
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 407–417
May 2-6, 2023 ©2023 Association for Computational Linguistics

John is 50 years old, can his son be 65?
Evaluating NLP Models’ Understanding of Feasibility

Himanshu Gupta Neeraj Varshney Swaroop Mishra Kuntal Kumar Pal
Saurabh Arjun Sawant Kevin Scaria Siddharth Goyal Chitta Baral

Arizona State University

Abstract

In current NLP research, large-scale language
models and their abilities are widely being dis-
cussed. Some recent works have also found
notable failures of these models. Often these
failure examples involve complex reasoning
abilities. This work focuses on a simple
commonsense ability, reasoning about when
an action (or its effect) is feasible. To this
end, we introduce FeasibilityQA, a question-
answering dataset involving binary classifi-
cation (BCQ) and multi-choice multi-correct
questions (MCQ) that test understanding of
feasibility. We show that even state-of-the-art
models such as GPT-3, GPT-2, and T5 strug-
gle to answer the feasibility questions correctly.
Specifically, on MCQ and BCQ questions, GPT-
3 achieves an accuracy of just (19%, 62%) and
(25%, 64%) in zero-shot and few-shot settings,
respectively. We also evaluate models by pro-
viding relevant knowledge statements required
to answer the question. We find that the ad-
ditional knowledge leads to a 7% gain in per-
formance, but the overall performance still re-
mains low. These results make one wonder how
much commonsense knowledge about action
feasibility is encoded in state-of-the-art models
and how well they can reason about it. 1

1 Introduction

Commonsense reasoning has been a key aspect of
AI since its advent in the 1950s. It is closely associ-
ated with reasoning about actions and their effects,
which is considered a big challenge, especially for
deep learning-based AI approaches and language
models (LeCun, 2022; Dalvi et al., 2018; Banerjee
et al., 2020). While several datasets have been de-
veloped to evaluate large-scale language models, in
this paper, we propose a dataset focused on reason-
ing about actions and their effects; specifically, the
ability to reason if an action or its effect is feasible.

1Dataset, baseline approaches, and instruction-tuned mod-
eling approaches are freely available at https://github.
com/kevinscaria/feasibilityQA

Figure 1: Illustrating a binary classification (BCQ) and
a multiple choice question (MCQ) from FeasibilityQA.
The correct answer options (False in BCQ and (45, 37)
in MCQ) are highlighted in bold.

Figure 1 illustrates an example of our dataset;
given the information “Sam gave 50 dollars to the
shopkeeper to buy a book and the shopkeeper re-
turned some money”, it is not possible to compute
the exact price of the book; however, it can be estab-
lished that the feasible price of the book is less than
50 since the shopkeeper returned some money. We
often come across such questions in our daily life
and find it trivial to reason about them. Therefore,
in order to develop NLP systems that can reliably
reason about real-world situations, it is important
to evaluate their understanding of feasibility.

Recently, many datasets have been created that
test different reasoning skills such as pronoun res-
olution (Sakaguchi et al., 2021; Levesque et al.,
2012), commonsense reasoning (Singh et al., 2021;
Mihaylov et al., 2018; Banerjee et al., 2021), nu-
merical reasoning (Mishra et al., 2022b; Ravichan-
der et al., 2019; Lin et al., 2020; Zhang et al., 2020;
Amini et al., 2019; Mishra et al., 2022e; Creswell
et al., 2022; Pal and Baral, 2021), qualitative rea-
soning (Tafjord et al., 2019b,a), discrete reasoning
(Dua et al., 2019), and temporal reasoning (Zhou
et al., 2019). However, they do not have an am-
ple number of examples that test understanding of
feasibility.
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Category Knowledge Context Questions

Attribute Comparison Larger volume holds more
amount of water.

Barrett’s has two cylindrical shaped
bottles. A bottle with a higher volume
holds 32 units of water.

Amount of water in other bottle could be 28 units.
Amount of water in other bottle could be 33 units.
What could be the amount of water in other bottle?

Change with Time Age increases with time
Today, while filling the
application form Edward
filled the age field with 16.

Edward could have been 8 years old on his last birthday.
Edward could have been 19 years old on his last birthday.
What could have been Edward’s age last year?

Change with Action Selling something reduces
its quantity

Joshua organized a garage sale
yesterday. Joshua sold a total of
273 items at a minimum price of
1 USD each.

