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Abstract 

This paper describes a system that 
provides customer service by allowing 
users to retrieve identification numbers of 
parts for medical systems using spoken 
natural language dialogue. The paper also 
presents an evaluation of the system 
which shows that the system successfully 
retrieves the identification numbers of 
approximately 80% of the parts. 

Introduction 

Currently people deal with customer service 
centers either over the phone or on the world 
wide web on a regular basis. These service 
centers support a wide variety of tasks including 
checking the balance of a bank or a credit card 
account, transferring money from one account to 
another, buying airline tickets, and filing one's 
income tax returns. Most of these customer 
service centers use interactive voice response 
(IVR) systems on the front-end for determining 
the user's need by providing a list of  options that 
the user can choose from, and then routing the 
call appropriately. The IVRs also gather 
essential information like the user's bank 
account number, social security number, etc. 
For back-end support, the customer service 
centers use either specialized computer systems 
(example: a system that retrieves the account 
balance from a database), or, as in most cases, 
human operators. 

However, the IVR systems are unwieldy 
to use. Often a user's needs are not covered by 
the options provided by the system forcing the 
user to hit 0 to transfer to a human operator. In 

addition, frequent users often memorize the 
sequence of options that will get them the 
desired information. Therefore, any change in 
the options greatly inconveniences these users. 
Moreover, there are users that always hit 0 to 
speak to a live operator because they prefer to 
deal with a human instead of a machine. 
Finally, as customer service providers continue 
to rapidly add functionality to their IVR 
systems, the size and complexity of these 
systems continues to grow proportionally. In 
some popular systems like the IVR system that 
provides customer service for the Internal 
Revenue Service (IRS), the user is initially 
bombarded with 10 different options with each 
option leading to sub-menus offering a further 3- 
5 options, and so on. The total number of nodes 
in the tree corresponding to the IRS' IVR system 
is quite large (approximately 100) making it 
extremely complex to use. 

Some customer service providers have 
started to take advantage of the recent advances 
in speech recognition technology. Therefore, 
some of the IVR systems now allow users to say 
the option number (1, 2, 3 . . . . .  etc.) instead of 
pressing the corresponding button. In addition, 
some providers have taken this a step further by 
allowing users to say a keyword or a phrase 
from a list of keywords and/or phrases. For 
example, AT&T, the long distance company, 
provides their users the following options: 
"Please say information for information on 
placing a call, credit for requesting credit, or 
operator to speak to an operator." 

However, given the improved speech 
recognition technology, and the research done in 
natural language dialogue over the last decade, 
there exists tremendous potential in enhancing 
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these customer service centers by allowing users 
to conduct a more natural human-like dialogue 
with an automated system to provide a 
customer-friendly system. In this paper we 
describe a system that uses natural language 
dialogue to provide customer service for a 
medical domain. The system allows field 
engineers to call and obtain identification 
numbers of parts for medical systems using 
natural language dialogue. We first describe 
some work done previously in using natural 
language dialogue for customer service 
applications. Next, we present the architecture 
of our system along with a description of each of 
the key components. Finally, we conclude by 
providing results from an evaluation of the 
system. 

1. Previous Work 

As mentioned earlier, some customer service 
centers now allow users to say either the option 
number or a keyword from a list of 
options/descriptions. However, the only known 
work which automates part of  a customer service 
center using natural language dialogue is the one 
by Chu-Carroll and Carpenter (1999). The 
system described here is used as the front-end of 
a bank's customer service center. It routes calls 
by extracting key phrases from a user utterance 
and then by statistically comparing these phrases 
to phrases extracted from utterances in a training 
corpus consisting of pre-recorded calls where 
the routing was done by a human. The call is 
routed to the destination of the utterance from 
the training corpus that is most "similar" to the 
current utterance. On occasion, the system will 
interact with the user to clarify the user's request 
by asking a question. For example, if the user 
wishes to reach the loan department, the system 
will ask if the loan is for an automobile, or a 
home. Other related work is (Georgila et al., 
1998). 

While we are aware of the work being 
done by speech recognition companies like 
Nuance (www.nuance.com) and Speechworks 
(www.speechworks.com) in the area of 
providing more natural language dialogue-based 
customer service, we are not aware of any 
conference or journal publications from them. 
Some magazine articles which mention their 

work are (Rosen 1999; Rossheim 1999; 
Greenemeier 1999 ; Meisel 1999). In addition, 
when we tried out a demo of Nuance's systems, 
we found that their systems had a very IVRish 
feel to them. For example, if one wanted to 
transfer $50 from one account to another, the 
system would first ask the account that the 
money was coming from, then the account that 
the money was going to, and finally, the amount 
to be transferred. Therefore, a user could not 
say "I want to transfer $50 from my savings 
account to my checking account" and have the 
system conduct that transaction. 

