only one
quantifier, as evidenced by cognitive studies on
quantifier verification (Szymanik and Zajenkowski,
2010; Szymanik et al., 2013), which is also unsur-
prising. There is a difference between the accu-
racy of single quantifier sentences and the average

accuracy of the syllogistic fragment and Rel frag-
ment. This difference is due to single quantifier
sentences belonging to other fragments, whose sen-
tences include transitive verbs. According to the
results in Table 6, only the number of quantifiers
seems to affect the performance of the transform-
ers, and not the exact quantifier used. Cognitive
studies (Szymanik et al., 2013) suggest quantifiers
themselves affect human performance on model-
checking problems, which is not evident here, im-
plying human reasoning on language is somewhat
different to what is occurring in transformer mod-
els.

Another linguistic property that seems to affect
the performance of transformers is Boolean coor-
dinators. The accuracy of transformer models
decreases when Boolean coordinators are intro-
duced to the sentences, as illustrated in Table 7.
The difference in performance when the number of
coordinators changes from 0 to 1 is higher than that
of when it is increased from 1 to 2. However, the
number of Boolean coordinators has a lower effect
on accuracy compared to other linguistic properties
such as the number of quantifiers.

Learning the simple fragments enables trans-
formers to learn complex ones, as depicted in
Table 3. When training data contains sentences
from all the language fragments, the performance
of complex fragments such as anaphora is higher
than if it only includes sentences of that respec-
tive fragment. Transformer models can learn to
understand logically significant words such as de-
terminers and grammatical constructs such as rel-
ative clauses more easily from simpler fragments
than complex ones. So when learning the logi-
cal semantics of complex fragments, transformers
can employ this knowledge. Hence, we can hy-
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Language
Fragment |P| |P|+1 |P|+2 |P|+4

Syllogistic 99.8 96.6 96.3 95.9
Re-Syl 81.8 80.4 80.4 80.3

Rel 99.3 99.1 99.1 98.9
Rel-TV 82.3 81.4 81.2 80.6

anaphora 77.7 76.9 76.6 76.6

Table 5: The accuracy of the T5-large model evalu-
ated on out-of-scope data; the training instances have
a maximum of 8 predicates |P| ≤ 8 while the evalua-
tion set contains 9 (|P|+ 1), 10 (|P|+ 2), 12 (|P|+ 4)
predicates, the number of domain elements remains un-
changed

number of
quantifiers quantifier (s) Accuracy

one
overall 95.6
∀ (all) 95.8
∃ (some) 95.4

two

overall 80.8
∀ ◦ ∀ (all - all) 80.4
∀ ◦ ∃ (all - some) 81.8
∃ ◦ ∀ (some - all) 81.2
∃ ◦ ∃ some - some) 80.2

Table 6: The change in accuracy of the T5-large
model across different quantifiers. The syllogistic and
Rel fragments contain only one quantifier, while Re-Syl,
Rel-TV, and anaphora fragments can have two quanti-
fiers.

pothesise that transformers at least partially learn
to understand the essence of logical semantics of
natural language. Table 3 also indicates a sub-
stantial difference in performance between the
T5-base model and the T5-large model. The
T5-large model achieves an overall accuracy of
88.2% but only manages to achieve an accuracy
of around 80% (Re-Syl:81.8%, Rel-TV: 82.3%,
anaphora: 77.7%) for language fragments with
transitive verbs. This accuracy level is lower than
the accuracy that transformer models yielded in
other rule reasoning benchmarks such as RuleTaker
(Clark et al., 2021) and NLSat (Richardson and Sab-
harwal, 2021), which suggests that the FO2-MC
dataset is a formidable linguistic reasoning bench-
mark.