Joshua could have made 300 dollars in the garage sale.
Joshua could have made 260 dollars in the garage sale.
How much money Joshua could have made
from the garage sale?

Implicit
Numerical Knowledge 4 quarters make 1 dollar

Christopher is accepting
quarters for a donation and
fails to collect 12 dollars.

He could have collected 35 quarters.
He could have collected 52 quarters.
How many quarters could Christopher have collected?

Non Numerical New movies can be watched
after the release date.

The latest superhero movie was
releasing on 28th February 2022.
Ashton wanted to see the movie.

He could have watched the movie on 2nd March 2022.
He could have watched the movie on 3rd February 2022.
When could Ashton have watched the movie ?

Table 1: Illustrative examples of two binary choice questions and one multiple choice question corresponding to a
context statement. We also provide the corresponding category and relevant knowledge for the questions.

In this work, we address the above limitation
and introduce FeasibilityQA, a dataset consisting
of questions that require an understanding of fea-
sibility. This dataset comprises of two types of
questions: binary classification (BCQ) and multi-
choice multi-correct questions (MCQ). In BCQ, the
task is to determine whether the question is feasible
or not given a context; in MCQ, the task is to se-
lect all feasible answers to the given question. The
dataset consists of ∼5K instances covering diverse
aspects of feasibility. Table 1 illustrates examples
of various categories of feasibility questions.

We conduct comprehensive experiments with
GPT-3, GPT-2, and T5 models (Brown et al., 2020;
Radford et al., 2019; Raffel et al., 2020) in zero-
shot and few-shot settings and show that all of
these models struggle to correctly answer feasibil-
ity questions. Specifically, on (MCQ, BCQ) ques-
tions, GPT-3 achieves an accuracy of just (19%,
62%) and (25%, 64%) in zero-shot and few-shot
settings, respectively.

Prior work has found that explicitly providing
relevant knowledge helps the model reason better
and improves its performance (Chen et al., 2018;
Xiong et al., 2019; Banerjee et al., 2019; Varsh-
ney et al., 2022a). We explore this aspect of rea-
soning by explicitly providing relevant knowledge
statements and find that it leads to ∼7% improve-
ment in performance. However, the overall per-
formance still remains low. We further investigate
GPT-3’s ability to reason about feasibility questions
by prompting it to generate the reasoning chain. In
many cases, we find that GPT-3 successfully gen-
erates the correct reasoning chain but still fails to
output the correct answer. This analysis further
leads to several interesting findings (Section 3).

2 FeasibilityQA

2.1 Dataset Creation

For creating data instances of FeasibilityQA, we
first create a context statement that describes a real-
life situation. Then, we write two binary classifi-
cation questions and one multiple choice question
conditioned on the context that tests the understand-
ing of feasibility.

Dataset creation and verification process
Seven computer science graduate students were
involved in creating the dataset. Dataset creation
consists of 3 phases. First, in the data creation
stage, each student created 700 samples over the
period of 3 months. In the next phase, each dataset
creator’s questions were verified by a different stu-
dent to ensure fairness during data validation. The
3rd stage of the validation was done when all the
questions were compiled and cross-verified. In
each verification stage, the dataset creators rejected
some samples where the inter-annotator agreement
was low. 2

2.1.1 Context Creation
We create context statements from real-life situa-
tions spanning diverse topics such as elementary
physics, profit-loss scenarios, temporal compar-
isons, and quantity comparisons. We divide the
contexts into the following five categories:

Attribute comparison: This category consists
of questions that test feasibility aspects involving
the comparison of attributes of two quantities. Im-
plicit numerical: Questions in this category in-
volve fundamental mathematical facts that test the
ability to use those facts in real-world situations.
Change with action: This category tests the abil-

2All the dataset creators are authors of the paper.
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ity to perceive a change in an item or state as an
outcome of an action. Change with time: Here,
questions test the understanding of feasibility re-
lated to temporal-based events. Non Numerical:
This category includes questions where numbers
are not explicitly involved in reasoning about fea-
sibility. Table 1 provides examples of these cate-
gories. More details about them are in Appendix A.