In addition to the works mentioned above, 
there have been several classic projects in the 
area of natural language dialogue like 
TRAINS/TRIPS project at Rochester (Allen et 
al., 1989, 1995, 1996), Duke's Circuit-Fixit- 
Shoppe and Pascal Tutoring System (Biermann 
et al., 1997; 1995), etc. While the Circuit-Fixit- 
Shoppe system helps users fix a circuit through a 
dialogue with the system, the TRIPS and the 
TRAINS projects allow users to plan their 
itineraries through dialogue. Duke's Pascal 
tutoring system helps students in an introductory 
programming class debug their programs by 
allowing them to analyze their syntax errors, get 
additional information on the error, and learn the 
correct syntax. Although these systems have 
been quite successful, they use detailed models 
of the domain and therefore cannot be used for 
diverse applications such as the ones required 
for customer service centers. Other related work 
on dialogue include (Carberry, 1990; Grosz and 
Sidner, 1986; Reichman, 1981). 

2. PartslD: A System for Identification 
of Parts for Medical Systems 

Initially, we were approached by the medical 
systems business of our company for help in 
reducing the number of calls handled by human 
operators at their call center. An analysis of the 
types of customer service provided by their call 
center showed that a large volume of calls 
handled by their operators were placed by field 
engineers requesting identification numbers of 
parts for various medical systems. The ID 
numbers were most often used for ordering the 
corresponding parts using an automated IVR 
system. Therefore, the system we have built 
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Figure 1. PartslD System Architecture 
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helps automate some percentage of these calls 
by allowing the engineer to describe a part using 
natural language. The rest of this section 
describes our system in detail. 

2.1 D a t a  

The database we used for our system was the 
same as the one used by the operators at the call 
center. This database consists of  the most 
common parts and was built by the operators 
themselves. However, the data contained in the 
database is not clean and there are several types 
of errors including mis-spellings, use of non- 
standard abbreviations, use of several different 
abbreviations for the same word, etc. 

The database consists of approximately 
7000 different parts. For each part, the database 
contains its identification number, a description, 
and the product (machine type) that it is used in. 
The descriptions consist of approximately 
60,000 unique words of which approximately 
3,000 are words which either are non-standard 
abbreviations or are unique to the medical 
domain (example: collimator). 

Due to the large size of the database, we 
did not attempt to clean the data. However, we 
did build several data structures based on the 
database which were used by the system. The 
primary data structures built were two inverted 
hash tables corresponding to the product, and the 
part description fields in the database. The 
inverted hash tables were built as follows: 
1) Each product and part description field 

was split into words. 

2) Stop-words (words containing no 
information like: a, the, an, etc.) were 
filtered. 

3) Each remaining word was inserted as the 
index of the appropriate hash table with 
the identification number of the part 
being the value corresponding to the 
index. 

Therefore, for each non-stop-word word used in 
describing a part, the hash table contains a list of 
all the parts whose descriptions contained that 
word. Similarly, the products hash table 
contains a list of all parts corresponding to each 
product word. 

2.2 S y s t e m  Architecture 

The architecture of the system is shown in 
Figure 1. The system was designed in a manner 
such that it could be easily ported from one 
application to another with minimal effort other 
than providing the domain-specific knowledge 
regarding the new application. Therefore, we 
decided to abstract away the domain-specific 
information into self-contained modules while 
keeping the other modules completely 
independent. The domain-specific modules are 
shown in the dark shaded boxes in Figure I. 
The remainder of this section discusses each of 
the modules shown in the system architecture. 

2.2.1 The Speech Recognition System (ASR) 
Since customer service centers are meant to be 
used by a variety of users, we needed a user- 
independent speech recognition system. In 
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addition, since the system could not restrict the 
manner in which a user asked for service, the 
speech recognition system could not be 
grammar-based. Therefore, we used a general 
purpose dictation engine for the system. The 
dictation system used was Lernout & Hauspie's 
VoiceXPress system (www.lhs.com). Although 
the system was general purpose, we did provide 
to it the set of keywords and phrases that are 
commonly used in the domain thereby enabling 
it to better recognize these domain-specific 
keywords and phrases. The keywords and 
phrases used were simply the list of  descriptions 
and product names corresponding to each part in 
the database. It should be noted that the set of 
domain-specific keywords and phrases was 
provided to the speech recognition system as a 
text document. In other words, the training was 
not done by a human speaking the keywords and 
phrases into the speech recognition system. In 
addition, the speech recognition system is far 
from perfect. The recognition rates hover 
around 50%, and the system has additional 
difficulty in identifying product names which 
are most often words not found in a dictionary 
(examples: 3MlaserCam, 8000BUCKY, etc.). 