Transformer models exhibit limited generali-
sation and scale-invariance, as illustrated in Ta-
bles 4 and 5. Even if the number of predicates
increases, the accuracy of the transformer model re-

number of Boolean coordinators Accuracy
k = 0 75.9
k = 1 70.7
k = 2 67.6

Table 7: The accuracy of the T5-base model when
trained and evaluated against problem instances that
have Boolean coordinators. k denotes the number of
Boolean coordinators in a sentence. Each sentence con-
tains only one type of coordinator (either and or or), if
any.

mains relatively unchanged (see Table 5). However,
if the number of domain elements increases, the
model performance drastically decreases (see Table
4). The reason could be that the attention mecha-
nism in the transformer correctly identifies which
areas in the structure to examine for a given sen-
tence, but the transformer model still cannot emu-
late the model-checking algorithm properly. More-
over, the degradation in performance is relatively
equivalent for all language fragments, suggesting
that decrement is not correlated to the grammatical
structure of the sentence. Hence, we can conjecture
that transformers can learn to understand the logi-
cal semantics of natural language but still cannot
learn to emulate the underlying model-checking
algorithm.

5 Conclusion

We investigate the limits of transformers in an unex-
plored problem space of model-checking with nat-
ural language employing language fragments. We
use five different language fragments and explore
how linguistic complexity and other linguistic prop-
erties such as Boolean coordinators affect rule rea-
soning in transformer models. In a broader sense,
our study is to determine whether transformer mod-
els can learn to understand the logical semantics of
natural language and emulate the model-checking
algorithm. We posit that transformers can learn
logically significant words and grammatical con-
structs but fall short when learning the underlying
algorithm. Moreover, different linguistic properties
such as the language fragment, Boolean coordina-
tors and the number of quantifiers have a notable
impact on the learning ability of the transform-
ers. Thus, an interesting future direction would
be to investigate how these linguistic properties
affect more complex reasoning tasks like natural
language satisfiability.
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6 Limitations

The results in our work closely follow the trends
reported by prior work in the domain of identify-
ing the limits of transformers in logical reasoning.
Specifically, the transformers exhibit limited gen-
eralization beyond the underlying distribution in
training data. However, due to the empirical na-
ture of the study, it is not guaranteed that all other
transformer-based models or other neural networks
would exhibit the same pattern.

Moreover, the study focuses on several language
fragments with varying linguistic complexity such
that one would be able to quantify the influence of
linguistic properties on a logical reasoning problem.
However, the fragments considered in this study are
not the only language fragments in existence and,
as such, would limit the comprehensiveness of the
discussion, and there could be other fragments of
language which behave differently when evaluated
against transformer models.
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Sub-fragment Natural Language Template First order logic formula

with a quantifier D (non-)N1 is/are (not) (a) N2
∀x(±N1(x)⇒ ±N2(x)) or
∃x(±N1(x) ∧ ±N2(x))

Table 8: Templates for the syllogistic fragment, D denotes the determiner while N1 and N2 symbolise nouns.

Sub-fragment Natural Language Template First order logic formula

dual quantifiers
D1 (non-)N1 (does not/do not) V

D2 (non-)N2

∀x(±N1(x)⇒ ∀y(±N2(x)⇒ ±V (x, y)))
or

∀x(±N1(x)⇒ ∃y(±N2(y) ∧ ±V (x, y)))
or

∃x(±N1(x) ∧ ∀y(±N2(x)⇒ ±V (x, y)))
or

∃x(±N1(x) ∧ ∃y(±N2(x) ∧ ±V (x, y)))

With Proper nouns
quantifier in the

subject
D N (does not/do not) V P

∀x(±N(x)⇒ ±V (x, P )) or
∃x(±N(x) ∧ ±V (x, P ))

With Proper nouns
quantifier in the

object
P (does not/do not) V D N

∀x(±N(x)⇒ ±V (P, x)) or
∃x(±N(x) ∧ ±V (P, x))

Table 9: Templates for the relational syllogistic fragment, D1 and D2 denote determiners, P denotes Proper nouns
and V represents the verb while N, N1 and N2 symbolise nouns.