Motivation behind category selection The mo-
tivation behind developing a large language model
such as GPT-3 is to mimic human intelligence and
come closer to Artificial General Intelligence. We
attempt to gauge the performance of models’ intelli-
gence by developing simple commonsense reason-
ing questions. GPT-3 models are few-shot learners
but find it hard to do proper numerical reasoning.
Earlier datasets like this attempted to analyze nu-
merical reasoning in this aspect. We are also trying
to study it in the aspect of feasibility. Previous
datasets, such as Numersense (Lin et al., 2020) and
MC Taco (Zhou et al., 2019), do not have such a
category, and we tried to bridge those gaps.

We think that these five categories are also a
good representation of numerical feasibility. We
found that questions from those categories had an
adequate amount of complexity that the average
human could easily figure out. So we expected
that large language models should also be able to
understand and answer accordingly. We created
these categories to compare the models’ numerical
reasoning ability with and without knowledge. This
gives us insights into whether knowledge helps
in each aspect. We hope that these comparative
studies across these five preliminary categories will
inspire more future categories.

Target of our dataset: Our selection of cate-
gories in feasibility is inspired by the limitations in
existing datasets since it is not possible to cover all
the aspects of feasibility exhaustively.

2.1.2 Question Creation

From each context, we create two binary classifica-
tion and one multiple-choice question. Recall that
in our questions, the context may not provide suf-
ficient information to find the exact answer. How-
ever, the information is sufficient to test the validity
of question/answer options (notice the use of the
word ‘could’). In question creation, we ensure that
all our contexts and questions describe realistic sit-
uations, e.g., we keep a range of numerical entities

Category Binary
Instances

MCQ
Instances

Attribute comparison 1696 848
Non numerical 700 350
Implicit numerical 444 222
Change with action 196 98
Change with time 36 18
Total 3072 1536

Table 2: Categorization of FeasibilityQA across differ-
ent categories .

Correct Answers #Instances
1 555
2 622
3 285
4 31
None 43

Table 3: Frequency of correct answers for MCQ section.

and units appropriate for their context. Table 1
illustrates examples of our dataset.

BCQ: For each context, we create two binary clas-
sification questions where the correct answer is
True for one and False for the other. Evaluating
models’ consistency in answering two contrasting
hypotheses conditioned on the same context pro-
vides an additional benefit.

MCQ: For each context, we create a multi-correct
multiple-choice question. Here, a context-question
pair and the corresponding answer options are
given, and the task is to select all feasible options
for the question. We ensure that there is also a
None option, which needs to be selected when all
the other options are not feasible. For a question,
one or more options (including ‘None’) could be
correct.

2.2 Dataset Statistics

Our dataset consists of 1536 contexts and 4608
context-question pairs (3072 BCQ and 1536 MCQ).
The category-wise distribution of the dataset is
present in Table 2. BCQ dataset is label balanced,
i.e., 1536 instances for each of True and False la-
bels. MCQ dataset has a varying number of correct
options. Table 3 shows the number of correct an-
swers in the MCQ category.
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GPT-3 GPT-2 T5
BCQ (%) MCQ (%) BCQ (%) MCQ (%) BCQ (%) MCQ (%)

w/o K w/ K w/o K w/ K w/o K w/ K w/o K w/ K w/o K w/ K w/o K w/ K
Zero Shot 62.96 69.11 19.43 25.89 50.00 50.00 0.19 0.45 50.55 50.64 0.13 0.39
One Shot 57.94 64.66 20.94 24.15 50.00 50.00 0.58 1.69 50.61 50.33 0.45 0.58
Few Shot 64.72 68.55 25.94 37.23 50.00 50.00 0.97 0.39 49.81 49.87 0.84 1.10

Table 4: Exact match accuracy of three models in BCQ (Binary Classification) and MCQ (multi-choice multi-
correct) tasks across three settings. w/o K and w/ K represents without knowledge and with knowledge respectively.

3 Experiments

3.1 Performance Evaluation & Metrics
For BCQ, we calculate exact match accuracy
against the gold label (True or False) for each ques-
tion. We also use a stricter evaluation metric, pair-
wise accuracy, to better estimate the model’s capa-
bility of understanding feasibility. Here we only
consider a sample to be correct if both BCQ (True
and False questions) are correctly answered by the
model for one context statement. For MCQ, we
evaluate exact match accuracy, i.e., the model’s
prediction is considered to be correct if all the cor-
rect answer options are predicted. We also compute
recall, which we define as the number of correct
answers predicted by the model out of all the cor-
rect answer options. Other results (false positive,
false negative, category-wise) are in Appendix B.