2.2.2 Parser and the Lexicon 

The parser is domain-driven in the sense that it 
uses domain-dependent information produced by 
the lexicon to look for information, in a user 
utterance, that is useful in the current domain. 
However, it does not attempt to understand fully 
each user utterance. It is robust enough to 
handle ungrammatical sentences, short phrases, 
and sentences that contain mis-recognized text. 

The lexicon, in addition to providing 
domain-dependent keywords and phrases to the 
parser, also provides the semantic knowledge 
associated with each keyword and phrase. 
Therefore, for each content word in the inverted 
hash tables, the lexicon contains entries which 
help the system determine whether the word was 
used in a part description, or a product name. In 
addition, the lexicon also provides the semantic 
knowledge associated with the pre-specified 
actions which can be taken by the user like 
"operator" which allows the user to transfer to 
an operator, and "stop," or "quit" which allow 
the user to quit the system. Some sample entries 
are: 

collimator => (description_word, collimator) 
camera => (product_word, camera) 
operator => (user action, operator) 
etc. 

The parser scans a user utterance and 
returns, as output, a list of semantic tuples 
associated with each keyword/phrase contained 
in the utterance. It is mainly interested in "key 
words" (words that are contained in product and 
part descriptions, user action words, etc.) and it 
ignores all the other words in the user utterance. 
The parser also returns a special tuple containing 
the entire input string which may be used later 
by the context-based parser for sub-string 
matching specially in cases when the DM has 
asked a specific question to the user and is 
expecting a particular kind of response. 

2.2.3 The Filler and Template Modules 

The filler takes as input the set of tuples 
generated by the parser and attempts to check 
off templates contained in the templates module 
using these tuples, The set of templates in the 
templates module contains most of remaining 
domain-specific knowledge required by the 
system. Each template is an internal 
representation of a part in the database. It 
contains for each part, its ID, its description, and 
the product which contains it. In addition, there 
are several additional templates corresponding to 
pre-specified user actions like "operator," and 
"quit." A sample template follows: 

tl__I = ( 

'product' = > 'SFD', 
'product__ids' = > 2229005" 
'product_descriptions' => 'IR RECEIVER PC 
BOARD CI104 BISTABLE MEMORY') 

For each tuple input from the parser, the 
filler checks off the fields which correspond to 
the tuple. For example, if the filler gets as input 
(description_word, collimator), it checks off the 
description fields of those templates containing 
collimator as a word in the field. A template is 
checked off iff one or more of its fields is 
checked off. In addition, the filler also 
maintains a list of all description and product 
words passed through the tuples (i.e. these words 
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have been uttered by the user). These two lists 
are subsequently passed to the dialogue 
manager. 

Although the filler does not appear to be 
very helpful for the current application domain, 
it is an important part of the architecture for 
other application domains. For example, the 
current PartslD system is a descendant from an 
earlier system which allowed users to process 
financial transactions where the filler was 
instrumental in helping the dialogue manager 
determine the type of transaction being carried 
out by the user (Bagga et al., 2000). 

2.2.4 The Dialogue Manager (DM) 
The DM receives as input from the filler the set 
of templates which are checked off. In addition, 
it also receives two lists containing the list of 
description words, and product word uttered by 
the user. The DM proceeds using the following 
algorithm: 
1) It first checks the set of checked off 

templates input from the filler. If there is 
exactly one template in this set, the DM asks 
the user to confirm the part that the template 
corresponds to. Upon receipt of the 
confirmation from the user, it returns the 
identification number of the part to the user. 

2) Otherwise, for each description word uttered 
by the user, the DM looks up the set of parts 
(or templates) containing the word from the 
descriptions inverted hash table. It then 
computes the intersection of these sets. If 
the intersection is empty, the DM computes 
the union of these sets and proceeds treating 
the union as the intersection. 

3) If the intersection obtained from (2) above 
contains exactly one template, the DM asks 
the user to confirm the part corresponding to 
the template as in (1) above. 