A Templates of Language Fragments

Tables 8, 9, 10, 11 and 12 contain templates for
the syllogistic fragment, relational syllogistic frag-
ment, relative clauses fragment (without transitive
verbs), relative clauses (with transitive verbs), and
anaphora respectively. Each table contains natural
language templates that are employed to construct
sentences and their corresponding first-order for-
mulae. As mentioned in the methodology section,
we build upon the vocabulary from Richardson and
Sabharwal (2021). The set of determiners includes
all, every, some, a and no, where every sentence
type is converted to the most natural-sounding sen-
tences; i.e. sentences such as every artist does not
like every beekeeper would be translated into no
artists like any beekeeper. Each sentence that is ren-
dered using templates of the syllogistic fragment
and relative clause (without transitive verbs) frag-
ment would include exactly one quantifier, which
would determine the determiner of the sentence.
The templates of the relational syllogistic, relative
clause (with transitive verbs) and anaphora could
comprise either two quantifiers or one (if the sen-
tence contains proper nouns, then it would have
only one quantifier).
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Sub-fragment Natural Language Template First order logic formula

with a quantifier D (non-)N1 who is/are (not) (a)
N2/A1 is/are (not) (a) N3/A2

∀x.(±N1(x) ∧ ±N2/A1(x)⇒ ±N3/A2(x))
or

∃x.(±N1(x) ∧ ±N2/A1(x) ∧ ±N3/A2(x))

Table 10: Templates for the relative clauses (without transitive verbs) fragment, D denotes the determiner and N1,
N2 and N3 symbolise nouns while A1 and A2 represent adjectives.

Sub-fragment Natural Language Template First order logic formula

dual quantifiers,
relative clause in

the subject

D1 (non-)N1 who (does not/
do not) V D2 (non-)N2

is/are (not) (a) N3

∀x(±N1(x) ∧ ∀y(±N2(y)⇒ ±V (x, y))
⇒ ±N3(x)) or

∀x(±N1(x) ∧ ∃y(±N2(y) ∧ ±V (x, y))
⇒ ±N3(x)) or

∀x(±N1(x) ∧ ∀y(±N2(y)⇒ ±V (x, y))
⇒ ±N3(x)) or

∀x(±N1(x) ∧ ∀y(±N2(y)⇒ ±V (x, y))
⇒ ±N3(x))

dual quantifiers,
relative clause in

the object

D1 (non-)N1 (does not/do not)
V D2 (non-)N2 who
is/are (not) (a) N3

∀x(±N1(x)⇒ ∀y((±N2(y) ∧ ±N3(y))
⇒ ±V (x, y))) or

∀x(±N1(x)⇒ ∃y(±N2(y) ∧ ±N3(y)
∧ ± V (x, y))) or

∃x(±N1(x) ∧ ∀y((±N2(y) ∧ ±N3(y))
⇒ ±V (x, y))) or

∃x(±N1(x) ∧ ∃y(±N2(y) ∧ ±N3(y)
∧ ± V (x, y)))

with Proper nouns
D (non-)N1 who (does not/

do not) V P is/are (not) (a) N2

∀x(±N1(x) ∧ ±V (x, P )⇒ ±N2(x) or
∃x(±N1(x) ∧ ±V (x, P ) ∧ ±N2(x))

Table 11: Templates for the relative clauses (with transitive verbs) fragment, D1 and D2 denote determiners, P
denotes Proper nouns and V represents the verb while N1 N2 and N3 symbolise nouns.

Sub-fragment Natural Language Template First order logic formula

dual quantifiers
D1 (non-)N1 (does not/do not)
V1 D2 (non-)N2 who (does not

/do not) V2 him/her/them

∀x(±N1(x)⇒ ∀y(±N2(y) ∧ ±V2(y, x)
⇒ ±V1(x, y))) or

∀x(±N1(x)⇒ ∃y(±N2(y) ∧ ±V2(y, x)
∧ ± V1(x, y))) or

∃x(±N1(x) ∧ ∀y(±N2(y) ∧ ±V2(y, x)
⇒ ±V1(x, y))) or

∃x(±N1(x) ∧ ∃y(±N2(y) ∧ ±V2(y, x)
∧ ± V1(x, y)))

With Proper nouns
P (does not/do not) V1 D

(non-)N who (does not/do not)
V2 him/her

∀x(±N(x) ∧ ±V2(x, P )⇒ ±V1(P, x)) or
∃x(±N(x) ∧ ±V2(x, P ) ∧ ±V1(P, x)

Table 12: Templates for the relative clauses (with transitive verbs) fragment, D1 and D2 denote determiners, P
denotes Proper nouns and V1 and V2 represent verbs while N, N1 and N2 symbolise nouns.
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