Models: We evaluate the performance of GPT-3
(Text-DaVinci-002, with 256 max tokens, top p of
1, and frequency & presence penalty of 0), T5-11B,
and GPT-2 large models on our dataset.

3.2 Results
Low Performance of All Models: Table 4 shows
the accuracy of all three models in zero-shot, one-
shot, and few-shot settings. On BCQ, GPT-3
achieves exact match accuracy of just 62.9%. GPT-
2 and T5 perform even worse and achieve close to
the majority baseline (50%). GPT-2 gets an exact
50, indicating that the model does not understand
such feasibility reasoning 3. On MCQ, which is a
more difficult task than BCQ, all models, including
GPT-3, achieve a very low strict accuracy score.
This highlights that feasibility questions are chal-
lenging for even state-of-the-art models.

Decrease in performance in one-shot setting:
In the one-shot setting, the model’s prediction is
heavily influenced by the label of the example (one)
presented to the model. This phenomenon is also
observed in several prior zero-shot, and one-shot

3Please refer Appendix B.2 for details

w/o Knowledge w/ Knowledge
Zero 46.2 49.9
One 63.5 64.5
Few 66.7 70.3

Table 5: Recall scores of GPT-3 on MCQ task.

w/o Knowledge w/ Knowledge
Zero Shot 42.9 56.8
One Shot 17.9 34.3
Few Shot 39.8 55.8

Table 6: Pairwise Accuracy of GPT-3 in BCQ Task.

studies (Zhao et al., 2021). A similar trend is ob-
served in the chain of thought experiments (results
described in Table 8).
Providing Knowledge Improves GPT-3’s perfor-
mance by ∼ 7% across all settings. The accuracy
particularly increases (∼ 12%) in the MCQ task
in the few-shot setting. Although GPT-3 performs
better than T5 and GPT-2, it achieves just 68.5%
and 37.2% on BCQ and MCQs, respectively.

GPT-3 achieves High Recall Scores on MCQs:
In Table 5, we show recall scores of GPT-3 on
MCQs. GPT-3 achieves a high score (up to 70%),
highlighting that it gives correct responses but fails
to give all the correct responses.

Pairwise Evaluation: Recently, instance-level
analysis of the evaluation data has received con-
siderable research attention (Zhong et al., 2021;
Varshney et al., 2022b; Rodriguez et al., 2021;
Mishra et al., 2022a). Motivated by this, we ana-
lyze GPT-3’s performance on BCQ questions using
the stricter pairwise accuracy metric. Even though
the model performs ∼ 63% using exact match accu-
racy, Table 6 shows that the models’ performance
is at most ∼ 43% via pairwise accuracy, highlight-
ing a performance gap. The accuracy increases
(∼ 13%) when knowledge is introduced, and the
gap between different settings also narrows down,
indicating that the addition of knowledge helps.
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BCQ MCQ
w/o K w/ K w/o K w/ K

Attribute Comparison 58.2 62.5 17.7 23.2
Non Numerical 77.2 89.4 23.6 30.9
Implicit Numerical 54.7 50.9 16.7 21.9
Change with Action 66.3 78.2 20.3 26.6
Change with Time 58.3 66.6 17.8 23.4

Table 7: Category wise Exact Match Accuracy of GPT-3
on BCQ and MCQ in one-shot setting.

Figure 2: Answers with explanations given by GPT-3
on FeasibilityQA dataset.

BCQ MCQ
w/o K w/ K w/o K w/ K

Zero Shot 61.3 70.2 20.1 25.1
One Shot 59.7 67.2 19.5 22.8
Few Shot 65.4 69.1 23.4 35.7

Table 8: Exact Match Accuracy of GPT-3 on BCQ and
MCQ tasks with chain of thought setting.

Category wise results: Table 7 shows the
category-wise results in one-shot setting for BCQ
and MCQ tasks on GPT-3. Non Numerical cate-
gory performed the best out of all categories (15%
more than other categories). Addition of knowl-
edge improves the performance of all categories
by around 5% to 10%. Similar trends are observed
across MCQ task as well. We believe that Non Nu-
merical performed the best because these samples
were conditioned around factual knowledge and
that it could be present in the pretraining corpus of
GPT-3. We further analyze this in Appendix B.