4) Otherwise, the DM looks at the set of 
product words uttered by the user. If this set 
is empty, the DM queries the user for the 
product name. Since the DM is expecting a 
product name here, the input provided by the 
user is handled by the context-based parser. 
Since most product names consist of non- 
standard words consisting of alpha-numeric 
characters (examples: AMX3, 
8000BUCKY, etc.), the recognition quality 
is quite poor. Therefore, the context-based 

parser ranks the input received from the user 
using a sub-string matching algorithm that 
uses character-based unigram and bigram 
counts (details are provided in the next 
section). The sub-string matching algorithm 
greatly enhances the performance of the 
system (as shown in the sample dialogue 
below). 

5) If the set of  product words is non-empty, or 
if the DM has successfully queried the user 
for a product name, it extracts the set of 
parts (templates) containing each product 
word from the product words inverted hash 
table. It then computes an intersection of 
these sets with the intersection set of 
description words obtained from (2) above. 
The resulting intersection is the joint product 
and description intersection. 

6) If the joint intersection has exactly one 
template, the DM proceeds as in (1) above. 
Alternatively, if the number of templates in 
the joint intersection is less than 4, the DM 
lists the parts corresponding to each of these 
and asks the user to confirm the correct one. 

7) If there are more than 4 templates in the 
joint intersection, the DM ranks the 
templates based upon word overlap with the 
description words uttered by the user. If the 
number of resulting top-ranked templates is 
less than 4, the DM proceeds as in the 
second half of (6) above. 

8) If the joint intersection is empty, or in the 
highly unlikely case of there being more 
than 4 top-ranked templates in (7), the DM 
asks the user to enter additional 
disambiguating information. 

The goal of the DM is to hone in on the part 
(template) desired by the user, and it has to 
determine this from the set of templates input to 
it by the filler. It has to be robust enough to deal 
with poor recognition quality, inadequate 
information input by the user, and ambiguous 
data. Therefore, the DM is designed to handle 
these issues. For example, description words 
that are mis-recognized as other description 
words usually cause the intersection of the sets 
of parts corresponding to these words to be 
empty. The DM, in this case, takes a union of 
the sets of parts corresponding to the description 
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words thereby ensuring that the template 
corresponding to the desired part is in the union. 

The DM navigates the space of possibilities 
by first analyzing the intersection of the sets of 
parts corresponding to the description words 
uttered by the user. If no unique part emerges, 
the DM then checks to see if the user has 
provided any information about the product that 
the part is going to be used in. If no product was 
mentioned by the user, the DM queries the user 
for the product name. Once this is obtained, the 
DM then checks to see if a unique part 
corresponds to the product name and the part 
description provided by the user. If no unique 
part emerges, then the DM backs off and asks 
the user to re-enter the part description. 
Alternatively, if more than one part corresponds 
to the specified product and part description, 
then the DM ranks the parts based upon the 
number of words uttered by the user. 
Obviously, since the DM in this case uses a 
heuristic, it asks the user to confirm the part that 
ranks the highest. If more than one (although 
less than 4) parts have the same rank, then the 
DM explicitly lists these parts and asks the user 
to specify the desired part. It should be noted 
that the DM has to ensure that the information it 
receives is actually what the user meant. This is 
especially true when the DM uses heuristics, and 
sub-string matches (as in the case of product 
names). Therefore, the DM occasionally asks 
the user to confirm input it has received. 

2.2.5 The Sub-String Matching Algorithm 
When the dialogue manager is expecting a 
certain type of input (examples : product names, 
yes/no responses) from the user, the user 
response is processed by the context-based 
parser. Since the type of input is known, the 
context-based parser uses a sub-string matching 
algorithm that uses character-based unigram and 
bigram counts to match the user input with the 
expectation of the dialogue manager. Therefore, 
the sub-string matching module takes as input a 
user utterance string along with a list of 
expected responses, and it ranks the list of 
expected responses based upon the user 
response. Listed below are the details of the 
algorithm : 
1) The algorithm first concatenates the words 

of the user utterance into one long string. 

This is needed because the speech 
recognition system often breaks up the 
utterance into words even though a single 
word is being said. For example, the 
product name A M X l l 0  is often broken up 
into the string 'Amex 110'. 

2) Next, the algorithm goes through the string 
formed in (1) and compares this character by 
character with the list of  expected responses. 
It assigns one point for every common 
character. Therefore, the expected response 
'AMX3' gets three points for the utterance 
'Amex110'. 

3) The algorithm then compares the user 
utterance with the list of expected responses 
using 2 characters (bigrams) at a time. It 
assigns 2 points for each bigram match. For 
the example shown in (2), there are two 
bigram matches: the first is that the 
utterance starts with an 'A' (the previous 
character is this case is the null character), 
and the second is the bigram 'AM'. 