Investigating Chain of Thoughts Prompting:
Recent work has demonstrated the success of learn-
ing from instructions (Wei et al., 2021; Wang et al.,
2022; Mishra et al., 2022d,c; Lu et al., 2022; Par-
mar et al., 2022; Mishra and Nouri, 2022; Luo et al.,
2022) and chain of thought (Wei et al., 2022) and

scratchpad prompting (Nye et al., 2021). To test
this on FeasibilityQA, we add explanations to one-
shot and few-shot examples provided in the context.
Table 8 shows marginal improvement. More details
are in Appendix C.

A Case Study on Prompting GPT-3 to Pro-
vide Explanation: We further investigate the
reason behind GPT-3’s poor performance on
FeasibilityQA by prompting it to provide the rea-
son behind its answer. Specifically, we add "Ex-
plain the reason behind your answer" in the prompt.
Figure 2 illustrates a response from GPT-3. The an-
swer demonstrates that it did not understand the nu-
merical value of Abraham’s age. We also provide
additional knowledge to assist the model, as shown
in Figure 2. Even with knowledge, the model could
not understand the feasible age.

4 Conclusion

In this work, we proposed FeasibilityQA, a
question-answering dataset that evaluates the un-
derstanding of feasibility. We conducted extensive
experiments with several state-of-the-art models
in zero-shot, one-shot, and few-shot settings and
show that these models struggle to answer the fea-
sibility questions correctly. We also experimented
by providing additional knowledge (relevant to the
question) and showed that it leads to a small gain
in performance, but the overall performance still
remains low. We further analyzed the performance
of models that reveals several interesting findings.
Finally, we release our dataset and hope that our
work will encourage further research in feasibility
reasoning, an important yet underexplored aspect
of commonsense reasoning.

Limitations

Like any other commonsense reasoning ability, the
concept of feasibility, in general, can be applied
in numerous real-world situations. In our dataset,
we try to cover a diverse set of such situations
that test the understanding of feasibility, but it is
in not an exhaustive list. In the future, we will
expand the category space by either converting ex-
isting numerical datasets into feasibility questions
or manually creating new category spaces. Along
with the dataset, we release the list of contexts and
situations on which the question is based. In the
future, this would help expand the dataset to cover
other domains and situations. The human evalu-
ation of the dataset could also be an interesting
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study, but it can be an expensive. The selection of
humans in terms of their educational background
and age is also required for unbiased evaluation.
A completely random selection of humans is also
required for a comprehensive study. Finally, our
dataset includes questions in only one language,
i.e., English.

Ethical Considerations

The names used in this dataset are selected from
the most common English names. In question cre-
ation, we ensure that all our contexts and questions
describe realistic situations, e.g., we keep a range
of numerical entities and units appropriate for their
context. No personal information from data cre-
ators has been collected during the creation of the
dataset.
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Appendix

A Dataset characteristics

In this section, we describe FeasibilityQA in more
detail. Table 1 shows illustrative examples of each
category discussed in section 4. Each row of the
4th Column of the table shows three questions
that were prepared in response to a context. Ta-
ble 2 gives the distribution of each category of the
dataset. We will explain the motivation behind each
category. Please note that the explanations are with
respect to examples presented in Table 1.

Attribute Comparison shows the comparative
properties between two similar objects. The con-
text from attribute comparison is designed to show
that quantities can be measured using words like
higher and lower, and the model has to understand
the relation between them to answer different ques-
tions. In this example, it is not possible that the
smaller bottle can have a volume of 33 units since
the larger one is 32 units.

Change with Time gives the events that have
time as the changing factor. The context is designed
to test the model’s ability to deduce time-based
changes and how certain actions/ events/ quantities
can or cannot be done before/ after a certain time.
In this case, it is impossible that Edward’s age
could be 19 on his last birthday as his current age
is 16.

Change with Action describes the actions which
alter certain quantities/events and test the model’s
ability to understand that. In this case, it is demon-
strated that selling/giving away a certain quantity
reduces it. In the example, it is demonstrated that
selling all 273 items at least 1 dollar will leave
Joshua with at least 273 dollars. Hence the ques-
tion that he could have 260 dollars is false.

Implicit Numerical Knowledge tests the
model’s ability to understand numerical entities
as facts and how to manipulate them in different
situations. In this case, using the knowledge (or
without using it) that four quarters make 1 dollar,
the model needs to understand how many quarters
will be used in 12 dollars, which is 48 quarters.
Hence the question tells us that Christopher can
have 52 quarters.

Non Numerical category tests the model’s un-
derstanding of very broad domains. They do not
have to be numerical based in all the cases.

The dataset contains diverse topics ranging from
physics, mathematics, biology, and numerical rea-
soning. A total of 422 subcategories are present in
the dataset. Table 2 shows the distribution of BCQ
and MCQ questions across different categories in
the dataset.

B Other performance results

B.1 Performance Metrics

For the MCQ setting of the dataset, we study true
positive, false positive, and false negative rates as
the evaluation metrics. Each metric definition is
listed below:

False Negative rate is defined as the number of
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w/o Knowledge w/ Knowledge
Zero 0.17 0.13
One 0.36 0.32
Few 0.33 0.24

Table 9: False Positive rate of GPT-3 on MCQ section

w/o Knowledge w/ Knowledge
Zero 0.42 0.42
One 0.21 0.24
Few 0.18 0.20

Table 10: False negative rate of GPT-3 on MCQ section

Zero shot BCQ
w/o Knowledge w/ Knowledge

Attribute Comparison 51.2 55.8
Non Numerical 72.7 85.7
Implicit Numerical 52.9 52.0
Change with Action 60.7 65.3
Change with Time 55.5 55.5

Zero shot MCQ
w/o Knowledge w/ Knowledge

Attribute Comparison 17.9 20.4
Non Numerical 25.5 29.0
Implicit Numerical 18.5 21.1
Change with Action 21.3 24.2
Change with Time 19.4 22.2

Table 11: Category wise Accuracy of GPT-3 on BCQ
and MCQ task in zero-shot setting.

incorrect predictions the model gave as correct. For
example, if the model gave output as A, B, C, and
the predicted result is A, C, then B is missed. The
number of false negatives would be 1 (B).

False Positive rate is defined as the number
of correct predictions the model gave as incorrect.
For example, if the given output is A, B and the
predicted result is A, B, C, then the number of false
negatives would be 1 (C).

B.2 Results

False positive results shown in Table 9 follow
trends similar to accuracy where the performance
of one-shot experiments is worse than zero-shot
and few-shot. But with the addition of knowledge,
the false positive rate decreases.

As shown in Table 10, the False negative rate
decreases from zero-shot to few-shot experiments,
but contrary to other experiments, it increases with
the addition of knowledge in almost all the cases.

Table 11 shows the category-wise results in zero-
shot settings for BCQ and MCQ tasks. For the BCQ
task, accuracy was lowest in the Attribute compari-

Few shot BCQ
w/o Knowledge w/ Knowledge

Attribute Comparison 64.5 69.5
Non Numerical 85.9 99.4
Implicit Numerical 60.8 56.6
Change with Action 73.7 86.8
Change with Time 64.8 74.1

Few shot MCQ
w/o Knowledge w/ Knowledge

Attribute Comparison 25.2 35.8
Non Numerical 33.5 47.6
Implicit Numerical 23.7 33.7
Change with Action 28.8 40.9
Change with Time 25.3 35.9

Table 12: Category wise Accuracy of GPT-3 on BC and
MCQ task in few-shot setting.

son category and highest in Non-Numerical Cate-
gory. Performance of the Non Numerical category
improved significantly in with knowledge setting.

In the MCQ portion of the dataset, the perfor-
mance gap between Non-Numerical and other cat-
egories reduces significantly. It is still the best-
performing category for the model, but the Change
with Action Category also produced similar results.
There was no significant improvement in both Non-
Numerical and change with action as observed in
the Non-Numerical with the addition of knowledge.

Table 12 shows the category-wise results for
BCQ and MCQ tasks in few shot setting. For
the BCQ task, accuracy was lowest in the At-
tribute comparison category and highest in Non-
Numerical Category. Performance of the Non
Numerical category improved significantly in the
knowledge setting with accuracy reaching above
90% for the first time in any of the categories.

In the MCQ portion of the dataset, the perfor-
mance gap between Non-Numerical and other cat-
egories reduces significantly. It is still the best-
performing category for the model. There was
a significant improvement in Non Numerical and
change with action and change with time categories
with the addition of knowledge.