4) The algorithm now compares the length of 
the user utterance string and the expected 
response. If the length of the two strings is 
the same, then it assigns 2 points to the 
expected response. 

5) Finally, the algorithm calculates the number 
of unique characters in the expected 
response, and the user utterance string. If 
these characters are the same, then it assigns 
4 points to the expected response. 

The expected response which has the highest 
number of points is the most likely one. If two 
or more expected responses have the same 
number of points, then the system asks the user 
to confh'm the correct one. 

While we have not evaluated this sub- 
string matching algorithm independently, a brief 
evaluation in the context of the system resulted 
in about 90% accuracy. 

2.2.6 The Presentation Module 

The presentation module works in one of two 
possible modes: over the phone, and over the 
web. This module takes as input a string 
generated by the question-generation module 
and presents this string to the user in the 
appropriate mode of communication. If the 
speech option for the system is turned on, the 
speech-based output is generated using Lernout 
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and Hauspie's RealSpeak text-to-speech system. 
Although the system currently cannot use both 
modes of communication simultaneously, we 
plan to incorporate this feature sometime in the 
future. 

2.2. 7 Robustness o f  the System 

As with any dialogue system, it is extremely 
important for the system to be robust. Our 
system has the following two features which 
make it extremely robust: 
1) The user can, at any given moment, 

say operator to transfer to an 
operator, quit~stop to exit, and 
back~restart to start afresh. 

2) When expecting a response from the 
user, if the system does not receive an 
expected input, it repeats the question 
at most twice before transferring 
control to an operator. 

3. Sample Dialogues 

This section gives examples of two sample 
dialogues that occur during the testing of the 
system. The system's response is indicated by 
"S>", the user's response by "U>", and the 
recognition of the user's response by "V>". 

S> Welcome to the PartslD Center. Please tell 
me the part that you want the ID for. 
U> I need the ID for  PCB Control. 
V> I need the I the for  PCB home thrown. 

S> What product do you need this for? 
U> COMPAX 40E 
V> home fax  for  a O0 E 

S> Is COMPAX 40E the product name that you 
said? 
U> yes 
V> gas 

S> Do you want the ID for  PCB Display SID or 
the PCB Control? 
U> The second one. 
V> The second home. 

S> Do you need the ID for  PCB Control used in 
product COMPAX 40E? 
U> yes 
V> yes 

S> The ID for  PCB Control used in product 
COMPAX 40E is 2168983. Do you wan to exit 
or f ind the ID for  another part ? 
U> look up another part. 

S> Welcome to the PartslD Center. Please tell 
me the part that you want the ID for. 
U> I need cable data for  cradle 2M long. 
V> I needed cable date them for  cradle to be 
loan. 

S> Do you need this part for  a ANGIXM2004, 
or a AFM ? 
U> AFM 
V> a fan 

S> Is AFM the product name that you said? 
U> yes 
V> yes 

S> Do you want the ID for  Cable Data for  
Cradle 2M long ? 
U> yes 
V> yes 

S> The ID for  Cable Data for  Cradle 2M long 
used in product A F M is 45438628. Do you wan 
to exit or f ind the ID for  another part? 
U> look up another part. 

4. Evaluation and Results 

The goal of our evaluation was to ensure that the 
system helped a user successfully identify parts 
irrespective of the performance of the speech 
recognition engine for the user. In other words, 
we wanted to see if the system was robust 
enough to conduct transactions with a diverse 
mix of users. We tested the system with 4 
different users two of whom had foreign accents. 
For each user, we randomly selected 20 parts 
from the database. The results are summarized 
in Table 1. 

These results show that the system was 
quite successful in handling requests from users 
with a variety of accents achieving varying 
recognition rates. Out of the 80 parts tested, 
only twice did the user feel that he/she had to 
transfer to an operator. The system successfully 
retrieved the identification numbers of 79% of 
the parts while transferring 19% of the cases to a 
human operator because of extremely bad 
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User Parts 
successfully 

identified 
15 

Calls system 
transfers to 

operator 
3 

Calls user 
transfers to 

operator 
2 

System 
prompts per 

call 
3.7 

Relevant words 
recognized per 

part 
2.5 

18 2 0 3 2.35 
13 7 0 2.5 1.65 
17 3 0 2.9 2.7 

Table 1: Summary of Results 

recognition. We are planning on conducting a 
more elaborate test which a larger set of users. 

Conclusions 

In this paper we have described a robust system 
that provides customer service for a medical 
parts application. The preliminary results are 
extremely encouraging with the system being 
able to successfully process approximately 80% 
of the requests from users with diverse accents. 
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