Exact 50% accuracy of GPT-2: The input for-
mat for all models was as follows: Zero-Shot, Ques-
tion (Different questions), and Options (True or
False). Example(s) preceded the question in the
one-shot and few-shot settings. Based on this for-
mat, GPT-2 gave the probability of “False” higher
in all cases. Since the dataset is label balanced,
all the True hypothesis questions were incorrectly
predicted, hence giving a 50% accuracy.
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Example or
Evaluation sample Text / Context

Prompt Select the best option for the questions based on the Context and explain
the reasoning. An Example to show how it works:

Example fed in
GPT-3 as 1 shot
learning example

Context Eric boiled a glass of water to drink the hot water. The level of the water in the
glass is 63 units. After boiling was done, she took the water into the glass.

Question What could be the level of the water after boiling?
Options A: 65, B: 59, C: 64, D: 61, E: None

Answer:
Since boiling leads to evaporation, there is a possibility that the volume of water
would have decreased. Due to this, the current water level should be less than
63 units. Hence the answer is B:59 and D: 61

Example given to
GPT-3 for
evaluation

Context A negative number was added to 70.
Question What could be the result?
Options A: 70, B: 89, C: 87, D: 68, E: None

GPT-3
Answer

The result could be A: 70, since adding a negative number would not change the
value of 70. The result could also be C: 87, since adding a negative number
would increase the value of 70

Example given to
GPT-3 for
evaluation

Context Last year 758 people joined the company and this vear the number of people
who joined was more than double the last time

Question How many people could have joined this year?
Options A: 1440, B: 1600, C: 1460, D: 1370, E: None

GPT-3
Answer:

Since the number of people who joined this year was more than double the
last time, the number of people who joined this year could be up to 1460.
Therefore, the answer is C: 1460.

Table 13: Illustrating chain of thought approach on some examples of feasibilityQA dataset in 1 shot setting without
providing knowledge. 1st set of rows demonstrate the example fed into GPT-3 for 1 shot learning. 2nd and 3rd set
of rows show GPT-3’s response to Context, Question and Options asked.

Example or
Evaluation sample Text / Context

Prompt Select the best option for the questions based on the context, knowledge
and explain the reasoning. An Example to show how it works:

Example fed in
GPT-3 as 1 shot
learning example

Context Eric boiled a glass of water to drink the hot water. The level of the water in the
glass is 63 units. After boiling was done, she took the water into the glass.

Knowledge Water will convert into water vapour on boiling.
Question What could be the level of the water after boiling?
Options A: 65, B: 59, C: 64, D: 61

Answer
Since boiling leads to evaporation, there is a possibility that the volume of water
would have decreased. Due to this, the current water level should be less than
63 units. Hence the answer is B:59 and D: 61

Example given to
GPT-3 for
evaluation

Context Two boys competed in a race. The loser finished the race in 24 minutes.
Knowledge Loser will take more time to finish the race.
Question How many minutes the other boy could have taken to finish the race?
Options A: 32, B: 25, C: 15, D: 22, E: None
GPT-3
Answer

The other boy could have taken less time to finish the race.
Hence, the answer is B: 25.

Table 14: Illustrating chain of thought approach on some examples of feasibilityQA dataset in 1 shot setting with
providing knowledge. 1st set of rows demonstrate the example fed into GPT-3 for 1 shot learning. 2nd row shows
GPT-3’s response to Context, Question and Options asked.

C Case study: Chain of Thought
Reasoning Approach

Table 13 and 14 show the unsuccessful attempts
in the chain of thought reasoning approach. Ta-
ble 13 shows the setting where the 1st example is
fed into the model as an example of how to rea-
son out the answer. The reason and answer were
clearly mentioned that told that evaporation leads

to a decrease in water level and hence water level
should decrease. This led to a decrease in water
level; hence, the correct answers were quantities
less than 63; 59 and 61.

The 2nd and 3rd sets of rows show the Con-
text, question, and options supplied to GPT-3, and
we get responses in GPT-3 Answer row. The
logic given for the addition of a number is wrong.
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Adding a negative number should decrease the
value, and hence rest of the answer will be wrong.
In the 3rd row GPT-3’s response, the logic used to
calculate the answer is correct, but it was unable to
calculate that 1600 was double 758. Both parts are
highlighted in the table.

The situation did not improve much when knowl-
edge was supplied with other rows, as shown in
Table 14. The model was able to interpret the logic
correctly but could not associate that logic with
numerical quantities.
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